Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,329)

Search Parameters:
Keywords = energy forecast

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
7 pages, 1657 KB  
Proceeding Paper
Assessing the Sensitivity of WRF to Surface Urban Physics
by Iraklis Kyriakidis, Vasileios Pavlidis, Maria Gkolemi, Zina Mitraka, Nektarios Chrysoulakis and Eleni Katragkou
Environ. Earth Sci. Proc. 2025, 35(1), 67; https://doi.org/10.3390/eesp2025035067 - 9 Oct 2025
Abstract
This study investigates the sensitivity of an urban parameterization scheme of the Weather Research and Forecasting model (WRF). The model sensitivity is tested during the period April–May 2020 over the greater Paris region. The parent domain covers Europe with a 12 km horizontal [...] Read more.
This study investigates the sensitivity of an urban parameterization scheme of the Weather Research and Forecasting model (WRF). The model sensitivity is tested during the period April–May 2020 over the greater Paris region. The parent domain covers Europe with a 12 km horizontal resolution, with a nested one covering the greater Paris region with a 3 km horizontal resolution. A multi-layer urban scheme called Building Effect Parameterization coupled with the Building Energy Model (BEP-BEM) was applied in two simulations: (1) BEP-BEM Paris, with urban options tailored for the Paris region, which were derived from Earth Observation data, and (2) BEP-BEM Europe, which uses an updated urban parameter table with an estimated average profile for European cities. These two simulations were compared with observations and a WRF simulation using a simple urban parameterization (BULK approach). BULK and multi-layer urban scheme experiments present a similar general error for April, underestimating temperature, while the BEP-BEM runs overestimate temperature for May. The simulation with the advanced tailored urban parameterization over Paris appears to have the best overall performance in this 2-month period. Full article
Show Figures

Figure 1

19 pages, 2847 KB  
Article
Dynamic Modelling of the Natural Gas Market in Colombia in the Framework of a Sustainable Energy Transition
by Derlyn Franco, Juan C. Osorio and Diego F. Manotas
Energies 2025, 18(19), 5316; https://doi.org/10.3390/en18195316 - 9 Oct 2025
Abstract
In response to the climate crisis, Colombia has committed to reducing greenhouse gas (GHG) emissions by 2030 through an energy transition strategy that promotes Non-Conventional Renewable Energy Sources (NCRES) and, increasingly, natural gas. Although natural gas is regarded as a transitional fuel with [...] Read more.
In response to the climate crisis, Colombia has committed to reducing greenhouse gas (GHG) emissions by 2030 through an energy transition strategy that promotes Non-Conventional Renewable Energy Sources (NCRES) and, increasingly, natural gas. Although natural gas is regarded as a transitional fuel with lower carbon intensity than other fossil fuels, existing reserves could be depleted by 2030 if no new discoveries are made. To assess this risk, a System Dynamics model was developed to project supply and demand under alternative transition pathways. The model integrates: (1) GDP, urban population growth, and adoption of clean energy, (2) the behavior of six major consumption sectors, and (3) the role of gas-fired thermal generation relative to NCRES output and hydroelectric availability, influenced by the El Niño river-flow variability. The novelty and contribution of this study lie in the integration of supply and demand within a unified System Dynamics framework, allowing for a holistic understanding of the Colombian natural gas market. The model explicitly incorporates feedback mechanisms such as urbanization, vehicle replacement, and hydropower variability, which are often overlooked in traditional analyses. Through the evaluation of twelve policy scenarios that combine hydrogen, wind, solar, and new gas reserves, the study provides a comprehensive view of potential energy transition pathways. A comparative analysis with official UPME projections highlights both consistencies and divergences in long-term forecasts. Furthermore, the quantification of demand coverage from 2026 to 2033 reveals that while current reserves can satisfy demand until 2026, the expansion of hydrogen, wind, and solar sources could extend full coverage until 2033; however, ensuring long-term sustainability ultimately depends on the discovery and development of new reserves, such as the Sirius-2 well. Full article
Show Figures

Figure 1

20 pages, 4466 KB  
Article
SA-STGCN: A Spectral-Attentive Spatio-Temporal Graph Convolutional Network for Wind Power Forecasting with Wavelet-Enhanced Multi-Scale Learning
by Yakai Yang, Zhenqing Liu and Zhongze Yu
Energies 2025, 18(19), 5315; https://doi.org/10.3390/en18195315 - 9 Oct 2025
Abstract
Wind power forecasting remains a major challenge for renewable energy integration, as conventional models often perform poorly when confronted with complex atmospheric dynamics. This study addresses the problem by developing a Spectral-Attentive Spatio-Temporal Graph Convolutional Network (SA-STGCN) designed to capture the intricate temporal [...] Read more.
Wind power forecasting remains a major challenge for renewable energy integration, as conventional models often perform poorly when confronted with complex atmospheric dynamics. This study addresses the problem by developing a Spectral-Attentive Spatio-Temporal Graph Convolutional Network (SA-STGCN) designed to capture the intricate temporal and spatial dependencies of wind systems. The approach first applies wavelet transform decomposition to separate volatile wind signals into distinct frequency components, enabling more interpretable representation of rapidly changing conditions. A dynamic temporal attention mechanism is then employed to adaptively identify historical patterns that are most relevant for prediction, moving beyond the fixed temporal windows used in many existing methods. In addition, spectral graph convolution is conducted in the frequency domain to capture farm-wide spatial correlations, thereby modeling long-range atmospheric interactions that conventional localized methods overlook. Although this design increases computational complexity, it proves critical for representing wind variability. Evaluation on real-world datasets demonstrates that SA-STGCN achieves substantial accuracy improvements, with a mean absolute error of 1.52 and a root mean square error of 2.31. These results suggest that embracing more expressive architectures can yield reliable forecasting performance, supporting the stable integration of wind power into modern energy systems. Full article
(This article belongs to the Section A3: Wind, Wave and Tidal Energy)
Show Figures

Figure 1

19 pages, 4365 KB  
Article
Enhancing Load Stratification in Power Distribution Systems Through Clustering Algorithms: A Practical Study
by Williams Mendoza-Vitonera, Xavier Serrano-Guerrero, María-Fernanda Cabrera, John Enriquez-Loja and Antonio Barragán-Escandón
Energies 2025, 18(19), 5314; https://doi.org/10.3390/en18195314 - 9 Oct 2025
Abstract
Accurate load profile identification is crucial for effective and sustainable power system planning. This study proposes a characterization methodology based on clustering techniques applied to consumption data from medium- and low-voltage users, as well as distribution transformers from an electric utility. Three algorithms—K-means, [...] Read more.
Accurate load profile identification is crucial for effective and sustainable power system planning. This study proposes a characterization methodology based on clustering techniques applied to consumption data from medium- and low-voltage users, as well as distribution transformers from an electric utility. Three algorithms—K-means, DBSCAN (Density-Based Spatial Clustering of Applications with Noise), and Gaussian Mixture Models (GMM)—were implemented and compared in terms of their ability to form representative strata using variables such as observation count, projected energy, load factor (LF), and characteristic power levels. The methodology includes data cleaning, normalization, dimensionality reduction, and quality metric analysis to ensure cluster consistency. Results were benchmarked against a prior study conducted by Empresa Eléctrica Regional Centro Sur C.A. (EERCS). Among the evaluated algorithms, GMM demonstrated superior performance in modeling irregular consumption patterns and probabilistically assigning observations, resulting in more coherent and representative segmentations. The resulting clusters exhibited an average LF of 58.82%, indicating balanced demand distribution and operational consistency across the groups. Compared to alternative clustering techniques, GMM demonstrated advantages in capturing heterogeneous consumption patterns, adapting to irregular load behaviors, and identifying emerging user segments such as induction-cooking households. These characteristics arise from its probabilistic nature, which provides greater flexibility in cluster formation and robustness in the presence of variability. Therefore, the findings highlight the suitability of GMM for real-world applications where representativeness, efficiency, and cluster stability are essential. The proposed methodology supports improved transformer sizing, more precise technical loss assessments, and better demand forecasting. Periodic application and integration with predictive models and smart grid technologies are recommended to enhance strategic and operational decision-making, ultimately supporting the transition toward smarter and more resilient power distribution systems. Full article
Show Figures

Figure 1

18 pages, 2882 KB  
Article
A Preferences Corpus and Annotation Scheme for Human-Guided Alignment of Time-Series GPTs
by Ricardo A. Calix, Tyamo Okosun, Chenn Zhou and Hong Wang
Data 2025, 10(10), 161; https://doi.org/10.3390/data10100161 - 9 Oct 2025
Abstract
The process of time-series forecasting such as predicting trajectories of silicon content in blast furnaces is a difficult task. Most time-series approaches today focus on scalar-type MSE loss optimization. This optimization approach, while widely common, could benefit from the use of human expert [...] Read more.
The process of time-series forecasting such as predicting trajectories of silicon content in blast furnaces is a difficult task. Most time-series approaches today focus on scalar-type MSE loss optimization. This optimization approach, while widely common, could benefit from the use of human expert or process-level preferences. In this paper, we introduce a novel alignment and fine-tuning approach that involves learning from a corpus of preferred and dis-preferred time-series prediction trajectories. Our contributions include (1) a preference annotation pipeline for time-series forecasts, (2) the application of Score-based Preference Optimization (SPO) to train decoder-only transformers from preferences, and (3) results showing improvements in forecast quality. The approach is validated on both proprietary blast furnace data and the UCI Appliances Energy dataset. The proposed preference corpus and training strategy offer a new option for fine-tuning sequence models in industrial settings. Full article
Show Figures

Figure 1

25 pages, 5136 KB  
Article
A Data-Driven Battery Energy Storage Regulation Approach Integrating Machine Learning Forecasting Models for Enhancing Building Energy Flexibility—A Case Study of a Net-Zero Carbon Building in China
by Zesheng Yang, Dezhou Kong, Zhexuan Chen, Zhiang Zhang, Dengfeng Du and Ziyue Zhu
Buildings 2025, 15(19), 3611; https://doi.org/10.3390/buildings15193611 - 8 Oct 2025
Abstract
Building energy flexibility is essential for integrating renewables, optimizing energy use, and ensuring grid stability. While renewable and storage systems are increasingly used in buildings, poorly designed storage strategies often cause supply-demand mismatches, and a comprehensive, indicator-based assessment approach for quantifying flexibility remains [...] Read more.
Building energy flexibility is essential for integrating renewables, optimizing energy use, and ensuring grid stability. While renewable and storage systems are increasingly used in buildings, poorly designed storage strategies often cause supply-demand mismatches, and a comprehensive, indicator-based assessment approach for quantifying flexibility remains lacking. Therefore, this study designs customized energy storage regulation strategies and constructs a comprehensive energy flexibility assessment scheme to address key issues in supply-demand coordination and energy flexibility evaluation. LSTM and Rolling-XGB methods are used to predict building energy consumption and PV generation, respectively. Based on battery safety constraints, a data-driven battery energy storage system (BESS) model simulates battery behavior to evaluate and compare building energy flexibility under two scenarios: (1) uncoordinated PV-BESS, and (2) coordinated PV-BESS with load forecasting. A practical validation was conducted using a net-zero-carbon building as the case study. Simulation results show that the data-driven BESS model improves building energy flexibility and reduces electricity costs through optimized battery sizing, tailored storage strategies, and consideration of local time-of-use tariffs. In the case study, local energy coverage reached 62.75%, surplus time increased to 34.77%, and costs were cut by nearly 40% compared to the PV-only scenario, demonstrating the significant benefits brought by the proposed BESS model that integrates load forecasting and PV generation prediction features. Full article
(This article belongs to the Special Issue Big Data and Machine/Deep Learning in Construction)
Show Figures

Figure 1

22 pages, 3920 KB  
Article
An Applied Study on Predicting Natural Gas Prices Using Mixed Models
by Shu Tang, Dongphil Chun and Xuhui Liu
Energies 2025, 18(19), 5303; https://doi.org/10.3390/en18195303 - 8 Oct 2025
Abstract
Accurate natural gas price forecasting is vital for risk management, trading strategies, and policy-making in energy markets. This study proposes and evaluates four hybrid deep learning architectures—CNN-LSTM-Attention, CNN-BiLSTM-Attention, TCN-LSTM-Attention, and TCN-BiLSTM-Attention—integrating convolutional feature extraction, sequential learning, and attention mechanisms. Using Henry Hub and [...] Read more.
Accurate natural gas price forecasting is vital for risk management, trading strategies, and policy-making in energy markets. This study proposes and evaluates four hybrid deep learning architectures—CNN-LSTM-Attention, CNN-BiLSTM-Attention, TCN-LSTM-Attention, and TCN-BiLSTM-Attention—integrating convolutional feature extraction, sequential learning, and attention mechanisms. Using Henry Hub and NYMEX datasets, the models are trained on long historical periods and tested under multi-step horizons. The results show that all hybrid models significantly outperform the traditional moving average benchmark, achieving R2 values above 95% for one-step-ahead forecasts and maintaining an accuracy of over 87% at longer horizons. CNN-BiLSTM-Attention performs best in short-term prediction due to its ability to capture bidirectional dependencies, while TCN-based models demonstrate greater robustness over extended horizons due to their effective modeling of long-range temporal structures. These findings confirm the advantages of deep learning hybrids in energy forecasting and emphasize the importance of horizon-sensitive evaluation. This study contributes methodological innovation and provides practical insights for market participants, with future directions including the integration of macroeconomic and climatic factors, exploration of advanced architectures such as Transformers, and probabilistic forecasting for uncertainty quantification. Full article
Show Figures

Figure 1

24 pages, 3764 KB  
Article
Predictive Energy Storage Management with Redox Flow Batteries in Demand-Driven Microgrids
by Dario Benavides, Paul Arévalo-Cordero, Danny Ochoa-Correa, David Torres and Alberto Ríos
Sustainability 2025, 17(19), 8915; https://doi.org/10.3390/su17198915 - 8 Oct 2025
Abstract
Accurate demand forecasting contributes to improved energy efficiency and the development of short-term strategies. Predictive management of energy storage using redox flow batteries is presented as a robust solution for optimizing the operation of microgrids from the demand side. This study proposes an [...] Read more.
Accurate demand forecasting contributes to improved energy efficiency and the development of short-term strategies. Predictive management of energy storage using redox flow batteries is presented as a robust solution for optimizing the operation of microgrids from the demand side. This study proposes an intelligent architecture that integrates demand forecasting models based on artificial neural networks and active management strategies based on the instantaneous production of renewable sources within the microgrid. The solution is supported by a real-time monitoring platform capable of analyzing data streams using continuous evaluation algorithms, enabling dynamic operational adjustments and active methods for predicting the storage system’s state of charge. The model’s effectiveness is validated using performance indicators such as RMSE, MAPE, and MSE, applied to experimental data obtained in a specialized microgrid laboratory. The results also demonstrate substantial improvements in energy planning and system operational efficiency, positioning this proposal as a viable strategy for distributed and sustainable environments in modern electricity systems. Full article
Show Figures

Figure 1

26 pages, 5742 KB  
Article
Multiscale Time Series Modeling in Energy Demand Prediction: A CWT-Aided Hybrid Model
by Elif Sezer, Güngör Yıldırım and Mahmut Temel Özdemir
Appl. Sci. 2025, 15(19), 10801; https://doi.org/10.3390/app151910801 - 8 Oct 2025
Abstract
In the contemporary energy landscape, the increasing demand for electricity and the inherent uncertainties associated with the integration of renewable resources have rendered the accurate and reliable forecasting of short- and long-term demand imperative. Energy demand forecasting, fundamentally a time series problem, can [...] Read more.
In the contemporary energy landscape, the increasing demand for electricity and the inherent uncertainties associated with the integration of renewable resources have rendered the accurate and reliable forecasting of short- and long-term demand imperative. Energy demand forecasting, fundamentally a time series problem, can be inherently complex, nonlinear, and multi-scale. Therefore, interest in artificial intelligence–based methods that provide high performance for short- and long-term forecasting, rather than traditional methods, has increased in order to solve these problems. In this study, a hybrid artificial intelligence model based on LSTM, GRU, and Random Forest, utilizing a distinct mechanism to address these types of problems, is proposed. The Multi-Scale Sliding Window (MSSW) approach was utilized for the model’s input data to capture the dynamics of the time series at different scales. The optimization of windows was conducted using the Continuous Wavelet Transform (CWT) method to determine the optimal window sizes within the MSSW structure in a data-driven manner. Experimental studies on Panama’s real energy demand data from 2015 to 2020 show that the CWT-aided MSSW-hybrid model forecasts better with lower error rates (0.007 MAE, 0.009 RMSE, 1.051% MAPE) than single models and manually determined window sizes. The results of the study demonstrate the importance of hybrid structures and window optimization in energy demand forecasting. Full article
(This article belongs to the Topic Solar and Wind Power and Energy Forecasting, 2nd Edition)
Show Figures

Figure 1

27 pages, 1706 KB  
Article
An End-to-End Framework for Spatiotemporal Data Recovery and Unsupervised Cluster Partitioning in Distributed PV Systems
by Bingxu Zhai, Yuanzhuo Li, Wei Qiu, Rui Zhang, Zhilin Jiang, Yinuo Zeng, Tao Qian and Qinran Hu
Processes 2025, 13(10), 3186; https://doi.org/10.3390/pr13103186 - 7 Oct 2025
Abstract
The growing penetration of distributed photovoltaic (PV) systems presents significant operational challenges for power grids, driven by the scarcity of historical data and the high spatiotemporal variability of PV generation. To address these challenges, we propose Generative Reconstruction and Adaptive Identification via Latents [...] Read more.
The growing penetration of distributed photovoltaic (PV) systems presents significant operational challenges for power grids, driven by the scarcity of historical data and the high spatiotemporal variability of PV generation. To address these challenges, we propose Generative Reconstruction and Adaptive Identification via Latents (GRAIL), a unified, end-to-end framework that integrates generative modeling with adaptive clustering to discover latent structures and representative scenarios in PV datasets. GRAIL operates through a closed-loop mechanism where clustering feedback guides a cluster-aware data generation process, and the resulting generative augmentation strengthens partitioning in the latent space. Evaluated on a real-world, multi-site PV dataset with a high missing data rate of 45.4%, GRAIL consistently outperforms both classical clustering algorithms and deep embedding-based methods. Specifically, GRAIL achieves a Silhouette Score of 0.969, a Calinski–Harabasz index exceeding 4.132×106, and a Davies–Bouldin index of 0.042, demonstrating superior intra-cluster compactness and inter-cluster separation. The framework also yields a normalized entropy of 0.994, which indicates highly balanced partitioning. These results underscore that coupling data generation with clustering is a powerful strategy for expressive and robust structure learning in data-sparse environments. Notably, GRAIL achieves significant performance gains over the strongest deep learning baseline that lacks a generative component, securing the highest composite score among all evaluated methods. The framework is also computationally efficient. Its alternating optimization converges rapidly, and clustering and reconstruction metrics stabilize within approximately six iterations. Beyond quantitative performance, GRAIL produces physically interpretable clusters that correspond to distinct weather-driven regimes and capture cross-site dependencies. These clusters serve as compact and robust state descriptors, valuable for downstream applications such as PV forecasting, dispatch optimization, and intelligent energy management in modern power systems. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

25 pages, 4775 KB  
Article
Methodology for Assessing the Technical Potential of Solar Energy Based on Artificial Intelligence Technologies and Simulation-Modeling Tools
by Pavel Buchatskiy, Stefan Onishchenko, Sergei Petrenko and Semen Teploukhov
Energies 2025, 18(19), 5296; https://doi.org/10.3390/en18195296 - 7 Oct 2025
Viewed by 35
Abstract
The integration of renewable energy sources (RES) into energy systems is becoming increasingly widespread around the world, driven by various factors, the most relevant of which is the high environmental friendliness of these types of energy resources and the possibility of creating stable [...] Read more.
The integration of renewable energy sources (RES) into energy systems is becoming increasingly widespread around the world, driven by various factors, the most relevant of which is the high environmental friendliness of these types of energy resources and the possibility of creating stable generation systems that are independent of the economic and geopolitical situation. The large-scale involvement of green energy leads to the creation of distributed energy networks that combine several different methods of generation, each with its own characteristics. As a result, the issues of data collection and processing necessary for optimizing the operation of such energy systems are becoming increasingly relevant. The first stage of renewable energy integration involves building models to assess theoretical potential, allowing the feasibility of using a particular type of resource in specific geographical conditions to be determined. The second stage of assessment involves determining the technical potential, which allows the actual energy values that can be obtained by the consumer to be determined. The paper discusses a method for assessing the technical potential of solar energy using the example of a private consumer’s energy system. For this purpose, a generator circuit with load models was implemented in the SimInTech dynamic simulation environment, accepting various sets of parameters as input, which were obtained using an intelligent information search procedure and intelligent forecasting methods. This approach makes it possible to forecast the amount of incoming solar insolation in the short term, whose values are then fed into the simulation model, allowing the forecast values of the technical potential of solar energy for the energy system configuration under consideration to be determined. The implementation of such a hybrid assessment system allows not only the technical potential of RES to be determined based on historical datasets but also provides the opportunity to obtain forecast values for energy production volumes. This allows for flexible configuration of the parameters of the elements used, which makes it possible to scale the solution to the specific configuration of the energy system in use. The proposed solution can be used as one of the elements of distributed energy systems with RES, where the concept of demand distribution and management plays an important role. Its implementation is impossible without predictive models. Full article
(This article belongs to the Special Issue Solar Energy, Governance and CO2 Emissions)
11 pages, 1979 KB  
Article
A Novel Approach to Day-Ahead Forecasting of Battery Discharge Profiles in Grid Applications Using Historical Daily
by Marek Bobček, Róbert Štefko, Július Šimčák and Zsolt Čonka
Batteries 2025, 11(10), 370; https://doi.org/10.3390/batteries11100370 - 6 Oct 2025
Viewed by 82
Abstract
This paper presents a day-ahead forecasting approach for discharge profiles of a 0.5 MW battery energy storage system connected to the power grid, utilizing historical daily discharge profiles collected over one year to capture key operational patterns and variability. Two forecasting techniques are [...] Read more.
This paper presents a day-ahead forecasting approach for discharge profiles of a 0.5 MW battery energy storage system connected to the power grid, utilizing historical daily discharge profiles collected over one year to capture key operational patterns and variability. Two forecasting techniques are employed: a Kalman filter for dynamic state estimation and Holt’s exponential smoothing method enhanced with adaptive alpha to capture trend changes more responsively. These methods are applied to generate next-day discharge forecasts, aiming to support better battery scheduling, improve grid interaction, and enhance overall energy management. The accuracy and robustness of the forecasts are evaluated against real operational data. The results confirm that combining model-based and statistical techniques offers a reliable and flexible solution for short-term battery discharge prediction in real-world grid applications. Full article
(This article belongs to the Special Issue Towards a Smarter Battery Management System: 3rd Edition)
Show Figures

Figure 1

21 pages, 8443 KB  
Article
Distributed Privacy-Preserving Stochastic Optimization for Available Transfer Capacity Assessment in Power Grids Considering Wind Power Uncertainty
by Shaolian Xia, Huaqiang Xiong, Yi Dong, Mingyu Yan, Mingtao He and Tianyu Sima
Mathematics 2025, 13(19), 3197; https://doi.org/10.3390/math13193197 - 6 Oct 2025
Viewed by 89
Abstract
The uneven expansion of renewable energy generation in different regions highlights the necessity of accurately assessing the available transfer capability (ATC) in power systems. This paper proposes a distributed probabilistic inter-regional ATC assessment framework. First, a spatiotemporally correlated wind power output model is [...] Read more.
The uneven expansion of renewable energy generation in different regions highlights the necessity of accurately assessing the available transfer capability (ATC) in power systems. This paper proposes a distributed probabilistic inter-regional ATC assessment framework. First, a spatiotemporally correlated wind power output model is established using wind speed forecast data and correlation matrices, enhancing the accuracy of wind power forecasting. Second, a two-stage probabilistic ATC assessment optimization model is proposed. The first stage minimizes both generation cost and risk-related costs by incorporating conditional value-at-risk (CVaR), while the second stage maximizes the power transaction amount. Thirdly, a privacy-preserving two-level iterative alternating direction method of multipliers (I-ADMM) algorithm is designed to solve this mixed-integer optimization problem, requiring only the exchange of boundary voltage phase angles between regions. Case studies are performed on the 12-bus, the IEEE 39-bus and the IEEE 118-bus systems to validate the proposed framework. Hence, the proposed framework enables more reliable and risk-aware intraday ATC evaluation for inter-regional power transactions. Moreover, the impacts of risk parameters and wind farm output correlations on ATC and generation cost are further investigated. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

16 pages, 3768 KB  
Article
Analysis of Real and Simulated Energy Produced by a Photovoltaic Installations Located in Poland
by Ewa Hołota, Anna Życzyńska and Grzegorz Dyś
Energies 2025, 18(19), 5279; https://doi.org/10.3390/en18195279 - 5 Oct 2025
Viewed by 262
Abstract
In recent years, the amount of electricity produced by photovoltaic systems in Poland has increased significantly. This paper presents an evaluation of commercial software (PVGIS 5.3, ENERAD, and PVGIS 24) used for simulating energy produced by four photovoltaic installations. The results of the [...] Read more.
In recent years, the amount of electricity produced by photovoltaic systems in Poland has increased significantly. This paper presents an evaluation of commercial software (PVGIS 5.3, ENERAD, and PVGIS 24) used for simulating energy produced by four photovoltaic installations. The results of the simulation were compared with the real energy production. The installations differ in terms of panel orientation (S, SE, SE-NW), tilt angle (12°, 25°, 37°) and location (roof- or ground-mounted). The average annual electricity production per 1 kW of module power for each installation was as follows: PV1—1104 kWh·kW−1, PV2—1169 kWh·kW−1, PV3—927 kWh·kW−1, and PV4—831 kWh·kW−1. The highest values were recorded for ground-mounted installations facing south. Simulations carried out using computer programs show differences between simulated and real electricity production values of 35–41% for the ENERAD software, 3–13% for the PVGIS 5.3 software, and 3–32% for the PVGIS 24 software. The most accurate forecasts were obtained for the PV2 system in the PVGIS 24 software (MPE 3%, RMSE 12%), and the most unfavorable for the same installation in the ENERAD software (MPE 41%, RMSE 48%). Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

15 pages, 2076 KB  
Article
Forecasting Urban Water Demand Using Multi-Scale Artificial Neural Networks with Temporal Lag Optimization
by Elias Farah and Isam Shahrour
Water 2025, 17(19), 2886; https://doi.org/10.3390/w17192886 - 3 Oct 2025
Viewed by 305
Abstract
Accurate short-term forecasting of urban water demand is a persistent challenge for utilities seeking to optimize operations, reduce energy costs, and enhance resilience in smart distribution systems. This study presents a multi-scale Artificial Neural Network (ANN) modeling approach that integrates temporal lag optimization [...] Read more.
Accurate short-term forecasting of urban water demand is a persistent challenge for utilities seeking to optimize operations, reduce energy costs, and enhance resilience in smart distribution systems. This study presents a multi-scale Artificial Neural Network (ANN) modeling approach that integrates temporal lag optimization to predict daily and hourly water consumption across heterogeneous user profiles. Using high-resolution smart metering data from the SunRise Smart City Project in Lille, France, four demand nodes were analyzed: a District Metered Area (DMA), a student residence, a university restaurant, and an engineering school. Results demonstrate that incorporating lagged consumption variables substantially improves prediction accuracy, with daily R2 values increasing from 0.490 to 0.827 at the DMA and from 0.420 to 0.806 at the student residence. At the hourly scale, the 1-h lag model consistently outperformed other configurations, achieving R2 up to 0.944 at the DMA, thus capturing both peak and off-peak consumption dynamics. The findings confirm that short-term autocorrelation is a dominant driver of demand variability, and that ANN-based forecasting enhanced by temporal lag features provides a robust, computationally efficient tool for real-time water network management. Beyond improving forecasting performance, the proposed methodology supports operational applications such as leakage detection, anomaly identification, and demand-responsive planning, contributing to more sustainable and resilient urban water systems. Full article
(This article belongs to the Section Urban Water Management)
Show Figures

Figure 1

Back to TopTop