Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,921)

Search Parameters:
Keywords = energy storage control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
48 pages, 23159 KB  
Review
Inkjet Printing for Batteries and Supercapacitors: State-of-the-Art Developments and Outlook
by Juan C. Rubio and Martin Bolduc
Energies 2025, 18(20), 5348; https://doi.org/10.3390/en18205348 (registering DOI) - 11 Oct 2025
Abstract
Inkjet printing enables contactless deposition onto fragile substrates for printed energy-storage devices and supports flexible batteries and supercapacitors with reduced material use. This review examines multilayer and interdigital architectures and analyzes how ink rheology, droplet formation, colloidal interactions, and the printability window govern [...] Read more.
Inkjet printing enables contactless deposition onto fragile substrates for printed energy-storage devices and supports flexible batteries and supercapacitors with reduced material use. This review examines multilayer and interdigital architectures and analyzes how ink rheology, droplet formation, colloidal interactions, and the printability window govern performance. For batteries, reported inkjet-printed electrodes commonly deliver capacities of ~110–150 mAh g−1 for oxide cathodes at C/2–1 C, with coulombic efficiency ≥98% and stability over 102–103 cycles; silicon anodes reach ~1.0–2.0 Ah g−1 with efficiency approaching 99% under stepwise formation. Typical current densities are ~0.5–5 mA cm−2 depending on areal loading, and multilayer designs with optimized drying and parameter tuning can yield rate and discharge behavior comparable to cast films. For supercapacitors, inkjet-printed microdevices report volumetric capacitances in the mid-hundreds of F cm−3, translating to ~9–34 mWh cm−3 and ~0.25–0.41 W cm−3, with 80–95% retention after 10,000 cycles and coulombic efficiency near 99%. In solid-state configurations, stability is enhanced, although often accompanied by reduced areal capacitance. Although solids loading is lower than in screen printing, precise material placement together with thermal or photonic sintering enables competitive capacity, rate capability, and cycle life while minimizing waste. The review consolidates practical guidance on ink formulation, printability, and defect control and outlines opportunities in greener chemistries, oxidation-resistant metallic systems, and scalable high-throughput printing. Full article
(This article belongs to the Special Issue Power Electronics Technology and Application)
27 pages, 18801 KB  
Article
Hydrogen Production Plant Retrofit for Green H2: Experimental Validation of a High-Efficiency Retrofit of an Alkaline Hydrogen Plant Using an Isolated DC Microgrid
by Rogerio Luiz da Silva Junior, Filipe Tavares Carneiro, Leonardo Bruno Garcial Campanhol, Guilherme Gemi Pissaia, Tales Gottlieb Jahn, Angel Ambrocio Quispe, Carina Bonavigo Jakubiu, Daniel Augusto Cantane, Leonardo Sostmeyer Mai, Jose Alfredo Valverde and Fernando Marcos Oliveira
Energies 2025, 18(20), 5349; https://doi.org/10.3390/en18205349 (registering DOI) - 11 Oct 2025
Abstract
Given the climate change observed in the past few decades, sustainable development and the use of renewable energy sources are urgent. In this scenario, hydrogen production through electrolyzers is a promising renewable source and energy vector because of its ultralow greenhouse emissions and [...] Read more.
Given the climate change observed in the past few decades, sustainable development and the use of renewable energy sources are urgent. In this scenario, hydrogen production through electrolyzers is a promising renewable source and energy vector because of its ultralow greenhouse emissions and high energy content. Hydrogen can be used in a variety of applications, from transportation to electricity generation, contributing to the diversification of the energy matrix. In this context, this paper presents an autonomous isolated DC microgrid system for generating and storing electrical energy to be exclusively used for feeding an electrolyzer hydrogen production plant, which has been retrofitted for green hydrogen production. Experimental verification was performed at Itaipu Parquetec, which consists of an alkaline electrolysis unit directly integrated with a battery energy storage system and renewable sources (e.g., photovoltaic and wind) by using an isolated DC microgrid concept based on DC/DC and AC/DC converters. Experimental results revealed that the new electrolyzer DC microgrid increases the system’s overall efficiency in comparison to the legacy thyristor-based power supply system by 26%, and it autonomously controls the energy supply to the electrolyzer under optimized conditions with an extremely low output current ripple. Another advantage of the proposed DC microgrid is its ability to properly manage the startup and shutdown process of the electrolyzer plant under power generation outages. This paper is the result of activities carried out under the R&D project of ANEEL program No. PD-10381-0221/2021, entitled “Multiport DC-DC Converter and IoT System for Intelligent Energy Management”, which was conducted in partnership with CTG-Brazil. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

19 pages, 1784 KB  
Article
Influence of Stress on Gas Sorption Behavior and Induced Swelling in Coal: Implications for Sustainable CO2 Geological Storage
by Zhiming Fang, Chenlong Yang and Shaicheng Shen
Sustainability 2025, 17(20), 8990; https://doi.org/10.3390/su17208990 - 10 Oct 2025
Abstract
The influence of stress on gas sorption behavior and sorption-induced swelling in coal is critical for the success of CO2-enhanced coalbed methane recovery (CO2-ECBM) and geological carbon sequestration—a key strategy for mitigating climate change and promoting clean energy transitions. [...] Read more.
The influence of stress on gas sorption behavior and sorption-induced swelling in coal is critical for the success of CO2-enhanced coalbed methane recovery (CO2-ECBM) and geological carbon sequestration—a key strategy for mitigating climate change and promoting clean energy transitions. However, this influence remains insufficiently understood, largely due to experimental limitations (e.g., overreliance on powdered coal samples) and conflicting theoretical frameworks in existing studies. To address this gap, this study systematically investigates the effects of two distinct stress constraints—constant confining pressure and constant volume—on CO2 adsorption capacity, adsorption kinetics, and associated swelling deformation of intact anthracite coal cores. An integrated experimental apparatus was custom-designed for this study, combining volumetric sorption measurement with high-resolution strain monitoring via the confining fluid displacement (CFD) method and the confining pressure response (CPR) method. This setup enables the quantification of CO2–coal interactions under precisely controlled stress environments. Key findings reveal that stress conditions exert a regulatory role in shaping CO2–coal behavior: constant confining pressure conditions enhance CO2 adsorption capacity and sustain adsorption kinetics by accommodating matrix swelling, thereby preserving pore accessibility for continuous gas uptake. In contrast, constant volume constraints lead to rapid internal stress buildup, which inhibits further gas adsorption and accelerates the attainment of kinetic saturation. Sorption-induced swelling exhibits clear dependence on both pressure and constraint conditions. Elevated CO2 pressure leads to increased strain, while constant confining pressure facilitates more gradual, sustained expansion. This is particularly evident at higher pressures, where adsorption-induced swelling prevails over mechanical constraints. These results help resolve key discrepancies in the existing literature by clarifying the dual role of stress in modulating both pore accessibility (for gas transport) and mechanical response (for matrix deformation). These insights provide essential guidance for optimizing CO2 injection strategies and improving the long-term performance and sustainability of CO2-ECBM and geological carbon storage projects, ultimately supporting global efforts in carbon emission reduction and sustainable energy resource utilization. Full article
(This article belongs to the Section Resources and Sustainable Utilization)
Show Figures

Figure 1

67 pages, 11489 KB  
Review
Powertrain in Battery Electric Vehicles (BEVs): Comprehensive Review of Current Technologies and Future Trends Among Automakers
by Ernest Ozoemela Ezugwu, Indranil Bhattacharya, Adeloye Ifeoluwa Ayomide, Mary Vinolisha Antony Dhason, Babatunde Damilare Soyoye and Trapa Banik
World Electr. Veh. J. 2025, 16(10), 573; https://doi.org/10.3390/wevj16100573 - 10 Oct 2025
Abstract
Battery Electric Vehicles (BEVs) technology is rapidly emerging as the cornerstone of sustainable transportation, driven by advancements in battery technology, power electronics, and modern drivetrains. This paper presents a comprehensive review of current and next-generation BEV powertrain architectures, focusing on five key subsystems: [...] Read more.
Battery Electric Vehicles (BEVs) technology is rapidly emerging as the cornerstone of sustainable transportation, driven by advancements in battery technology, power electronics, and modern drivetrains. This paper presents a comprehensive review of current and next-generation BEV powertrain architectures, focusing on five key subsystems: battery energy storage system, electric propulsion motors, energy management systems, power electronic converters, and charging infrastructure. The review traces the evolution of battery technology from conventional lithium-ion to solid-state chemistries and highlights the critical role of battery management systems in ensuring optimal state of charge, health, and safety. Recent innovations by leading automakers are examined, showcasing advancements in cell formats, motor designs, and thermal management for enhanced range and performance. The role of power electronics and the integration of AI-driven strategies for vehicle control and vehicle-to-grid (V2G) are analyzed. Finally, the paper identifies ongoing research gaps in system integration, standardization, and advanced BMS solutions. This review provides a comprehensive roadmap for innovation, aiming to guide researchers and industry stakeholders in accelerating the adoption and sustainable advancement of BEV technologies. Full article
(This article belongs to the Section Propulsion Systems and Components)
Show Figures

Figure 1

27 pages, 5599 KB  
Article
Feature Selection and Model Fusion for Lithium-Ion Battery Pack SOC Prediction
by Wenqiang Yang, Chong Li, Qinglin Miao, Yonggang Chen and Fuquan Nie
Energies 2025, 18(20), 5340; https://doi.org/10.3390/en18205340 - 10 Oct 2025
Abstract
Accurate prediction of the state of charge (SOC) of a battery pack is essential to improve the operational efficiency and safety of energy storage systems. In this paper, we propose a novel lithium-ion battery (Lib) pack SOC prediction framework that combines redundant control [...] Read more.
Accurate prediction of the state of charge (SOC) of a battery pack is essential to improve the operational efficiency and safety of energy storage systems. In this paper, we propose a novel lithium-ion battery (Lib) pack SOC prediction framework that combines redundant control correlation downscaling with Adaptive Error Variation Weighting Mechanism (AVM) fusion mechanisms. By integrating redundancy feature selection based on correlation analysis with global sensitivity analysis, the dimensionality of the input features was reduced by 81.25%. The AVM merges BiGRU’s ability to model short-term dynamics with Informer’s ability to capture long-term dependencies. This approach allows for complementary information exchange between multiple models. Experimental results indicate that on both monthly and quarterly slice datasets, the RMSE and MAE of the fusion model are significantly lower than those of the single model. In particular, the proposed model shows higher robustness and generalization ability in seasonal generalization tests. Its performance is significantly better than the traditional linear and classical filtering methods. The method provides reliable technical support for accurate estimation of SOC in battery management systems under complex environmental conditions. Full article
Show Figures

Figure 1

20 pages, 4152 KB  
Article
A Tie-Line Fault Ride-Through Strategy for PV Power Plants Based on Coordinated Energy Storage Control
by Bo Pan, Feng Xu, Xiangyi Bi, Dong Wan, Zhihua Huang, Jinsong Yang, An Wen and Penghui Shang
Energies 2025, 18(20), 5335; https://doi.org/10.3390/en18205335 - 10 Oct 2025
Abstract
Unplanned islanding and off-grid issues of photovoltaic (PV) power stations caused by tie-line faults have seriously undermined the power supply reliability and operational stability of PV plants. Furthermore, it takes a relatively long time to restore normal operation after an off-grid event, leading [...] Read more.
Unplanned islanding and off-grid issues of photovoltaic (PV) power stations caused by tie-line faults have seriously undermined the power supply reliability and operational stability of PV plants. Furthermore, it takes a relatively long time to restore normal operation after an off-grid event, leading to substantial power losses. To address this problem, this paper proposes a tie-line fault ride-through control strategy based on the coordinated control of on-site energy storage units. After a fault on the tie-line occurs, the control mode of PV inverters is switched to achieve source–load balance, and the control mode of energy storage inverters is switched to VF control mode, which supports the stability of voltage and frequency in the islanded system. Subsequently, the strategy coordinates with the tie-line recloser device to perform synchronous checking and grid reconnection. Simulation results show that, for transient tie-line faults, the proposed method can achieve stable control of the islanded system and grid reconnection within 2 s after a fault on the tie-line occurs. It successfully realizes fault ride-through within the operation time limit of anti-islanding protection, effectively preventing the PV plant from disconnecting from the grid. Finally, a connection scheme for the control strategy of a typical PV plant is presented, providing technical reference for on-site engineering. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

13 pages, 3661 KB  
Article
An Energy Storage Unit Design for a Piezoelectric Wind Energy Harvester with a High Total Harmonic Distortion
by Davut Özhan and Erol Kurt
Processes 2025, 13(10), 3217; https://doi.org/10.3390/pr13103217 - 9 Oct 2025
Abstract
A new energy storage unit, which is fed by a piezoelectric wind energy harvester, is explored. The outputs of a three-phase piezoelectric wind energy device have been initially recorded from the laboratory experiments. Following the records of voltage outputs, the power ranges of [...] Read more.
A new energy storage unit, which is fed by a piezoelectric wind energy harvester, is explored. The outputs of a three-phase piezoelectric wind energy device have been initially recorded from the laboratory experiments. Following the records of voltage outputs, the power ranges of the device were measured at several hundred microwatts. The main issue of piezoelectric voltage generation is that voltage waveforms of piezoelectric materials have high total harmonic distortion (THD) with incredibly high subharmonics and superharmonics. Therefore, such a material reply causes a certain power loss at the output of the wind energy generator. In order to fix this problem, we propose a combination of a rectifier and a storage system, where they can operate compatibly under high THD rates (i.e., 125%). Due to high THD values, current–voltage characteristics are not linear-dependent; indeed, because of capacitive effect of the piezoelectric (i.e., lead zirconium titanite) material, harvested power from the material is reduced by nearly a factor of 20% in the output. That also negatively affects the storage on the Li-based battery. In order to compensate, the output waveform of the device, the waveforms, which are received from the energy-harvester device, are first rectified by a full-wave rectifier that has a maximum power point tracking (MPPT) unit. The SOC values prove that almost 40% of the charge is stored in 1.2 s under moderate wind speeds, such as 6.1 m/s. To conclude, a better harvesting performance has been obtained by storing the energy into the Li-ion battery under a current–voltage-controlled boost converter technique. Full article
Show Figures

Figure 1

30 pages, 2162 KB  
Review
Hydrogen Economy and Climate Change: Additive Manufacturing in Perspective
by Isaac Kwesi Nooni and Thywill Cephas Dzogbewu
Clean Technol. 2025, 7(4), 87; https://doi.org/10.3390/cleantechnol7040087 - 9 Oct 2025
Abstract
The hydrogen economy stands at the forefront of the global energy transition, and additive manufacturing (AM) is increasingly recognized as a critical enabler of this transformation. AM offers unique capabilities for improving the performance and durability of hydrogen energy components through rapid prototyping, [...] Read more.
The hydrogen economy stands at the forefront of the global energy transition, and additive manufacturing (AM) is increasingly recognized as a critical enabler of this transformation. AM offers unique capabilities for improving the performance and durability of hydrogen energy components through rapid prototyping, topology optimization, functional integration of cooling channels, and the fabrication of intricate, hierarchical, structured pores with precisely controlled connectivity. These features facilitate efficient heat and mass transfer, thereby improving hydrogen production, storage, and utilization efficiency. Furthermore, AM’s multi-material and functionally graded printing capability holds promise for producing components with tailored properties to mitigate hydrogen embrittlement, significantly extending operational lifespan. Collectively, these advances suggest that AM could lower manufacturing costs for hydrogen-related systems while improving performance and reliability. However, the current literature provides limited evidence on the integrated techno-economic advantages of AM in hydrogen applications, posing a significant barrier to large-scale industrial adoption. At present, the technological readiness level (TRL) of AM-based hydrogen components is estimated to be 4–5, reflecting laboratory-scale progress but underscoring the need for further development, validation and industrial-scale demonstration before commercialization can be realized. Full article
26 pages, 5816 KB  
Article
Disturbance-Free Switching Control Strategy for Grid-Following/Grid-Forming Modes of Energy Storage Converters
by Geling Jiang, Siyu Kan, Yuhang Li and Xiaorong Zhu
Electronics 2025, 14(19), 3963; https://doi.org/10.3390/electronics14193963 - 9 Oct 2025
Abstract
To address the problem of transient disturbance arising during the grid-following (GFL) and grid-forming (GFM) mode switching of energy storage converters, this paper proposes a dual-mode seamless switching control strategy. First, we conduct an in-depth analysis of the mechanism behind switching transients, identifying [...] Read more.
To address the problem of transient disturbance arising during the grid-following (GFL) and grid-forming (GFM) mode switching of energy storage converters, this paper proposes a dual-mode seamless switching control strategy. First, we conduct an in-depth analysis of the mechanism behind switching transients, identifying that sudden changes in current commands and angle-control misalignment are the key factors triggering oscillations in system power and voltage frequency. To overcome this, we design a virtual synchronous generator (VSG) control angle-tracking technique based on the construction of triangular functions, which effectively eliminates the influence of periodic phase-angle jumps on tracking accuracy and achieves precise pre-synchronization of the microgrid phase in GFM mode. Additionally, we employ a current-command seamless switching technique involving real-time latching and synchronization of the inner-loop current references between the two modes, ensuring continuity of control commands at the switching instant. The simulation and hardware-in-the-loop (HIL) experimental results show that the proposed strategy does not require retuning of the parameters after switching, greatly suppresses voltage and frequency fluctuations during mode transition, and achieves smooth, rapid, seamless switching between the GFL and GFM modes of the energy storage converter, thereby improving the stability of microgrid operation. Full article
Show Figures

Figure 1

30 pages, 1769 KB  
Review
Decarbonizing the Cement Industry: Technological, Economic, and Policy Barriers to CO2 Mitigation Adoption
by Oluwafemi Ezekiel Ige and Musasa Kabeya
Clean Technol. 2025, 7(4), 85; https://doi.org/10.3390/cleantechnol7040085 - 9 Oct 2025
Viewed by 140
Abstract
The cement industry accounts for approximately 7–8% of global CO2 emissions, primarily due to energy-intensive clinker production and limestone calcination. With cement demand continuing to rise, particularly in emerging economies, decarbonization has become an urgent global challenge. The objective of this study [...] Read more.
The cement industry accounts for approximately 7–8% of global CO2 emissions, primarily due to energy-intensive clinker production and limestone calcination. With cement demand continuing to rise, particularly in emerging economies, decarbonization has become an urgent global challenge. The objective of this study is to systematically map and synthesize existing evidence on technological pathways, policy measures, and economic barriers to four core decarbonization strategies: clinker substitution, energy efficiency, alternative fuels, as well as carbon capture, utilization, and storage (CCUS) in the cement sector, with the goal of identifying practical strategies that can align industry practice with long-term climate goals. A scoping review methodology was adopted, drawing on peer-reviewed journal articles, technical reports, and policy documents to ensure a comprehensive perspective. The results demonstrate that each mitigation pathway is technically feasible but faces substantial real-world constraints. Clinker substitution delivers immediate reduction but is limited by SCM availability/quality, durability qualification, and conservative codes; LC3 is promising where clay logistics allow. Energy-efficiency measures like waste-heat recovery and advanced controls reduce fuel use but face high capital expenditure, downtime, and diminishing returns in modern plants. Alternative fuels can reduce combustion-related emissions but face challenges of supply chains, technical integration challenges, quality, weak waste-management systems, and regulatory acceptance. CCUS, the most considerable long-term potential, addresses process CO2 and enables deep reductions, but remains commercially unviable due to current economics, high costs, limited policy support, lack of large-scale deployment, and access to transport and storage. Cross-cutting economic challenges, regulatory gaps, skill shortages, and social resistance including NIMBYism further slow adoption, particularly in low-income regions. This study concludes that a single pathway is insufficient. An integrated portfolio supported by modernized standards, targeted policy incentives, expanded access to SCMs and waste fuels, scaled CCUS investment, and international collaboration is essential to bridge the gap between climate ambition and industrial implementation. Key recommendations include modernizing cement standards to support higher clinker replacement, providing incentives for energy-efficient upgrades, scaling CCUS through joint investment and carbon pricing and expanding access to biomass and waste-derived fuels. Full article
Show Figures

Figure 1

29 pages, 2941 KB  
Article
A Complete Control-Oriented Model for Hydrogen Hybrid Renewable Microgrids with High-Voltage DC Bus Stabilized by Batteries and Supercapacitors
by José Manuel Andújar Márquez, Francisco José Vivas Fernández and Francisca Segura Manzano
Appl. Sci. 2025, 15(19), 10810; https://doi.org/10.3390/app151910810 - 8 Oct 2025
Viewed by 122
Abstract
The growing penetration of renewable energy sources requires resilient microgrids capable of providing stable and continuous operation. Hybrid energy storage systems (HESS), which integrate hydrogen-based storage systems (HBSS), battery storage systems (BSS), and supercapacitor banks (SCB), are essential to ensuring the flexibility and [...] Read more.
The growing penetration of renewable energy sources requires resilient microgrids capable of providing stable and continuous operation. Hybrid energy storage systems (HESS), which integrate hydrogen-based storage systems (HBSS), battery storage systems (BSS), and supercapacitor banks (SCB), are essential to ensuring the flexibility and robustness of these microgrids. Accurate modelling of these microgrids is crucial for analysis, controller design, and performance optimization, but the complexity of HESS poses a significant challenge: simplified linear models fail to capture the inherent nonlinear dynamics, while nonlinear approaches often require excessive computational effort for real-time control applications. To address this challenge, this study presents a novel state space model with linear variable parameters (LPV), which effectively balances accuracy in capturing the nonlinear dynamics of the microgrid and computational efficiency. The research focuses on a high-voltage DC bus microgrid architecture, in which the BSS and SCB are connected directly in parallel to provide passive DC bus stabilization, a configuration that improves system resilience but has received limited attention in the existing literature. The proposed LPV framework employs recursive linearisation around variable operating points, generating a time-varying linear representation that accurately captures the nonlinear behaviour of the system. By relying exclusively on directly measurable state variables, the model eliminates the need for observers, facilitating its practical implementation. The developed model has been compared with a reference model validated in the literature, and the results have been excellent, with average errors, MAE, RAE and RMSE values remaining below 1.2% for all critical variables, including state-of-charge, DC bus voltage, and hydrogen level. At the same time, the model maintains remarkable computational efficiency, completing a 24-h simulation in just 1.49 s, more than twice as fast as its benchmark counterpart. This optimal combination of precision and efficiency makes the developed LPV model particularly suitable for advanced model-based control strategies, including real-time energy management systems (EMS) that use model predictive control (MPC). The developed model represents a significant advance in microgrid modelling, as it provides a general control-oriented approach that enables the design and operation of more resilient, efficient, and scalable renewable energy microgrids. Full article
(This article belongs to the Special Issue Challenges and Opportunities of Microgrids)
Show Figures

Figure 1

31 pages, 7893 KB  
Article
A Capacity Optimization Method of Ship Integrated Power System Based on Comprehensive Scenario Planning: Considering the Hydrogen Energy Storage System and Supercapacitor
by Fanzhen Jing, Xinyu Wang, Yuee Zhang and Shaoping Chang
Energies 2025, 18(19), 5305; https://doi.org/10.3390/en18195305 - 8 Oct 2025
Viewed by 121
Abstract
Environmental pollution caused by shipping has always received great attention from the international community. Currently, due to the difficulty of fully electrifying medium- and large-scale ships, the hybrid energy ship power system (HESPS) will be the main type in the future. Considering the [...] Read more.
Environmental pollution caused by shipping has always received great attention from the international community. Currently, due to the difficulty of fully electrifying medium- and large-scale ships, the hybrid energy ship power system (HESPS) will be the main type in the future. Considering the economic and long-term energy efficiency of ships, as well as the uncertainty of the output power of renewable energy units, this paper proposes an improved design for an integrated power system for large cruise ships, combining renewable energy and a hybrid energy storage system. An energy management strategy (EMS) based on time-gradient control and considering load dynamic response, as well as an energy storage power allocation method that considers the characteristics of energy storage devices, is designed. A bi-level power capacity optimization model, grounded in comprehensive scenario planning and aiming to optimize maximum return on equity, is constructed and resolved by utilizing an improved particle swarm optimization algorithm integrated with dynamic programming. Based on a large-scale cruise ship, the aforementioned method was investigated and compared to the conventional planning approach. It demonstrates that the implementation of this optimization method can significantly decrease costs, enhance revenue, and increase the return on equity from 5.15% to 8.66%. Full article
Show Figures

Figure 1

26 pages, 6387 KB  
Article
Development of a Novel IoT-Based Hierarchical Control System for Enhancing Inertia in DC Microgrids
by Eman K. Belal, Doaa M. Yehia, Ahmed M. Azmy, Gamal E. M. Ali, Xiangning Lin and Ahmed E. EL Gebaly
Smart Cities 2025, 8(5), 166; https://doi.org/10.3390/smartcities8050166 - 8 Oct 2025
Viewed by 162
Abstract
One of the main challenges faced by DC microgrid (DCMG) is their low inertia, which leads to rapid and significant voltage fluctuations during load or generation changes. These fluctuations can negatively impact sensitive loads and protection devices. Previous studies have addressed this by [...] Read more.
One of the main challenges faced by DC microgrid (DCMG) is their low inertia, which leads to rapid and significant voltage fluctuations during load or generation changes. These fluctuations can negatively impact sensitive loads and protection devices. Previous studies have addressed this by enabling battery converters to mimic the behavior of synchronous generators (SGs), but this approach becomes ineffective when the converters or batteries reach their current or energy limits, leading to a loss of inertia and potential system instability. In interconnected multi-microgrid (MMG) systems, the presence of multiple batteries offers the potential to enhance system inertia, provided there is a coordinated control strategy. This research introduces a hierarchical control method that combines decentralized and centralized approaches. Decentralized control allows individual converters to emulate SG behavior, while the centralized control uses Internet of Things (IoT) technology to enable real-time coordination among all Energy Storage Units (ESUs). This coordination improves inertia across the DCMMG system, enhances energy management, and strengthens overall system stability. IoT integration ensures real-time data exchange, monitoring, and collaborative decision-making. The proposed scheme is validated through MATLAB simulations, with results confirming its effectiveness in improving inertial response and supporting the integration of renewable energy sources within DCMMGs. Full article
(This article belongs to the Section Smart Grids)
Show Figures

Figure 1

22 pages, 3656 KB  
Article
Design and Experimental Validation of a Cluster-Based Virtual Power Plant with Centralized Management System in Compliance with IEC Standard
by Putu Agus Aditya Pramana, Akhbar Candra Mulyana, Khotimatul Fauziah, Hafsah Halidah, Sriyono Sriyono, Buyung Sofiarto Munir, Yusuf Margowadi, Dionysius Aldion Renata, Adinda Prawitasari, Annisaa Taradini, Arief Kurniawan and Kholid Akhmad
Energies 2025, 18(19), 5300; https://doi.org/10.3390/en18195300 - 7 Oct 2025
Viewed by 287
Abstract
As power systems decentralize, Virtual Power Plants (VPPs) offer a promising approach to coordinate distributed energy resources (DERs) and enhance grid flexibility. However, real-world validation of VPP performance in Indonesia remains limited, especially regarding internationally aligned test standards. This study presents the design [...] Read more.
As power systems decentralize, Virtual Power Plants (VPPs) offer a promising approach to coordinate distributed energy resources (DERs) and enhance grid flexibility. However, real-world validation of VPP performance in Indonesia remains limited, especially regarding internationally aligned test standards. This study presents the design and experimental validation of a cluster-based VPP framework integrated with a centralized VPP Management System (VMS). Each cluster integrates solar photovoltaic (PV) system, battery energy storage system (BESS), and controllable load. A Local Control Unit (LCU) manages cluster operations, while the VMS coordinates power export–import dispatch, cluster-level aggregation, and grid compliance. The framework proposes a scalable VPP architecture and presents the first comprehensive experimental verification of key VPP performance indicators, including response time, adjustment rate, and accuracy, in the Indonesian context. Testing was conducted in alignment with the IEC TS 63189-1:2023 international standard. Results suggest real time responsiveness and indicate that, even at smaller scales, VPPs may contribute effectively to voltage control while exhibiting minimal influence on system frequency in interconnected grids. These findings confirm the capability of the proposed VPP framework to provide reliable real time control, ancillary services, and aggregated energy management. Its cluster-based architecture supports scalability for broader deployment in complex grid environments. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

17 pages, 2509 KB  
Article
Feasibility Study of Flywheel Mitigation Controls Using Hamiltonian-Based Design for E3 High-Altitude Electromagnetic Pulse Events
by Connor A. Lehman, Rush D. Robinett, David G. Wilson and Wayne W. Weaver
Energies 2025, 18(19), 5294; https://doi.org/10.3390/en18195294 - 7 Oct 2025
Viewed by 223
Abstract
This paper explores the feasibility of implementing a flywheel energy storage system designed to generate voltage for the purpose of mitigating current flow through the transformer neutral path to ground, which is induced by a high-altitude electromagnetic pulse (HEMP) event. The active flywheel [...] Read more.
This paper explores the feasibility of implementing a flywheel energy storage system designed to generate voltage for the purpose of mitigating current flow through the transformer neutral path to ground, which is induced by a high-altitude electromagnetic pulse (HEMP) event. The active flywheel system presents the advantage of employing custom optimal control laws, in contrast to the conventional approach of utilizing passive blocking capacitors. A Hamiltonian-based optimal control law for energy storage is derived and integrated into models of both the transformer and the flywheel energy storage system. This Hamiltonian-based feedback control law is subsequently compared against an energy-optimal feedforward control law to validate its optimality. The analysis reveals that the required energy storage capacity is 13Wh, the necessary power output is less than 5kW at any given time during the insult, and the required bandwidth for the controller is around 5Hz. These specifications can be met by commercially available flywheel devices. This methodology can be extended to other energy storage devices to ensure that their specifications adequately address the requirements for HEMP mitigation. Full article
Show Figures

Figure 1

Back to TopTop