Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (455)

Search Parameters:
Keywords = energy storage profitability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 9175 KB  
Article
Bi-Level Optimization-Based Bidding Strategy for Energy Storage Using Two-Stage Stochastic Programming
by Kui Hua, Qingshan Xu, Lele Fang and Xin Xu
Energies 2025, 18(16), 4447; https://doi.org/10.3390/en18164447 - 21 Aug 2025
Viewed by 196
Abstract
Energy storage will play an important role in the new power system with a high penetration of renewable energy due to its flexibility. Large-scale energy storage can participate in electricity market clearing, and knowing how to make more profits through bidding strategies in [...] Read more.
Energy storage will play an important role in the new power system with a high penetration of renewable energy due to its flexibility. Large-scale energy storage can participate in electricity market clearing, and knowing how to make more profits through bidding strategies in various types of electricity markets is crucial for encouraging its market participation. This paper considers differentiated bidding parameters for energy storage in a two-stage market with wind power integration, and transforms the market clearing process, which is represented by a two-stage bi-level model, into a single-level model using Karush–Kuhn–Tucker conditions. Nonlinear terms are addressed using binary expansion and the big-M method to facilitate the model solution. Numerical verification is conducted on the modified IEEE RTS-24 and 118-bus systems. The results show that compared to bidding as a price-taker and with marginal cost, the proposed mothod can bring a 16.73% and 13.02% increase in total market revenue, respectively. The case studies of systems with different scales verify the effectiveness and scalability of the proposed method. Full article
(This article belongs to the Special Issue Modeling and Optimization of Energy Storage in Power Systems)
Show Figures

Figure 1

22 pages, 3403 KB  
Article
Operating Parameters and Charging/Discharging Strategies for Wind Turbine Energy Storage Due to Economic Benefits
by Piotr Olczak and Michał Kopacz
Energies 2025, 18(16), 4426; https://doi.org/10.3390/en18164426 - 19 Aug 2025
Viewed by 287
Abstract
As the installed power of wind turbines increases, new challenges for the implementation of wind energy in the national power system emerge. Several hours of high energy productivity from wind turbines, together with the periodic occurrence of relatively low energy consumption (at a [...] Read more.
As the installed power of wind turbines increases, new challenges for the implementation of wind energy in the national power system emerge. Several hours of high energy productivity from wind turbines, together with the periodic occurrence of relatively low energy consumption (at a national scale), sometimes result in the need to stop their operation and, much more often, result in very low revenues for electricity. One of the ways to reduce these phenomena, from a technical and economic point of view, is to use energy storage. However, managing such energy storage poses many challenges due to the unpredictably different duration of favorable and unfavorable wind conditions. Based on historical data on wind turbine energy generation and market data on electricity prices, the impact of using an energy storage with an effective capacity of 2.4 MWh (total 4 MWh) with a maximum charging and discharging power (set parameter) of 1.2 MW in cooperation with a wind turbine (capacity 3 MW) was analyzed. Using simulation methods for energy production and price data from 34,964 h (4 years), the potential additional revenue for the energy storage installed at the wind turbine was calculated. The developed model considered various values: minimum charging power, maximum charging power; and as elements of price signals: price averaging period, level of price deviation from the average electricity price. Full article
Show Figures

Figure 1

17 pages, 899 KB  
Article
Optimal Sizing of Residential PV and Battery Systems Under Grid Export Constraints: An Estonian Case Study
by Arko Kesküla, Kirill Grjaznov, Tiit Sepp and Alo Allik
Energies 2025, 18(16), 4405; https://doi.org/10.3390/en18164405 - 19 Aug 2025
Viewed by 387
Abstract
This study investigates the optimal sizing of photovoltaic (PV) and battery storage (BAT) systems for Estonian households operating under grid constraints that prevent selling surplus energy. We develop and compare three sizing models of increasing complexity, ranging from a simple heuristic to a [...] Read more.
This study investigates the optimal sizing of photovoltaic (PV) and battery storage (BAT) systems for Estonian households operating under grid constraints that prevent selling surplus energy. We develop and compare three sizing models of increasing complexity, ranging from a simple heuristic to a full simulation based optimization. Their performance is evaluated using a multi-criteria decision analysis (MCDA) framework that integrates Net Present Value (NPV), Internal Rate of Return (IRR), Profitability Index Ratio (PIR), and payback period. Sensitivity analyses are used to test the robustness of each configuration against electricity price shifts and market volatility. Our findings reveal that standalone PV-only systems are the most economically robust investment. They consistently outperform combined PV + BAT and BAT-only configurations in terms of investment efficiency and overall financial attractiveness. Key results demonstrate that the simplest heuristic-based model (Model 1) identifies configurations with a better balance of financial returns and capital efficiency than the more complex simulation-based approach (Model 3). While the optimization model achieves the highest absolute NPV, it requires significantly higher investment and results in lower overall efficiency. The economic case for batteries remains weak, with viability depending heavily on price volatility and arbitrage potential. These results provide practical guidance, suggesting that for grid constrained households, a well-sized PV-only system identified with a simple model offers the most effective path to cost savings and energy self-sufficiency. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

31 pages, 1954 KB  
Article
Forecasting Short-Term Photovoltaic Energy Production to Optimize Self-Consumption in Home Systems Based on Real-World Meteorological Data and Machine Learning
by Paweł Kut and Katarzyna Pietrucha-Urbanik
Energies 2025, 18(16), 4403; https://doi.org/10.3390/en18164403 - 18 Aug 2025
Viewed by 223
Abstract
Given the growing number of residential photovoltaic installations and the challenges of self-consumption, accurate short-term PV production forecasting can become a key tool in supporting energy management. This issue is particularly significant in systems without energy storage, where excess production is fed back [...] Read more.
Given the growing number of residential photovoltaic installations and the challenges of self-consumption, accurate short-term PV production forecasting can become a key tool in supporting energy management. This issue is particularly significant in systems without energy storage, where excess production is fed back into the grid, reducing the profitability of prosumer investments. This paper presents an approach to forecasting short-term energy production in residential photovoltaic installations, based on real meteorological data and the use of machine learning methods. The analysis is based on measurement data from a functioning PV installation and a local weather station. This study compares three models: classical linear regression, Random Forest and the XGBoost algorithm. The method of data preparation, the model training process and the assessment of their effectiveness based on real energy production measurements are presented. This paper also includes a practical calculation example and an analysis of selected days in order to compare the forecast results with the actual production. Of the three models compared, the highest accuracy was achieved for XGBoost, with an MAE = 1.25 kWh, RMSE = 1.93 kWh, and coefficient of determination R2 = 0.94. Compared to linear regression, this means a 66% reduction in MAE and a 41% reduction in the Random Forest model, confirming the practical usefulness of this method in a real-world environment. The proposed approach can be used in energy management systems in residential buildings, without the need to use energy storage, and can support the development of a more conscious use of energy resources on a local scale. Full article
Show Figures

Figure 1

26 pages, 1553 KB  
Article
A Cooperative Game Theoretical Approach for Designing Integrated Photovoltaic and Energy Storage Systems Shared Among Localized Users
by Zhouxuan Chen, Tianyu Zhang and Weiwei Cui
Systems 2025, 13(8), 712; https://doi.org/10.3390/systems13080712 - 18 Aug 2025
Viewed by 392
Abstract
To address the increasing need for clean energy and efficient resource utilization, this paper aims to provide a cooperative framework and a fair profit allocation mechanism for integrated photovoltaic (PV) and energy storage systems that are shared among different types of users within [...] Read more.
To address the increasing need for clean energy and efficient resource utilization, this paper aims to provide a cooperative framework and a fair profit allocation mechanism for integrated photovoltaic (PV) and energy storage systems that are shared among different types of users within a regional alliance, including industrial, commercial, and residential users. A cooperative game model is proposed and formulated by a two-level optimization problem: the upper level determines the optimal PV and storage capacities to maximize the alliance’s net profit, while the lower level allocates profits using an improved Nash bargaining approach based on Shapley value. The model simultaneously incorporates different real-world factors such as time-of-use electricity pricing, system life cycle cost, and load diversity. The results demonstrate that coordination between energy storage systems and PV systems can avoid 18% of solar curtailment losses. Compared to independent deployment by individual users, the cooperative sharing model increases the net present value by 8.41%, highlighting improvements in cost-effectiveness, renewable resource utilization, and operational flexibility. Users with higher demand or better load–generation matching gain greater economic returns, which can provide decision-making guidance for the government in formulating differentiated subsidy policies. Full article
(This article belongs to the Section Systems Engineering)
Show Figures

Figure 1

24 pages, 2255 KB  
Article
Study on a Hierarchical Game-Based Model for Generation Rights Trading in Multi-Park CCHP-Based Integrated Energy Systems Accounting for New Energy Grid Integration
by Boyang Qu and Zhaojun Meng
Energies 2025, 18(16), 4251; https://doi.org/10.3390/en18164251 - 10 Aug 2025
Viewed by 365
Abstract
To address the challenges of power generation rights trading and profit distribution in the integrated energy system of multi-park combined cooling, heating, and power (CCHP) with new energy grid integration, we constructed a hierarchical game model involving multi-energy system aggregators. By having aggregators [...] Read more.
To address the challenges of power generation rights trading and profit distribution in the integrated energy system of multi-park combined cooling, heating, and power (CCHP) with new energy grid integration, we constructed a hierarchical game model involving multi-energy system aggregators. By having aggregators price electricity, heat, cold, and carbon costs, the model establishes a hierarchical game framework with the linkage of the four prices (electricity, heat, cold, and carbon), achieving inter-park peer-to-peer (P2P) multi-energy dynamic price matching for the first time. It aims to coordinate distribution network dispatching, renewable energy, energy storage, gas turbine units, demand response, cooling–heating–power coupling, and inter-park P2P multi-energy interaction. With the goal of optimizing the profits of integrated energy aggregators, a hierarchical game mechanism is established, which integrates power generation rights trading models and incentive-based demand response. The upper layer of this mechanism is the profit function of integrated energy aggregators, while the lower layer is the cost function of park microgrid alliances. A hierarchical game mechanism with Two-Level Optimization, integrating the Adaptive Disturbance Quantum Particle Swarm Optimization (ADQPSO) algorithm and the branch and bound method (ADQPSO-Driven Branch and Bound Two-Level Optimization), is used to determine dynamic prices, thereby realizing dynamic matching of energy supply and demand and cross-park collaborative optimal allocation. Under the hierarchical game mechanism, the convergence speed of the ADQPSO-driven branch and bound method is 40% faster than that of traditional methods, and the optimization profit accuracy is improved by 1.59%. Moreover, compared with a single mechanism, the hierarchical game mechanism (Scenario 4) increases profits by 17.17%. This study provides technical support for the efficient operation of new energy grid integration and the achievement of “dual-carbon” goals. Full article
Show Figures

Figure 1

22 pages, 7743 KB  
Article
A Coordinated Operation Optimization Model for Multiple Microgrids and Shared Energy Storage Based on Asymmetric Bargaining Negotiations
by Yao Wang, Zhongfu Tan, Xiaotong Zhou, Jia Li, Yingying Hu, Huimin Wu and Liwei Ju
Processes 2025, 13(8), 2514; https://doi.org/10.3390/pr13082514 - 9 Aug 2025
Viewed by 446
Abstract
The promotion of local renewable energy consumption and stable power gird (the latter is referred to as PG) operation have emerged as the primary objectives of power system reform. The integration of multiple microgrids with distinct characteristics through the utilization of shared energy [...] Read more.
The promotion of local renewable energy consumption and stable power gird (the latter is referred to as PG) operation have emerged as the primary objectives of power system reform. The integration of multiple microgrids with distinct characteristics through the utilization of shared energy storage (the following is referred to as SES) facilitates coordinated operation. This approach enables the balancing of energy across temporal and spatial domains, contributing to the overall reliability and security of the energy network. The proposed model outlines a methodology for the coordinated operation of multiple microgrids and SES, with a focus on asymmetric price negotiation. Initially, cost and revenue models for microgrids and SES power plants are established. Secondly, an asymmetric pricing method based on the magnitude of each entity’s energy contribution is proposed. A profit optimization model is also established. The model can be decomposed into two distinct subproblems: the maximization of overall profit and the negotiation of transaction prices. The model can be solved by employing the alternating direction method of multipliers (ADMM). Finally, a series of case studies were conducted for the purpose of validating the operation optimization model that was previously constructed. These studies demonstrate that the model enhances collective operational efficiency by 44.69%, with each entity’s efficiency increasing by at least 12%. At the same time, cooperative benefits are distributed fairly according to each entity’s energy contribution. Full article
Show Figures

Figure 1

43 pages, 7907 KB  
Article
Energy Arbitrage Analysis for Market-Selection of a Battery Energy Storage System-Based Venture
by Inam Ullah Khan and Mohsin Jamil
Energies 2025, 18(16), 4245; https://doi.org/10.3390/en18164245 - 9 Aug 2025
Viewed by 518
Abstract
The increasing integration of intermittent renewable energy sources necessitates effective energy storage solutions, with battery energy storage systems (BESSs) emerging as promising candidates for energy arbitrage operations. This study conducted a comprehensive comparative analysis of 29 European electricity markets to identify optimal locations [...] Read more.
The increasing integration of intermittent renewable energy sources necessitates effective energy storage solutions, with battery energy storage systems (BESSs) emerging as promising candidates for energy arbitrage operations. This study conducted a comprehensive comparative analysis of 29 European electricity markets to identify optimal locations for utility-scale BESS-enabled energy arbitrage ventures. Using hourly wholesale electricity price data spanning January 2015 to December 2023, we employed statistical analysis techniques, 3D surface plots, and developed a novel energy arbitrage feasibility (EAF) score-based ranking system that integrates electricity market volatility metrics with regulatory and economic variables including gross domestic product per capita, index of economic freedom, and electricity supply-origin risk (ESOR). Five investor preference scenarios were analyzed: risk-averse, ESOR-sensitive, economy-sensitive, volatility-sensitive, and equally weighted approaches. Results demonstrated that Estonia ranked highest in three scenarios, achieving the maximum absolute EAF score of 0.558197 in the volatility-sensitive scenario, while Luxembourg led in the ESOR and economy-sensitive scenarios. Estonia’s market characteristics support single daily charge–discharge cycles, whereas Luxembourg enables dual cycles, offering different operational strategies. The EAF scoring methodology provides a standardized framework for cross-country investment decision-making in energy arbitrage ventures. These findings indicate that market selection significantly impacts the BESS arbitrage profitability, with Estonia and Luxembourg representing the most favorable investment destinations. Full article
Show Figures

Figure 1

28 pages, 4311 KB  
Article
Sustainable Integration of Prosumers’ Battery Energy Storage Systems’ Optimal Operation with Reduction in Grid Losses
by Tomislav Markotić, Damir Šljivac, Predrag Marić and Matej Žnidarec
Sustainability 2025, 17(15), 7165; https://doi.org/10.3390/su17157165 - 7 Aug 2025
Viewed by 409
Abstract
Driven by the need for sustainable and efficient energy systems, the optimal management of distributed generation, including photovoltaic systems and battery energy storage systems within prosumer households, is of crucial importance. This requires a comprehensive cost–benefit analysis to assess their viability. In this [...] Read more.
Driven by the need for sustainable and efficient energy systems, the optimal management of distributed generation, including photovoltaic systems and battery energy storage systems within prosumer households, is of crucial importance. This requires a comprehensive cost–benefit analysis to assess their viability. In this study, an optimization model formulated as a mixed-integer linear programming problem is proposed to evaluate the integration of battery storage systems for 10 prosumers on the radial feeder in Croatia and to quantify the benefits both from the prosumers’ perspective and that of the reduction in grid losses. The results show significant annual cost reductions for prosumers, totaling EUR 1798.78 for the observed feeder, with some achieving a net profit. Grid losses are significantly reduced by 1172.52 kWh, resulting in an annual saving of EUR 216.25 for the distribution system operator. However, under the current Croatian market conditions, the integration of battery storage systems is not profitable over the entire lifetime due to the high initial investment costs of EUR 720/kWh. The break-even analysis reveals that investment cost needs to decrease by 52.78%, or an inflation rate of 4.87% is required, to reach prosumer profitability. This highlights the current financial barriers to the widespread adoption of battery storage systems and emphasizes the need for significant cost reductions or targeted incentives. Full article
Show Figures

Figure 1

23 pages, 3036 KB  
Article
Research on the Synergistic Mechanism Design of Electricity-CET-TGC Markets and Transaction Strategies for Multiple Entities
by Zhenjiang Shi, Mengmeng Zhang, Lei An, Yan Lu, Daoshun Zha, Lili Liu and Tiantian Feng
Sustainability 2025, 17(15), 7130; https://doi.org/10.3390/su17157130 - 6 Aug 2025
Viewed by 321
Abstract
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the [...] Read more.
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the green power market, tradable green certificate (TGC) market, and carbon emission trading (CET) mechanism, and the ambiguous policy boundaries affect the trading decisions made by its market participants. Therefore, this paper systematically analyses the composition of the main players in the electricity-CET-TGC markets and their relationship with each other, and designs the synergistic mechanism of the electricity-CET-TGC markets, based on which, it constructs the optimal profit model of the thermal power plant operators, renewable energy manufacturers, power grid enterprises, power users and load aggregators under the electricity-CET-TGC markets synergy, and analyses the behavioural decision-making of the main players in the electricity-CET-TGC markets as well as the electric power system to optimise the trading strategy of each player. The results of the study show that: (1) The synergistic mechanism of electricity-CET-TGC markets can increase the proportion of green power grid-connected in the new type of power system. (2) In the selection of different environmental rights and benefits products, the direct participation of green power in the market-oriented trading is the main way, followed by applying for conversion of green power into China certified emission reduction (CCER). (3) The development of independent energy storage technology can produce greater economic and environmental benefits. This study provides policy support to promote the synergistic development of the electricity-CET-TGC markets and assist the low-carbon transformation of the power industry. Full article
Show Figures

Figure 1

16 pages, 1628 KB  
Article
A Stackelberg Game-Based Joint Clearing Model for Pumped Storage Participation in Multi-Tier Electricity Markets
by Lingkang Zeng, Mutao Huang, Hao Xu, Zhongzhong Chen, Wanjing Li, Jingshu Zhang, Senlin Ran and Xingbang Chen
Processes 2025, 13(8), 2472; https://doi.org/10.3390/pr13082472 - 4 Aug 2025
Viewed by 363
Abstract
To address the limited flexibility of pumped storage power stations (PSPSs) under hierarchical clearing of energy and ancillary service markets, this study proposes a joint clearing mechanism for multi-level electricity markets. A bi-level optimization model based on the Stackelberg game is developed to [...] Read more.
To address the limited flexibility of pumped storage power stations (PSPSs) under hierarchical clearing of energy and ancillary service markets, this study proposes a joint clearing mechanism for multi-level electricity markets. A bi-level optimization model based on the Stackelberg game is developed to characterize the strategic interaction between PSPSs and the market operator. Simulation results on the IEEE 30-bus system demonstrate that the proposed mechanism captures the dynamics of nodal supply and demand, as well as time-varying network congestion. It guides PSPSs to operate more flexibly and economically. Additionally, the mechanism increases PSPS profitability, reduces system costs, and improves frequency regulation performance. This game-theoretic framework offers quantitative decision support for PSPS participation in multi-level spot markets and provides insights for optimal storage deployment and market mechanism improvement. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 3154 KB  
Article
Optimizing the Operation of Local Energy Communities Based on Two-Stage Scheduling
by Ping He, Lei Zhou, Jingwen Wang, Zhuo Yang, Guozhao Lv, Can Cai and Hongbo Zou
Processes 2025, 13(8), 2449; https://doi.org/10.3390/pr13082449 - 2 Aug 2025
Viewed by 403
Abstract
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is [...] Read more.
Flexible energy sources such as electric vehicles and the battery energy storage systems of intelligent distribution systems can provide system-wide auxiliary services such as frequency regulation for power systems. This paper proposes an optimal method for operating the local energy community that is based on two-stage scheduling. Firstly, the basic concepts of the local energy community and flexible service are introduced in detail. Taking LEC as the reserve unit of artificial frequency recovery, an energy information interaction model among LEC, balance service providers, and the power grid is established. Then, a two-stage scheduling framework is proposed to ensure the rationality and economy of community energy scheduling. In the first stage, day-ahead scheduling uses the energy community management center to predict the up/down flexibility capacity that LEC can provide by adjusting the BESS control parameters. In the second stage, real-time scheduling aims at maximizing community profits and scheduling LEC based on the allocation and activation of standby flexibility determined in real time. Finally, the correctness of the two-stage scheduling framework is verified through a case study. The results show that the control parameters used in the day-ahead stage can significantly affect the real-time profitability of LEC, and that LEC benefits more in the case of low BESS utilization than in the case of high BESS utilization and non-participation in frequency recovery reserve. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

22 pages, 1788 KB  
Article
Multi-Market Coupling Mechanism of Offshore Wind Power with Energy Storage Participating in Electricity, Carbon, and Green Certificates
by Wenchuan Meng, Zaimin Yang, Jingyi Yu, Xin Lin, Ming Yu and Yankun Zhu
Energies 2025, 18(15), 4086; https://doi.org/10.3390/en18154086 - 1 Aug 2025
Viewed by 405
Abstract
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To [...] Read more.
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To address these critical issues, this paper proposes a multi-market coupling trading model integrating energy storage-equipped offshore wind power into electricity–carbon–green certificate markets for large-scale grid networks. Firstly, a day-ahead electricity market optimization model that incorporates energy storage is established to maximize power revenue by coordinating offshore wind power generation, thermal power dispatch, and energy storage charging/discharging strategies. Subsequently, carbon market and green certificate market optimization models are developed to quantify Chinese Certified Emission Reduction (CCER) volume, carbon quotas, carbon emissions, market revenues, green certificate quantities, pricing mechanisms, and associated economic benefits. To validate the model’s effectiveness, a gradient ascent-optimized game-theoretic model and a double auction mechanism are introduced as benchmark comparisons. The simulation results demonstrate that the proposed model increases market revenues by 17.13% and 36.18%, respectively, compared to the two benchmark models. It not only improves wind power penetration and comprehensive profitability but also effectively alleviates government subsidy pressures through coordinated carbon–green certificate trading mechanisms. Full article
Show Figures

Figure 1

28 pages, 2701 KB  
Article
Optimal Scheduling of Hybrid Games Considering Renewable Energy Uncertainty
by Haihong Bian, Kai Ji, Yifan Zhang, Xin Tang, Yongqing Xie and Cheng Chen
World Electr. Veh. J. 2025, 16(7), 401; https://doi.org/10.3390/wevj16070401 - 17 Jul 2025
Viewed by 253
Abstract
As the integration of renewable energy sources into microgrid operations deepens, their inherent uncertainty poses significant challenges for dispatch scheduling. This paper proposes a hybrid game-theoretic optimization strategy to address the uncertainty of renewable energy in microgrid scheduling. An energy trading framework is [...] Read more.
As the integration of renewable energy sources into microgrid operations deepens, their inherent uncertainty poses significant challenges for dispatch scheduling. This paper proposes a hybrid game-theoretic optimization strategy to address the uncertainty of renewable energy in microgrid scheduling. An energy trading framework is developed, involving integrated energy microgrids (IEMS), shared energy storage operators (ESOS), and user aggregators (UAS). A mixed game model combining master–slave and cooperative game theory is constructed in which the ESO acts as the leader by setting electricity prices to maximize its own profit, while guiding the IEMs and UAs—as followers—to optimize their respective operations. Cooperative decisions within the IEM coalition are coordinated using Nash bargaining theory. To enhance the generality of the user aggregator model, both electric vehicle (EV) users and demand response (DR) users are considered. Additionally, the model incorporates renewable energy output uncertainty through distributionally robust chance constraints (DRCCs). The resulting two-level optimization problem is solved using Karush–Kuhn–Tucker (KKT) conditions and the Alternating Direction Method of Multipliers (ADMM). Simulation results verify the effectiveness and robustness of the proposed model in enhancing operational efficiency under conditions of uncertainty. Full article
Show Figures

Figure 1

22 pages, 3812 KB  
Article
Optimal Collaborative Scheduling Strategy of Mobile Energy Storage System and Electric Vehicles Considering SpatioTemporal Characteristics
by Liming Sun and Tao Yu
Processes 2025, 13(7), 2242; https://doi.org/10.3390/pr13072242 - 14 Jul 2025
Cited by 1 | Viewed by 367
Abstract
The widespread adoption of electric vehicles introduces significant challenges to power grid stability due to uncoordinated large-scale charging and discharging behaviors. By addressing these challenges, mobile energy storage systems emerge as a flexible resource. To maximize the synergistic potential of jointly scheduling electric [...] Read more.
The widespread adoption of electric vehicles introduces significant challenges to power grid stability due to uncoordinated large-scale charging and discharging behaviors. By addressing these challenges, mobile energy storage systems emerge as a flexible resource. To maximize the synergistic potential of jointly scheduling electric vehicles and mobile energy storage systems, this study develops a collaborative scheduling model incorporating the prediction of geographically and chronologically varying distributions of electric vehicles. Non-dominated sorting genetic algorithm-III is then applied to solve this model. Validation through case studies, conducted on the IEEE-69 bus system and an actual urban road network in southern China, demonstrates the model’s efficacy. Case studies reveal that compared to the initial disordered state, the optimized strategy yields a 122.6% increase in profits of the electric vehicle charging station operator, a 44.7% reduction in costs to the electric vehicle user, and a 62.5% decrease in voltage deviation. Furthermore, non-dominated sorting genetic algorithm-III exhibits superior comprehensive performance in multi-objective optimization when benchmarked against two alternative algorithms. Full article
(This article belongs to the Topic Advances in Power Science and Technology, 2nd Edition)
Show Figures

Figure 1

Back to TopTop