Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (8,959)

Search Parameters:
Keywords = emergency operation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1538 KB  
Article
Research on Key Technologies and Integrated Solutions for Intelligent Mine Ventilation Systems
by Deyun Zhong, Lixue Wen, Yulong Liu, Zhaohao Wu, Liguan Wang and Xianwei Ji
Technologies 2025, 13(10), 451; https://doi.org/10.3390/technologies13100451 - 6 Oct 2025
Abstract
Intelligent ventilation systems can optimize airflow regulation to enhance mining safety and reduce energy consumption, driving green development in mineral resource extraction. This paper systematically elaborates on the overall architecture, cutting-edge advances, and core technologies of current intelligent mining ventilation. Building upon this [...] Read more.
Intelligent ventilation systems can optimize airflow regulation to enhance mining safety and reduce energy consumption, driving green development in mineral resource extraction. This paper systematically elaborates on the overall architecture, cutting-edge advances, and core technologies of current intelligent mining ventilation. Building upon this foundation, a comprehensive intelligent mine ventilation solution encompassing the entire process of ventilation design, optimization, and operation is constructed based on a five-layer architecture, integrating key technologies such as intelligent sensing, real-time solving, airflow regulation, and remote control, providing an overarching framework for smart mine ventilation development. To address the computational efficiency bottleneck of traditional methods, an improved loop-solving method based on minimal independent closed loops is realized, achieving near real-time analysis of ventilation networks. Furthermore, a multi-level airflow regulation strategy is realized, including the methods of optimization control based on mixed integer linear programming and equipment-driven demand-based regulation, effectively resolving the challenges of calculating nonlinear programming models. Case studies indicate that the intelligent ventilation system significantly enhances mine safety and efficiency, leading to approximately 10–20% energy saving, a 40–60% quicker emergency response, and an average increase of about 20% in the utilization of fresh air at working faces through its remote and real-time control capabilities. Full article
27 pages, 8108 KB  
Review
A Review of Cross-Scale State Estimation Techniques for Power Batteries in Electric Vehicles: Evolution from Single-State to Multi-State Cooperative Estimation
by Ning Chen, Yihang Xie, Yuanhao Cheng, Huaiqing Wang, Yu Zhou, Xu Zhao, Jiayao Chen and Chunhua Yang
Energies 2025, 18(19), 5289; https://doi.org/10.3390/en18195289 - 6 Oct 2025
Abstract
As a critical technological foundation for electric vehicles, power battery state estimation primarily involves estimating the State of Charge (SOC), the State of Health (SOH) and the Remaining Useful Life (RUL). This paper systematically categorizes battery state estimation methods into three distinct generations, [...] Read more.
As a critical technological foundation for electric vehicles, power battery state estimation primarily involves estimating the State of Charge (SOC), the State of Health (SOH) and the Remaining Useful Life (RUL). This paper systematically categorizes battery state estimation methods into three distinct generations, tracing the evolutionary progression from single-state to multi-state cooperative estimation approaches. First-generation methods based on equivalent circuit models offer straightforward implementation but accumulate SOC-SOH estimation errors during battery aging, as they fail to account for the evolution of microscopic parameters such as solid electrolyte interphase film growth, lithium inventory loss, and electrode degradation. Second-generation data-driven approaches, which leverage big data and deep learning, can effectively model highly nonlinear relationships between measurements and battery states. However, they often suffer from poor physical interpretability and generalizability due to the “black-box” nature of deep learning. The emerging third-generation technology establishes transmission mechanisms from microscopic electrode interface parameters via electrochemical impedance spectroscopy to macroscopic SOC, SOH, and RUL states, forming a bidirectional closed-loop system integrating estimation, prediction, and optimization that demonstrates potential to enhance both full-operating-condition adaptability and estimation accuracy. This progress supports the development of high-reliability, long-lifetime electric vehicles. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

31 pages, 1677 KB  
Review
A Taxonomy of Robust Control Techniques for Hybrid AC/DC Microgrids: A Review
by Pooya Parvizi, Alireza Mohammadi Amidi, Mohammad Reza Zangeneh, Jordi-Roger Riba and Milad Jalilian
Eng 2025, 6(10), 267; https://doi.org/10.3390/eng6100267 - 6 Oct 2025
Abstract
Hybrid AC/DC microgrids have emerged as a promising solution for integrating diverse renewable energy sources, enhancing efficiency, and strengthening resilience in modern power systems. However, existing control schemes exhibit critical shortcomings that limit their practical effectiveness. Traditional linear controllers, designed around nominal operating [...] Read more.
Hybrid AC/DC microgrids have emerged as a promising solution for integrating diverse renewable energy sources, enhancing efficiency, and strengthening resilience in modern power systems. However, existing control schemes exhibit critical shortcomings that limit their practical effectiveness. Traditional linear controllers, designed around nominal operating points, often fail to maintain stability under large load and generation fluctuations. Optimization-based methods are highly sensitive to model inaccuracies and parameter uncertainties, reducing their reliability in dynamic environments. Intelligent approaches, such as fuzzy logic and ML-based controllers, provide adaptability but suffer from high computational demands, limited interpretability, and challenges in real-time deployment. These limitations highlight the need for robust control strategies that can guarantee reliable operation despite disturbances, uncertainties, and varying operating conditions. Numerical performance indices demonstrate that the reviewed robust control strategies outperform conventional linear, optimization-based, and intelligent controllers in terms of system stability, voltage and current regulation, and dynamic response. This paper provides a comprehensive review of recent robust control strategies for hybrid AC/DC microgrids, systematically categorizing classical model-based, intelligent, and adaptive approaches. Key research gaps are identified, including the lack of unified benchmarking, limited experimental validation, and challenges in integrating decentralized frameworks. Unlike prior surveys that broadly cover microgrid types, this work focuses exclusively on hybrid AC/DC systems, emphasizing hierarchical control architectures and outlining future directions for scalable and certifiable robust controllers. Also, comparative results demonstrate that state of the art robust controllers—including H∞-based, sliding mode, and hybrid intelligent controllers—can achieve performance improvements for metrics such as voltage overshoot, frequency settling time, and THD compared to conventional PID and droop controllers. By synthesizing recent advancements and identifying critical research gaps, this work lays the groundwork for developing robust control strategies capable of ensuring stability and adaptability in future hybrid AC/DC microgrids. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

47 pages, 2058 KB  
Review
Operative Procedures for Ultrasound Assessment of Extracranial Artery Disease: A Narrative Review by the Italian Society for Vascular Investigation (SIDV)
by Luca Costanzo, Giacomo Failla, Leonardo Aluigi, Tiziana Anna Baroncelli, Chiara Bua, Sergio De Marchi, Elia Diaco, Federico Di Paola, Francesco Lorenzo Di Pino, Ferdinando Mannello, Ombretta Martinelli, Chiara Mascoli, Anastasia Maria Pedi, Ivan Privitera, Enrico Rescigno, Antonio Trani, Pier Luigi Antignani and Marco Mangiafico
J. Clin. Med. 2025, 14(19), 7050; https://doi.org/10.3390/jcm14197050 - 6 Oct 2025
Abstract
Background: Duplex ultrasonography (DUS) of the extracranial arteries is essential for the primary and secondary prevention of ischemic stroke and the diagnosis of other cerebrovascular pathologies. The aim of the Italian Society for Vascular Investigation (SIDV) is to provide a standardised approach [...] Read more.
Background: Duplex ultrasonography (DUS) of the extracranial arteries is essential for the primary and secondary prevention of ischemic stroke and the diagnosis of other cerebrovascular pathologies. The aim of the Italian Society for Vascular Investigation (SIDV) is to provide a standardised approach for the ultrasound evaluation of extracranial arterial disease. Methods: A multidisciplinary SIDV expert panel conducted a comprehensive literature search and performed a narrative review of the recent medical literature; the updated operative procedures were subsequently developed through a consensus-driven process that included dedicated meetings and national congress sessions for discussion and validation. Results: This document outlines a comprehensive approach to the ultrasound evaluation of extracranial arteries, detailing techniques such as Brightness Mode (B-mode), Colour Doppler, Power Doppler, contrast-enhanced ultrasound (CEUS), micro-vascular flow imaging (MVFI), and Three-Dimensional (3D) ultrasound. The text provides an in-depth discussion of clinical indications, technical protocols, plaque characterisation, stenosis quantification, and hemodynamic criteria. Emerging technologies are also examined for their potential to improve cerebrovascular risk stratification. Conclusions: The updated SIDV operative procedures for the ultrasound evaluation of extracranial cerebrovascular disease are intended to serve as a valuable reference for clinicians and vascular laboratories. Full article
(This article belongs to the Section Nuclear Medicine & Radiology)
Show Figures

Figure 1

18 pages, 1807 KB  
Article
Homomorphic Cryptographic Scheme Based on Nilpotent Lie Algebras for Post-Quantum Security
by Aybeyan Selim, Muzafer Saračević and Azra Ćatović
Symmetry 2025, 17(10), 1666; https://doi.org/10.3390/sym17101666 - 6 Oct 2025
Abstract
In this paper, the use of nilpotent Lie algebras as the basis for homomorphic encryption based on additive operations is explored. The g-setting is set up over gln(Zq)) and the group [...] Read more.
In this paper, the use of nilpotent Lie algebras as the basis for homomorphic encryption based on additive operations is explored. The g-setting is set up over gln(Zq)) and the group G=exp(g), and it is noted that the exponential and logarithm series are truncated by nilpotency in a natural way. From this, an additive symmetric conjugation scheme is constructed: given a message element M and a central randomizer Uzg, we encrypt =KexpM+UK1 and decrypt to M=log(K1CK)U. The scheme is additive in nature, with the security defined in the IND-CPA model. Integrity is ensured using an encrypt-then-MAC construction. These properties together provide both confidentiality and robustness while preserving the homomorphic functionality. The scheme realizes additive homomorphism through a truncated BCH-sum, so it is suitable for ciphertext summations. We implemented a prototype and took reproducible measurements (Python 3.11/NumPy) of the series {10,102,103,104,105} over 10 iterations, reporting the medians and 95% confidence intervals. The graphs exhibit that the latency per operation remains constant at fixed values, and the total time scales approximately linearly with the batch size; we also report the throughput, peak memory usage, C/M expansion rate, and achievable aggregation depth. The applications are federated reporting, IoT telemetry, and privacy-preserving aggregations in DBMS; the limitations include its additive nature (lacking general multiplicative homomorphism), IND-CPA (but not CCA), and side-channel resistance requirements. We place our approach in contrast to the standard FHE building blocks BFV/BGV/CKKS nd the emerging NIST PQC standards (FIPS 203/204/205), as a well-established security model with future engineering optimizations. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

20 pages, 1043 KB  
Article
Multi-Criteria Decision-Making Algorithm Selection and Adaptation for Performance Improvement of Two Stroke Marine Diesel Engines
by Hla Gharib and György Kovács
J. Mar. Sci. Eng. 2025, 13(10), 1916; https://doi.org/10.3390/jmse13101916 - 5 Oct 2025
Abstract
Selecting an appropriate Multi-Criteria Decision-Making (MCDM) algorithm for optimizing marine diesel engine operation presents a complex challenge due to the diversity in mathematical formulations, normalization schemes, and trade-off resolutions across methods. This study systematically evaluates fourteen MCDM algorithms, which are grouped into five [...] Read more.
Selecting an appropriate Multi-Criteria Decision-Making (MCDM) algorithm for optimizing marine diesel engine operation presents a complex challenge due to the diversity in mathematical formulations, normalization schemes, and trade-off resolutions across methods. This study systematically evaluates fourteen MCDM algorithms, which are grouped into five primary methodological categories: Scoring-Based, Distance-Based, Pairwise Comparison, Outranking, and Hybrid/Intelligent System-Based methods. The goal is to identify the most suitable algorithm for real-time performance optimization of two stroke marine diesel engines. Using Diesel-RK software, calibrated for marine diesel applications, simulations were performed on a variant of the MAN-B&W-S60-MC-C8-8 engine. A refined five-dimensional parameter space was constructed by systematically varying five key control variables: Start of Injection (SOI), Dwell Time, Fuel Mass Fraction, Fuel Rail Pressure, and Exhaust Valve Timing. A subset of 4454 high-potential alternatives was systematically evaluated according to three equally important criteria: Specific Fuel Consumption (SFC), Nitrogen Oxides (NOx), and Particulate Matter (PM). The MCDM algorithms were evaluated based on ranking consistency and stability. Among them, Proximity Indexed Value (PIV), Integrated Simple Weighted Sum Product (WISP), and TriMetric Fusion (TMF) emerged as the most stable and consistently aligned with the overall consensus. These methods reliably identified optimal engine control strategies with minimal sensitivity to normalization, making them the most suitable candidates for integration into automated marine engine decision-support systems. The results underscore the importance of algorithm selection and provide a rigorous basis for establishing MCDM in emission-constrained maritime environments. This study is the first comprehensive, simulation-based evaluation of fourteen MCDM algorithms applied specifically to the optimization of two stroke marine diesel engines using Diesel-RK software. Full article
(This article belongs to the Special Issue Marine Equipment Intelligent Fault Diagnosis)
Show Figures

Figure 1

41 pages, 1929 KB  
Review
The Evolution and Taxonomy of Deep Learning Models for Aircraft Trajectory Prediction: A Review of Performance and Future Directions
by NaeJoung Kwak and ByoungYup Lee
Appl. Sci. 2025, 15(19), 10739; https://doi.org/10.3390/app151910739 - 5 Oct 2025
Abstract
Accurate aircraft trajectory prediction is fundamental to air traffic management, operational safety, and intelligent aerospace systems. With the growing availability of flight data, deep learning has emerged as a powerful tool for modeling the spatiotemporal complexity of 4D trajectories. This paper presents a [...] Read more.
Accurate aircraft trajectory prediction is fundamental to air traffic management, operational safety, and intelligent aerospace systems. With the growing availability of flight data, deep learning has emerged as a powerful tool for modeling the spatiotemporal complexity of 4D trajectories. This paper presents a comprehensive review of deep learning-based approaches for aircraft trajectory prediction, focusing on their evolution, taxonomy, performance, and future directions. We classify existing models into five groups—RNN-based, attention-based, generative, graph-based, and hybrid and integrated models—and evaluate them using standardized metrics such as the RMSE, MAE, ADE, and FDE. Common datasets, including ADS-B and OpenSky, are summarized, along with the prevailing evaluation metrics. Beyond model comparison, we discuss real-world applications in anomaly detection, decision support, and real-time air traffic management, and highlight ongoing challenges such as data standardization, multimodal integration, uncertainty quantification, and self-supervised learning. This review provides a structured taxonomy and forward-looking perspectives, offering valuable insights for researchers and practitioners working to advance next-generation trajectory prediction technologies. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

28 pages, 3571 KB  
Article
Methodology for Transient Stability Assessment and Enhancement in Low-Inertia Power Systems Using Phasor Measurements: A Data-Driven Approach
by Mihail Senyuk, Svetlana Beryozkina, Ismoil Odinaev, Inga Zicmane and Murodbek Safaraliev
Mathematics 2025, 13(19), 3192; https://doi.org/10.3390/math13193192 - 5 Oct 2025
Abstract
Modern energy systems are undergoing a profound transformation characterized by the active replacement of conventional fossil-fuel-based power plants with renewable energy sources. This transition aims to reduce the carbon emissions associated with electricity generation while enhancing the economic performance of electric power market [...] Read more.
Modern energy systems are undergoing a profound transformation characterized by the active replacement of conventional fossil-fuel-based power plants with renewable energy sources. This transition aims to reduce the carbon emissions associated with electricity generation while enhancing the economic performance of electric power market players. However, alongside these benefits come several challenges, including reduced overall inertia within energy systems, heightened stochastic variability in grid operation regimes, and stricter demands on the rapid response capabilities and adaptability of emergency controls. This paper presents a novel methodology for selecting effective control laws for low-inertia energy systems, ensuring their dynamic stability during post-emergency operational conditions. The proposed approach integrates advanced techniques, including feature selection via decision tree algorithms, classification using Random Forest models, and result visualization through the Mean Shift clustering method applied to a two-dimensional representation derived from the t-distributed Stochastic Neighbor Embedding technique. A modified version of the IEEE39 benchmark model served as the testbed for numerical experiments, achieving a classification accuracy of 98.3%, accompanied by a control law synthesis delay of just 0.047 milliseconds. In conclusion, this work summarizes the key findings and outlines potential enhancements to refine the presented methodology further. Full article
(This article belongs to the Special Issue Mathematical Applications in Electrical Engineering, 2nd Edition)
Show Figures

Figure 1

12 pages, 308 KB  
Article
Feasibility and Safety of Primary Ureteroscopy with Single-Use Flexible Ureteroscope HU30M (6.3 Fr, HugeMed): An Initial Experience
by Benedikt Ebner, Iulia Blajan, Johannes Raphael Westphal, Iason Papadopoulos, Troya Ivanova, Deniz Karatas, Moritz Happe, Yannic Volz, Christian G. Stief, Maria Apfelbeck and Michael Chaloupka
Diagnostics 2025, 15(19), 2522; https://doi.org/10.3390/diagnostics15192522 - 5 Oct 2025
Abstract
Background: The miniaturization of ureterorenoscopes increasingly enables atraumatic primary ureteroscopy, without ureteral dilation or presenting. This study aims to evaluate the feasibility and safety of primary ureteroscopy using the HU30M (6.3 Fr, HugeMed, Shenzhen HugeMed Medical Technical Development Co., Ltd., China), the smallest [...] Read more.
Background: The miniaturization of ureterorenoscopes increasingly enables atraumatic primary ureteroscopy, without ureteral dilation or presenting. This study aims to evaluate the feasibility and safety of primary ureteroscopy using the HU30M (6.3 Fr, HugeMed, Shenzhen HugeMed Medical Technical Development Co., Ltd., China), the smallest currently available ureteroscope Methods: We analyzed consecutive patients in whom primary ureteroscopy using the HU30M was performed or attempted, using prospectively collected in-hospital and 30-day follow-up data for retrospective evaluation. The primary outcome was the success rate of primary ostial intubation. Secondary outcomes included the stone-free rate (SFR) in patients with urolithiasis, incidence of in-hospital complications (Clavien–Dindo classification) and 30-day emergency readmission. Additionally, we conducted a propensity score-matched comparative analysis of the HU30M versus a contemporary 7.5 Fr digital single-use ureteroscope (PUSEN PU3033AH, Zhuhai Pusen Medical Technology Co., Ltd., China). Results: Between January and April 2025, primary ureteroscopy using the HU30M was performed or attempted in 34 patients, including four bilateral procedures. Primary ureteroscopy was defined as ureteroscopic access without prior stenting or dilation. Indications were diagnostic evaluation in 15 patients (44%), uretreroscopic stone treatment in 10 patients (29%) and endoscopic combined intrarenal surgery (ECIRS) in 9 patients (27%). Successful primary ostial intubation was achieved in 36 of 38 renal units (95%). Among urolithiasis cases, SFR was 17/19 (90%) in-hospital complications were limited to postoperative fever in two patients (6%) and no procedure-related 30-day emergency readmission occurred. In matched analyses, HU30M demonstrated significantly shorter operative times compared with the 7.5 Fr ureteroscope, while postoperative hemoglobin drop, inflammatory parameters and renal function were comparable. Conclusions: Primary ureteroscopy with HU30M is feasible and safe across diverse indications, achieving high success of atraumatic ostial access. Comparative analyses suggest procedural efficiency advantages and overall safety comparable to the current digital single-use ureteroscope standard. Full article
(This article belongs to the Section Clinical Diagnosis and Prognosis)
39 pages, 3397 KB  
Article
Decision-Making and Data Sharing in Smart Catering: An Evolutionary Game Approach
by Jiping Xu, Shuaishuai Cao, Zhaoyang Wang, Chongchong Yu and Minzhang Zheng
Computation 2025, 13(10), 235; https://doi.org/10.3390/computation13100235 - 5 Oct 2025
Abstract
With the rapid advancement of the Internet and big data, data sharing has become pivotal for enhancing operational efficiency and user experience across industries. In the restaurant sector, the emergence of smart kitchens has accelerated digital transformation, underscoring the critical importance of data [...] Read more.
With the rapid advancement of the Internet and big data, data sharing has become pivotal for enhancing operational efficiency and user experience across industries. In the restaurant sector, the emergence of smart kitchens has accelerated digital transformation, underscoring the critical importance of data sharing. In this study, we investigate the evolutionary dynamics among four key stakeholders in the smart kitchen ecosystem: data providers, data-sharing platforms, data consumers, and regulators. We develop a four-party evolutionary game model to analyze the strategic interactions and behavioral evolution of each participant, applying replicator dynamics and Lyapunov stability theory. Our findings reveal that (1) data providers’ willingness to supply high-quality data is strongly influenced by platform incentives; (2) platforms’ adoption of data governance mechanisms depends on associated governance costs; (3) regulatory subsidies contribute significantly to system stability; and (4) increased financial support for regulators promotes favorable system evolution. This work offers both theoretical insights and practical guidance for data sharing in smart kitchens, providing a novel perspective on digital transformation within the restaurant industry. Full article
(This article belongs to the Special Issue Computational Social Science and Complex Systems—2nd Edition)
13 pages, 388 KB  
Review
Does Vancomycin as the First-Choice Therapy for Antibiotic Prophylaxis Increase the Risk of Surgical Site Infections Following Spine Surgery?
by Vojislav Bogosavljevic, Dusan Spasic, Lidija Stanic, Marija Kukuric and Milica Bajcetic
Antibiotics 2025, 14(10), 996; https://doi.org/10.3390/antibiotics14100996 - 5 Oct 2025
Abstract
Surgical site infections (SSIs) remain a significant complication in spine surgery, especially in instrumented procedures with long operative times. Although guidelines recommend cefazolin as the first-line agent due to its efficacy against Staphylococcus aureus, predictable pharmacokinetics, and safety, its real-world practice is highly [...] Read more.
Surgical site infections (SSIs) remain a significant complication in spine surgery, especially in instrumented procedures with long operative times. Although guidelines recommend cefazolin as the first-line agent due to its efficacy against Staphylococcus aureus, predictable pharmacokinetics, and safety, its real-world practice is highly variable, with inappropriate and prolonged regimens reported across Europe. Vancomycin is often used as the first choice of therapy empirically and without screening, exposing patients to risks such as delayed infusion, nephrotoxicity, and the emergence of vancomycin-resistant enterococci (VRE).This review assesses the present function of vancomycin in relation to cefazolin for spinal prophylaxis and examines wider trends in the misuse of surgical antibiotic prophylaxis, which were identified through PubMed and Scopus searches. Evidence from randomized and prospective studies consistently supports cefazolin as the preferred prophylactic agent in clean spinal surgery. Observational data suggest that adjunctive or topical vancomycin may reduce infection rates in selected high-risk or revision cases, though the results are inconsistent and frequently limited by retrospective designs and heterogeneous outcome reporting. Importantly, the most rigorous randomized controlled trial found no benefit of intrawound vancomycin over the placebo. A small number of available investigations in vancomycin use with major design limitations have resulted in no significant VRE emergency. Unexpectedly, widespread use of vancomycin was followed by a notable transition toward Gram-negative and opportunistic organisms. In summary, vancomycin may only be considered in patients with documented MRSA colonization, β-lactam allergy, or selected revision procedures, but its widespread empirical use as a first-choice therapy is not supported. Full article
Show Figures

Figure 1

29 pages, 19534 KB  
Article
Variable Fractional-Order Dynamics in Dark Matter–Dark Energy Chaotic System: Discretization, Analysis, Hidden Dynamics, and Image Encryption
by Haris Calgan
Symmetry 2025, 17(10), 1655; https://doi.org/10.3390/sym17101655 - 5 Oct 2025
Abstract
Fractional-order chaotic systems have emerged as powerful tools in secure communications and multimedia protection owing to their memory-dependent dynamics, large key spaces, and high sensitivity to initial conditions. However, most existing fractional-order image encryption schemes rely on fixed-order chaos and conventional solvers, which [...] Read more.
Fractional-order chaotic systems have emerged as powerful tools in secure communications and multimedia protection owing to their memory-dependent dynamics, large key spaces, and high sensitivity to initial conditions. However, most existing fractional-order image encryption schemes rely on fixed-order chaos and conventional solvers, which limit their complexity and reduce unpredictability, while also neglecting the potential of variable fractional-order (VFO) dynamics. Although similar phenomena have been reported in some fractional-order systems, the coexistence of hidden attractors and stable equilibria has not been extensively investigated within VFO frameworks. To address these gaps, this paper introduces a novel discrete variable fractional-order dark matter–dark energy (VFODM-DE) chaotic system. The system is discretized using the piecewise constant argument discretization (PWCAD) method, enabling chaos to emerge at significantly lower fractional orders than previously reported. A comprehensive dynamic analysis is performed, revealing rich behaviors such as multistability, symmetry properties, and hidden attractors coexisting with stable equilibria. Leveraging these enhanced chaotic features, a pseudorandom number generator (PRNG) is constructed from the VFODM-DE system and applied to grayscale image encryption through permutation–diffusion operations. Security evaluations demonstrate that the proposed scheme offers a substantially large key space (approximately 2249) and exceptional key sensitivity. The scheme generates ciphertexts with nearly uniform histograms, extremely low pixel correlation coefficients (less than 0.04), and high information entropy values (close to 8 bits). Moreover, it demonstrates strong resilience against differential attacks, achieving average NPCR and UACI values of about 99.6% and 33.46%, respectively, while maintaining robustness under data loss conditions. In addition, the proposed framework achieves a high encryption throughput, reaching an average speed of 647.56 Mbps. These results confirm that combining VFO dynamics with PWCAD enriches the chaotic complexity and provides a powerful framework for developing efficient and robust chaos-based image encryption algorithms. Full article
(This article belongs to the Special Issue Symmetry in Chaos Theory and Applications)
Show Figures

Figure 1

22 pages, 2587 KB  
Article
Self-Energy-Harvesting Pacemakers: An Example of Symbiotic Synthetic Biology
by Kuntal Kumar Das, Ashutosh Kumar Dubey, Bikramjit Basu and Yogendra Narain Srivastava
SynBio 2025, 3(4), 15; https://doi.org/10.3390/synbio3040015 - 4 Oct 2025
Abstract
While synthetic biology has traditionally focused on creating biological systems often through genetic engineering, emerging technologies, for example, implantable pacemakers with integrated piezo-electric and tribo-electric materials are beginning to enlarge the classical domain into what we call symbiotic synthetic biology. These devices are [...] Read more.
While synthetic biology has traditionally focused on creating biological systems often through genetic engineering, emerging technologies, for example, implantable pacemakers with integrated piezo-electric and tribo-electric materials are beginning to enlarge the classical domain into what we call symbiotic synthetic biology. These devices are permanently attached to a body, although non-living or genetically unaltered, and closely mimic biological behavior by harvesting biomechanical energy and providing functions, such as autonomous heart pacing. They form active interfaces with human tissues and operate as hybrid systems, similar to synthetic organs. In this context, the present paper first presents a short summary of previous in vivo studies on piezo-electric composites in relation to their deployment as battery-less pacemakers. This is then followed by a summary of a recent theoretical work using a damped harmonic resonance model, which is being extended to mimic the functioning of such devices. We then extend the theoretical study further to include new solutions and obtain a sum rule for the power output per cycle in such systems. In closing, we present our quantitative understanding to explore the modulation of the quantum vacuum energy (Casimir effect) by periodic body movements to power pacemakers. Taken together, the present work provides the scientific foundation of the next generation bio-integrated intelligent implementation. Full article
35 pages, 6224 KB  
Article
An AIoT Product Development Process with Integrated Sustainability and Universal Design
by Meng-Dar Shieh, Hsu-Chan Hsiao, Jui-Feng Chang, Yu-Ting Hsiao and Yuan-Jyun Jhou
Sustainability 2025, 17(19), 8874; https://doi.org/10.3390/su17198874 - 4 Oct 2025
Abstract
The rapid development of contemporary artificial intelligence and Internet of Things (IoT) technologies has given rise to the emerging paradigm of the AIoT (Artificial Intelligence of Things), which is profoundly impacting human life and driving the digital transformation of industries and society. The [...] Read more.
The rapid development of contemporary artificial intelligence and Internet of Things (IoT) technologies has given rise to the emerging paradigm of the AIoT (Artificial Intelligence of Things), which is profoundly impacting human life and driving the digital transformation of industries and society. The AIoT not only enhances product functionality and convenience but also accelerates the achievement of the United Nations Sustainable Development Goals (SDGs). However, the widespread adoption of these technologies still poses challenges related to social inclusivity, particularly regarding insufficient accessibility for elderly users, which may exacerbate the digital divide and social inequality, contradicting SDG 10 (reducing inequality). This study integrates AIoT product development processes based on sustainability and universal design principles using methods such as Quality Function Deployment, the Analytic Hierarchy Process, the Scenario Method, the Entropy Weight Method, and Fuzzy Comprehensive Evaluation. The features of this process include ease of operation and high flexibility, making it suitable for cross-departmental product development while prioritizing the needs of diverse age groups throughout the development process. The research findings indicate that the AIoT product concepts proposed can meet the needs of diverse users, contributing to the realization of age-friendly products. This study provides a reference point for future AIoT product development, promoting the inclusive and sustainable development of smart technology. Full article
(This article belongs to the Section Sustainable Products and Services)
29 pages, 1062 KB  
Review
Cost-Effectiveness of Structural Health Monitoring in Aviation: A Literature Review
by Pietro Ballarin, Giuseppe Sala and Alessandro Airoldi
Sensors 2025, 25(19), 6146; https://doi.org/10.3390/s25196146 - 4 Oct 2025
Abstract
(1) Background: Structural Health Monitoring Systems (SHMSs) can reduce maintenance costs and aircraft downtime. However, their economic impact remains underexplored, particularly in cost–benefit terms. (2) Methods: This study conducted a targeted literature review on all the existing studies consisting of seventeen economic analyses [...] Read more.
(1) Background: Structural Health Monitoring Systems (SHMSs) can reduce maintenance costs and aircraft downtime. However, their economic impact remains underexplored, particularly in cost–benefit terms. (2) Methods: This study conducted a targeted literature review on all the existing studies consisting of seventeen economic analyses of SHMS applications. Key features—such as SHMS type, structural material, vehicle type, integration stage, and cost elements—were classified to identify prevailing trends and gaps. (3) Results: The analysis revealed a predominance of piezoelectric-based SHMS applied to metallic fixed-wing aircraft, with limited attention to composite structures and e-VTOLs. Most studies focused on maintenance phase impacts, overlooking integration costs during manufacturing. Potential benefits like operational life extension, prognostic capabilities, and safety margin reduction were rarely explored, while critical drawbacks such as detection performance, reliability, and power consumption were underrepresented. Maintenance and fuel costs were the most frequently considered economic drivers; downtime costs were often neglected. (4) Conclusions: Although the majority of reviewed studies suggest a positive economic impact from SHMS implementation, significant gaps remain. Future research should address SHMS reliability, integration during early design stages, and applications to emerging aircraft like e-VTOLs to fully realize SHMS economic advantages. Full article
(This article belongs to the Special Issue Sensors—Integrating Composite Materials in Aerospace Applications)
Show Figures

Figure 1

Back to TopTop