Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,095)

Search Parameters:
Keywords = ensemble machine learning

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 6015 KB  
Article
Data-Driven Estimation of Reference Evapotranspiration in Paraguay from Geographical and Temporal Predictors
by Bilal Cemek, Erdem Küçüktopçu, Maria Gabriela Fleitas Ortellado and Halis Simsek
Appl. Sci. 2025, 15(21), 11429; https://doi.org/10.3390/app152111429 (registering DOI) - 25 Oct 2025
Abstract
Reference evapotranspiration (ET0) is a fundamental variable for irrigation scheduling and water management. Conventional estimation methods, such as the FAO-56 Penman–Monteith equation, are of limited use in developing regions where meteorological data are scarce. This study evaluates the potential of machine [...] Read more.
Reference evapotranspiration (ET0) is a fundamental variable for irrigation scheduling and water management. Conventional estimation methods, such as the FAO-56 Penman–Monteith equation, are of limited use in developing regions where meteorological data are scarce. This study evaluates the potential of machine learning (ML) approaches to estimate ET0 in Paraguay, using only geographical and temporal predictors—latitude, longitude, altitude, and month. Five algorithms were tested: artificial neural networks (ANNs), k-nearest neighbors (KNN), random forest (RF), extreme gradient boosting (XGB), and adaptive neuro-fuzzy inference systems (ANFISs). The framework consisted of ET0 calculation, baseline model testing (ML techniques), ensemble modeling, leave-one-station-out validation, and spatial interpolation by inverse distance weighting. ANFIS achieved the highest prediction accuracy (R2 = 0.950, RMSE = 0.289 mm day−1, MAE = 0.202 mm day−1), while RF and XGB showed stable and reliable performance across all stations. Spatial maps highlighted strong seasonal variability, with higher ET0 values in the Chaco region in summer and lower values in winter. These results confirm that ML algorithms can generate robust ET0 estimates under data-constrained conditions, and provide scalable and cost-effective solutions for irrigation management and agricultural planning in Paraguay. Full article
Show Figures

Figure 1

17 pages, 2867 KB  
Article
Onion Yield Analysis Using a Satellite Image-Based Soil Moisture Prediction Model
by Junyoung Seo, Sumin Kim and Sojung Kim
Agronomy 2025, 15(11), 2479; https://doi.org/10.3390/agronomy15112479 (registering DOI) - 25 Oct 2025
Abstract
From 2020 to 2021, crop production increased by 54% globally, and the popularity of commercial agriculture to increase profitability is gradually increasing. However, global warming and climate issues make it difficult to maintain stable crop production. To improve crop production efficiency, techniques for [...] Read more.
From 2020 to 2021, crop production increased by 54% globally, and the popularity of commercial agriculture to increase profitability is gradually increasing. However, global warming and climate issues make it difficult to maintain stable crop production. To improve crop production efficiency, techniques for efficiently managing large-scale commercial farmland are needed. This study proposes a satellite image-based soil moisture and onion yield prediction technique as a methodology for managing large-scale farmland. This preemptive soil moisture management technique effectively manages increased soil pressure, resulting in soil drying due to rising temperatures. To remotely identify agricultural land, vegetation indices were extracted from satellite image data, and K-means clustering was applied. Ensemble machine learning is performed on soil images collected from satellite images. This model combines soil physical properties with soil environmental factor information to develop a model. The results show that soil color information obtained from satellite images is highly correlated with soil organic matter content. The proposed model is validated using crop yield data and environmental factor data obtained from actual crop production experiments. Consequently, the proposed methodology can be effectively applied to manage large-scale farmland and enables decision-making to improve profitability. Full article
Show Figures

Figure 1

20 pages, 2074 KB  
Article
Non-Destructive Monitoring of Postharvest Hydration in Cucumber Fruit Using Visible-Light Color Analysis and Machine-Learning Models
by Theodora Makraki, Georgios Tsaniklidis, Dimitrios M. Papadimitriou, Amin Taheri-Garavand and Dimitrios Fanourakis
Horticulturae 2025, 11(11), 1283; https://doi.org/10.3390/horticulturae11111283 (registering DOI) - 24 Oct 2025
Abstract
Water loss during storage is a major cause of postharvest quality deterioration in cucumber, yet existing methods to monitor hydration are often destructive or require expensive instrumentation. We developed a low-cost, non-destructive approach for estimating fruit relative water content (RWC) using visible-light color [...] Read more.
Water loss during storage is a major cause of postharvest quality deterioration in cucumber, yet existing methods to monitor hydration are often destructive or require expensive instrumentation. We developed a low-cost, non-destructive approach for estimating fruit relative water content (RWC) using visible-light color imaging combined with an ensemble machine-learning model (Random Forest). A total of 1200 fruits were greenhouse-grown, harvested at market maturity, and equally divided between optimal and ambient storage temperature (10 and 25 °C, respectively). Digital images were acquired at harvest and at 7 d intervals during storage, and color parameters from four standard color systems (RGB, CMYK, CIELAB, HSV) were extracted separately for the neck, mid, and blossom regions as well as for the whole fruit. During storage, fruit RWC decreased from 100% (fully hydrated condition) to 15.3%, providing a broad dynamic range for assessing color–hydration relationships. Among the 16 color features evaluated, the mean cyan component (μC) of the CMYK space showed the strongest relationship with measured RWC (R2 up to 0.70 for whole-fruit averages), reflecting the cyan region’s heightened sensitivity to dehydration-induced changes in pigments, cuticle properties and surface scattering. The Random Forest regression model trained on these features achieved a higher predictive accuracy (R2 = 0.89). Predictive accuracy was also consistently higher when μC was calculated over the entire fruit surface rather than for individual anatomical regions, indicating that whole-fruit color information provides a more robust hydration signal than region-specific measurements. Our findings demonstrate that simple visible-range imaging coupled with ensemble learning can provide a cost-effective, non-invasive tool for monitoring postharvest hydration of cucumber fruit, with direct applications in quality control, shelf-life prediction and waste reduction across the fresh-produce supply chain. Full article
Show Figures

Figure 1

24 pages, 3514 KB  
Article
Innovative Approach in Nursing Care: Artificial Intelligence-Assisted Incentive Spirometry
by Yusuf Uzun, İbrahim Çetin and Mehmet Kayrıcı
Healthcare 2025, 13(21), 2693; https://doi.org/10.3390/healthcare13212693 (registering DOI) - 24 Oct 2025
Abstract
Background/Objectives: This study presents an artificial intelligence (AI)-supported incentive spirometry system designed to explore the feasibility of automating the monitoring of respiratory exercises, a critical nursing intervention for maintaining pulmonary function and reducing postoperative complications. Methods: This system uses a tablet’s camera to [...] Read more.
Background/Objectives: This study presents an artificial intelligence (AI)-supported incentive spirometry system designed to explore the feasibility of automating the monitoring of respiratory exercises, a critical nursing intervention for maintaining pulmonary function and reducing postoperative complications. Methods: This system uses a tablet’s camera to track a standard spirometer’s volume indicator in real-time, reducing the manual nursing workload, unlike traditional mechanical spirometers that lack feedback capabilities. Image processing techniques analyze exercise performance, while the interface provides instant feedback, data recording, and graphical display. Machine learning models (Random Forest, XGBoost, Gradient Boosting, SVM, Logistic Regression, KNN) were trained on scripted patient data, including demographics, smoking status, and spirometry measurements, to classify respiratory performance as “poor”, “good”, or “excellent”. Results: The ensemble methods demonstrated exceptional performance, achieving 100% accuracy and R2 = 1.0, with cross-validation mean accuracies exceeding 99.4%. This feasibility study demonstrates the technical viability of this AI-driven approach and lays the groundwork for future clinical validation. Conclusions: This system presents a potential cost-effective, accessible solution suitable for both clinical and home settings, potentially integrating into standard respiratory care protocols. This system not only reduces nursing workload but also has the potential to improve patient adherence. This pilot study demonstrates the technical feasibility and potential of this AI-driven approach, laying the groundwork for future clinical validation. Full article
(This article belongs to the Section Artificial Intelligence in Healthcare)
Show Figures

Graphical abstract

47 pages, 36851 KB  
Article
Comparative Analysis of ML and DL Models for Data-Driven SOH Estimation of LIBs Under Diverse Temperature and Load Conditions
by Seyed Saeed Madani, Marie Hébert, Loïc Boulon, Alexandre Lupien-Bédard and François Allard
Batteries 2025, 11(11), 393; https://doi.org/10.3390/batteries11110393 (registering DOI) - 24 Oct 2025
Abstract
Accurate estimation of lithium-ion battery (LIB) state of health (SOH) underpins safe operation, predictive maintenance, and lifetime-aware energy management. Despite recent advances in machine learning (ML), systematic benchmarking across heterogeneous real-world cells remains limited, often confounded by data leakage and inconsistent validation. Here, [...] Read more.
Accurate estimation of lithium-ion battery (LIB) state of health (SOH) underpins safe operation, predictive maintenance, and lifetime-aware energy management. Despite recent advances in machine learning (ML), systematic benchmarking across heterogeneous real-world cells remains limited, often confounded by data leakage and inconsistent validation. Here, we establish a leakage-averse, cross-battery evaluation framework encompassing 32 commercial LIBs (B5–B56) spanning diverse cycling histories and temperatures (≈4 °C, 24 °C, 43 °C). Models ranging from classical regressors to ensemble trees and deep sequence architectures were assessed under blocked 5-fold GroupKFold splits using RMSE, MAE, R2 with confidence intervals, and inference latency. The results reveal distinct stratification among model families. Sequence-based architectures—CNN–LSTM, GRU, and LSTM—consistently achieved the highest accuracy (mean RMSE ≈ 0.006; per-cell R2 up to 0.996), demonstrating strong generalization across regimes. Gradient-boosted ensembles such as LightGBM and CatBoost delivered competitive mid-tier accuracy (RMSE ≈ 0.012–0.015) yet unrivaled computational efficiency (≈0.001–0.003 ms), confirming their suitability for embedded applications. Transformer-based hybrids underperformed, while approximately one-third of cells exhibited elevated errors linked to noise or regime shifts, underscoring the necessity of rigorous evaluation design. Collectively, these findings establish clear deployment guidelines: CNN–LSTM and GRU are recommended where robustness and accuracy are paramount (cloud and edge analytics), while LightGBM and CatBoost offer optimal latency–efficiency trade-offs for embedded controllers. Beyond model choice, the study highlights data curation and leakage-averse validation as critical enablers for transferable and reliable SOH estimation. This benchmarking framework provides a robust foundation for future integration of ML models into real-world battery management systems. Full article
Show Figures

Figure 1

21 pages, 2727 KB  
Article
Explainable Artificial Intelligence for Ovarian Cancer: Biomarker Contributions in Ensemble Models
by Hasan Ucuzal and Mehmet Kıvrak
Biology 2025, 14(11), 1487; https://doi.org/10.3390/biology14111487 (registering DOI) - 24 Oct 2025
Abstract
Ovarian cancer’s high mortality is primarily due to late-stage diagnosis, underscoring the critical need for improved early detection tools. This study develops and validates explainable artificial intelligence (XAI) models to discriminate malignant from benign ovarian masses using readily available demographic and laboratory data. [...] Read more.
Ovarian cancer’s high mortality is primarily due to late-stage diagnosis, underscoring the critical need for improved early detection tools. This study develops and validates explainable artificial intelligence (XAI) models to discriminate malignant from benign ovarian masses using readily available demographic and laboratory data. A dataset of 309 patients (140 malignant, 169 benign) with 47 clinical parameters was analyzed. The Boruta algorithm selected 19 significant features, including tumor markers (CA125, HE4, CEA, CA19-9, AFP), hematological indices, liver function tests, and electrolytes. Five ensemble machine learning algorithms were optimized and evaluated using repeated stratified 5-fold cross-validation. The Gradient Boosting model achieved the highest performance with 88.99% (±3.2%) accuracy, 0.934 AUC-ROC, and 0.782 Matthews correlation coefficient. SHAP analysis identified HE4, CEA, globulin, CA125, and age as the most globally important features. Unlike black-box approaches, our XAI framework provides clinically interpretable decision pathways through LIME and SHAP visualizations, revealing how feature values push predictions toward malignancy or benignity. Partial dependence plots illustrated non-linear risk relationships, such as a sharp increase in malignancy probability with CA125 > 35 U/mL. This explainable approach demonstrates that ensemble models can achieve high diagnostic accuracy using routine lab data alone, performing comparably to established clinical indices while ensuring transparency and clinical plausibility. The integration of state-of-the-art XAI techniques highlights established biomarkers and reveals potential novel contributors like inflammatory and hepatic indices, offering a pragmatic, scalable triage tool to augment existing diagnostic pathways, particularly in resource-constrained settings. Full article
(This article belongs to the Special Issue AI Deep Learning Approach to Study Biological Questions (2nd Edition))
Show Figures

Figure 1

23 pages, 2069 KB  
Article
Early Lung Cancer Detection via AI-Enhanced CT Image Processing Software
by Joel Silos-Sánchez, Jorge A. Ruiz-Vanoye, Francisco R. Trejo-Macotela, Marco A. Márquez-Vera, Ocotlán Diaz-Parra, Josué R. Martínez-Mireles, Miguel A. Ruiz-Jaimes and Marco A. Vera-Jiménez
Diagnostics 2025, 15(21), 2691; https://doi.org/10.3390/diagnostics15212691 (registering DOI) - 24 Oct 2025
Abstract
Background/Objectives: Lung cancer remains the leading cause of cancer-related mortality worldwide among both men and women. Early and accurate detection is essential to improve patient outcomes. This study explores the use of artificial intelligence (AI)-based software for the diagnosis of lung cancer through [...] Read more.
Background/Objectives: Lung cancer remains the leading cause of cancer-related mortality worldwide among both men and women. Early and accurate detection is essential to improve patient outcomes. This study explores the use of artificial intelligence (AI)-based software for the diagnosis of lung cancer through the analysis of medical images in DICOM format, aiming to enhance image visualization, preprocessing, and diagnostic precision in chest computed tomography (CT) scans. Methods: The proposed system processes DICOM medical images converted to standard formats (JPG or PNG) for preprocessing and analysis. An ensemble of classical machine learning algorithms—including Random Forest, Gradient Boosting, Support Vector Machine, and K-Nearest Neighbors—was implemented to classify pulmonary images and predict the likelihood of malignancy. Image normalization, denoising, segmentation, and feature extraction were performed to improve model reliability and reproducibility. Results: The AI-enhanced system demonstrated substantial improvements in diagnostic accuracy and robustness compared with individual classifiers. The ensemble model achieved a classification accuracy exceeding 90%, highlighting its effectiveness in identifying malignant and non-malignant lung nodules. Conclusions: The findings indicate that AI-assisted CT image processing can significantly contribute to the early detection of lung cancer. The proposed methodology enhances diagnostic confidence, supports clinical decision-making, and represents a viable step toward integrating AI into radiological workflows for early cancer screening. Full article
Show Figures

Figure 1

18 pages, 3461 KB  
Article
Impact on Predictive Performance of Air Pollutants in PV Forecasting Using Multi-Model Ensemble Learning: Evidence from the Port Logistics Hinterland Area
by Jungmin Ahn and Juyong Lee
Systems 2025, 13(11), 943; https://doi.org/10.3390/systems13110943 - 23 Oct 2025
Abstract
The uncertainty of photovoltaic (PV) power generation can impact the stability and flexibility of the power grid. Thus, accurately forecasting PV power output is crucial for ensuring a stable power system and supporting next-generation policy decisions. The purpose of this study is to [...] Read more.
The uncertainty of photovoltaic (PV) power generation can impact the stability and flexibility of the power grid. Thus, accurately forecasting PV power output is crucial for ensuring a stable power system and supporting next-generation policy decisions. The purpose of this study is to examine how the PV power generation forecasting model performed both with and without the addition of particulate matter (PM) and greenhouse gas (GHG) concentration factors with meteorological data. In this study, PV power generation is forecasted by models based on various machine learning models. The results indicate that there was no significant difference in forecasting accuracy whether PM and GHG variables were included or not. In addition, the stacked ensemble model has the lowest root mean square error (RMSE) and mean absolute error (MAE) values for all datasets and shows improved performance compared to the single model. Stacked ensemble that include a combination of meteorological, PM, and GHG variables perform the best. However, the optimal datasets varied across models. Therefore, this study concluded that meteorological variables had the greatest influence on the PV generation forecasting performance. Among the additional factors, PM contributed more significantly to the improvement in forecasting performance than GHG. Full article
(This article belongs to the Section Artificial Intelligence and Digital Systems Engineering)
Show Figures

Figure 1

14 pages, 1506 KB  
Brief Report
A Comprehensive Study on Short-Term Oil Price Forecasting Using Econometric and Machine Learning Techniques
by Gil Cohen
Mach. Learn. Knowl. Extr. 2025, 7(4), 127; https://doi.org/10.3390/make7040127 - 23 Oct 2025
Abstract
This paper investigates the short-term predictability of daily crude oil price movements by employing a multi-method analytical framework that incorporates both econometric and machine learning techniques. Utilizing a dataset of 21 financial and commodity time series spanning ten years of trading days (2015–2024), [...] Read more.
This paper investigates the short-term predictability of daily crude oil price movements by employing a multi-method analytical framework that incorporates both econometric and machine learning techniques. Utilizing a dataset of 21 financial and commodity time series spanning ten years of trading days (2015–2024), we explore the dynamics of oil price volatility and its key determinants. In the forecasting phase, we applied seven models. The meta-learner model, which consists of three base learners (Random Forest, gradient boosting, and support vector regression), achieved the highest R2 value of 0.532, providing evidence that our complex model structure can successfully outperform existing approaches. This ensemble demonstrated that the most influential predictors of next-day oil prices are VIX, OVX, and MOVE (volatility indices for equities, oil, and bonds, respectively), and lagged oil returns. The results underscore the critical role of volatility spillovers and nonlinear dependencies in forecasting oil returns and suggest future directions for integrating macroeconomic signals and advanced volatility models. Moreover, we show that combining multiple machine learning procedures into a single meta-model yields superior predictive performance. Full article
(This article belongs to the Special Issue Advances in Machine and Deep Learning)
Show Figures

Figure 1

22 pages, 6925 KB  
Article
Adaptive Urban Heat Mitigation Through Ensemble Learning: Socio-Spatial Modeling and Intervention Analysis
by Wanyun Ling and Liyang Chu
Buildings 2025, 15(21), 3820; https://doi.org/10.3390/buildings15213820 - 23 Oct 2025
Viewed by 63
Abstract
Urban Heat Islands (UHIs) are intensifying under climate change, exacerbating thermal exposure risks for socially vulnerable populations. While the role of urban environmental features in shaping UHI patterns is well recognized, their differential impacts on diverse social groups remain underexplored—limiting the development of [...] Read more.
Urban Heat Islands (UHIs) are intensifying under climate change, exacerbating thermal exposure risks for socially vulnerable populations. While the role of urban environmental features in shaping UHI patterns is well recognized, their differential impacts on diverse social groups remain underexplored—limiting the development of equitable, context-sensitive mitigation strategies. To address this challenge, we employ an interpretable ensemble machine learning framework to quantify how vegetation, water proximity, and built form influence UHI exposure across social strata and simulate the outcomes of alternative urban interventions. Drawing on data from 1660Dissemination Areas in Vancouver, we model UHI across seasonal and diurnal contexts, integrating environmental variables with socio-demographic indicators to evaluate both thermal and equity outcomes. Our ensemble AutoML framework demonstrates strong predictive accuracy across these contexts (R2 up to 0.79), providing reliable estimates of UHI dynamics. Results reveal that increasing vegetation cover consistently delivers the strongest cooling benefits (up to 2.95 °C) while advancing social equity, though fairness improvements become consistent only when vegetation intensity exceeds 1.3 times the baseline level. Water-related features yield additional cooling of approximately 1.15–1.5 °C, whereas built-form interventions yield trade-offs between cooling efficacy and fairness. Notably, modest reductions in building coverage or road density can meaningfully enhance distributional justice with limited thermal compromise. These findings underscore the importance of tailoring mitigation strategies not only for climatic impact but also for social equity. Our study offers a scalable analytical approach for designing just and effective urban climate adaptations, advancing both environmental sustainability and inclusive urban resilience in the face of intensifying heat risks. Full article
(This article belongs to the Special Issue Advancing Urban Analytics and Sensing for Sustainable Cities)
Show Figures

Figure 1

21 pages, 11021 KB  
Article
Evaluating and Forecasting Undergraduate Dropouts Using Machine Learning for Domestic and International Students
by Songbo Wang and Jiayi He
Technologies 2025, 13(11), 480; https://doi.org/10.3390/technologies13110480 - 23 Oct 2025
Viewed by 58
Abstract
Undergraduate dropout is a multidimensional phenomenon with implications for higher education, economic development, and social and cultural transformation, posing complex challenges for society as a whole. To address this, universities require effective dropout risk assessments for both domestic and international students, enabling the [...] Read more.
Undergraduate dropout is a multidimensional phenomenon with implications for higher education, economic development, and social and cultural transformation, posing complex challenges for society as a whole. To address this, universities require effective dropout risk assessments for both domestic and international students, enabling the implementation of tailored strategies and support. This study sourced a dataset from multiple faculties, comprising 3544 records for domestic students (Portuguese) and 86 for international students, considering 23 features. To balance the data, Conditional Tabular Generative Adversarial Networks were utilized to generate 487 synthetic samples with comparable statistical characteristics for training (85%) while retaining the original 86 real samples for testing (15%), thus maintaining an identical train–test split for evaluating domestic students. An Automated Machine Learning framework, employing ensemble learning algorithms, achieved outstanding performance, with the Light Gradient Boosting Machine proving the most effective for domestic students and Categorical Boosting for international students, both achieving test accuracies exceeding 0.90. The analysis revealed that improving academic performance during the first and second semesters was key to reducing dropout risks. Once a satisfactory level was reached, further improvements had minimal impact. Therefore, the focus should be on achieving satisfactory grades. Other objective identity factors, such as age and gender, were less influential than academic performance. A web-based application incorporating the developed models was created, offering an open-access tool for forecasting dropout risks, with all code made publicly available for further research into undergraduate performance, which could be extended to other nations. Full article
Show Figures

Figure 1

17 pages, 2557 KB  
Article
System Inertia Cost Forecasting Using Machine Learning: A Data-Driven Approach for Grid Energy Trading in Great Britain
by Maitreyee Dey, Soumya Prakash Rana and Preeti Patel
Analytics 2025, 4(4), 30; https://doi.org/10.3390/analytics4040030 - 23 Oct 2025
Viewed by 73
Abstract
As modern power systems integrate more renewable and decentralised generation, maintaining grid stability has become increasingly challenging. This study proposes a data-driven machine learning framework for forecasting system inertia service costs—a key yet underexplored variable influencing energy trading and frequency stability in Great [...] Read more.
As modern power systems integrate more renewable and decentralised generation, maintaining grid stability has become increasingly challenging. This study proposes a data-driven machine learning framework for forecasting system inertia service costs—a key yet underexplored variable influencing energy trading and frequency stability in Great Britain. Using eight years (2017–2024) of National Energy System Operator (NESO) data, four models—Long Short-Term Memory (LSTM), Residual LSTM, eXtreme Gradient Boosting (XGBoost), and Light Gradient-Boosting Machine (LightGBM)—are comparatively analysed. LSTM-based models capture temporal dependencies, while ensemble methods effectively handle nonlinear feature relationships. Results demonstrate that LightGBM achieves the highest predictive accuracy, offering a robust method for inertia cost estimation and market intelligence. The framework contributes to strategic procurement planning and supports market design for a more resilient, cost-effective grid. Full article
(This article belongs to the Special Issue Business Analytics and Applications)
Show Figures

Figure 1

12 pages, 22225 KB  
Article
Soil Organic Carbon Mapping Using Multi-Frequency SAR Data and Machine Learning Algorithms
by Pavan Kumar Bellam, Murali Krishna Gumma, Narayanarao Bhogapurapu and Venkata Reddy Keesara
Land 2025, 14(11), 2105; https://doi.org/10.3390/land14112105 - 23 Oct 2025
Viewed by 104
Abstract
Soil organic carbon (SOC) is a critical component of soil health, influencing soil structure, soil water retention capacity, and nutrient cycling while playing a key role in the global carbon cycle. Accurate SOC estimation over croplands is essential for sustainable land management and [...] Read more.
Soil organic carbon (SOC) is a critical component of soil health, influencing soil structure, soil water retention capacity, and nutrient cycling while playing a key role in the global carbon cycle. Accurate SOC estimation over croplands is essential for sustainable land management and climate change mitigation. This study explores a novel approach to SOC estimation using multi-frequency synthetic aperture radar (SAR) data, specifically Sentinel-1 and ALOS-2/PALSAR-2 imagery, combined with advanced machine learning techniques for cropland SOC estimation. Diverse agricultural practices, with major crop types such as rice (Oryza sativa), finger millet (Eleusine coracana), Niger (Guizotia abyssinica), maize (Zea mays), and vegetable cultivation, characterize the study region. By integrating C-band (Sentinel-1) and L-band (ALOS-2/PALSAR-2) SAR data with key polarimetric features such as the C2 matrix, entropy, and degree of polarization, this study enhances SOC estimation. These parameters help distinguish variations in soil moisture, texture, and mineral composition, reducing their confounding effects on SOC estimation. An ensemble model incorporating Random Forest (RF) and neural networks (NNs) was developed to capture the complex relationships between SAR data and SOC. The NN component effectively models complex non-linear relationships, while the RF model helps prevent overfitting. The proposed model achieved a correlation coefficient (r) of 0.64 and a root mean square error (RMSE) of 0.18, demonstrating its predictive capability. In summary, our results offer an efficient approach for enhanced SOC mapping in diverse agricultural landscapes, with ongoing work targeting challenges in data availability to facilitate large-scale SOC mapping. Full article
Show Figures

Figure 1

9 pages, 1231 KB  
Proceeding Paper
Next-Generation Climate Modeling: AI-Enhanced, Machine-Learning, and Hybrid Approaches Beyond Conventional GCMs
by Sk. Tanjim Jaman Supto
Environ. Earth Sci. Proc. 2025, 34(1), 15; https://doi.org/10.3390/eesp2025034015 - 22 Oct 2025
Abstract
The field of climate modeling is undergoing a significant transformation, moving away from the traditional General Circulation Models (GCMs) and toward the use of sophisticated artificial intelligence (AI)-based prediction systems. Research has shown that AI has the potential to improve climate modeling’s regional [...] Read more.
The field of climate modeling is undergoing a significant transformation, moving away from the traditional General Circulation Models (GCMs) and toward the use of sophisticated artificial intelligence (AI)-based prediction systems. Research has shown that AI has the potential to improve climate modeling’s regional accuracy and computing efficiency. Machine learning downscaling better captures local precipitation extremes than GCMs, while hybrid AI–physics models cut ensemble costs by reducing computational demand without sacrificing accuracy. Nevertheless, these investigations have frequently functioned in discrete settings and oversimplified situations without a thorough connection with basic physical concepts. This drawback emphasizes the necessity of a more comprehensive strategy that can handle the intricacies of climatic variability and guarantee reliable model validation. In order to assess the possibilities and challenges of hybrid models in comparison to conventional GCMs, highlighting that AI complements GCMs in regional downscaling and extremes, while GCMs provide stronger global consistency, this study synthesizes proven climate models, AI methodologies, and their accuracy in climate predictions and analyzes existing climate models to evaluate the potential and limitations of hybrid models compared to traditional GCMs. Integrated AI-driven models show notable improvements in predicting regional variations in climate and accelerating simulation processes, especially when dealing with the growing presence of extreme weather occurrences. However, it is important to have consistent datasets and open evaluation procedures in order to guarantee accuracy and deal with the difficulties that come with model benchmarking. This research highlights how crucial it is to maintain interdisciplinary cooperation in order to properly utilize what AI has to offer in climate modeling. This partnership is essential to creating more accurate and useful climate projections, which will eventually guide successful mitigation and adaptation plans for a changing global environment. In order to have a greater understanding of our climate’s future, we must keep pushing the limits of the existing modeling tools. Full article
Show Figures

Figure 1

16 pages, 1300 KB  
Article
Multi-Class Segmentation and Classification of Intestinal Organoids: YOLO Stand-Alone vs. Hybrid Machine Learning Pipelines
by Luana Conte, Giorgio De Nunzio, Giuseppe Raso and Donato Cascio
Appl. Sci. 2025, 15(21), 11311; https://doi.org/10.3390/app152111311 - 22 Oct 2025
Viewed by 100
Abstract
Background: The automated analysis of intestinal organoids in microscopy images are essential for high-throughput morphological studies, enabling precision and scalability. Traditional manual analysis is time-consuming and subject to observer bias, whereas Machine Learning (ML) approaches have recently demonstrated superior performance. Purpose: [...] Read more.
Background: The automated analysis of intestinal organoids in microscopy images are essential for high-throughput morphological studies, enabling precision and scalability. Traditional manual analysis is time-consuming and subject to observer bias, whereas Machine Learning (ML) approaches have recently demonstrated superior performance. Purpose: This study aims to evaluate YOLO (You Only Look Once) for organoid segmentation and classification, comparing its standalone performance with a hybrid pipeline that integrates DL-based feature extraction and ML classifiers. Methods: The dataset, consisting of 840 light microscopy images and over 23,000 annotated intestinal organoids, was divided into training (756 images) and validation (84 images) sets. Organoids were categorized into four morphological classes: cystic non-budding organoids (Org0), early organoids (Org1), late organoids (Org3), and Spheroids (Sph). YOLO version 10 (YOLOv10) was trained as a segmenter-classifier for the detection and classification of organoids. Performance metrics for YOLOv10 as a standalone model included Average Precision (AP), mean AP at 50% overlap (mAP50), and confusion matrix evaluated on the validation set. In the hybrid pipeline, trained YOLOv10 segmented bounding boxes, and features extracted from these regions using YOLOv10 and ResNet50 were classified with ML algorithms, including Logistic Regression, Naive Bayes, K-Nearest Neighbors (KNN), Random Forest, eXtreme Gradient Boosting (XGBoost), and Multi-Layer Perceptrons (MLP). The performance of these classifiers was assessed using the Receiver Operating Characteristic (ROC) curve and its corresponding Area Under the Curve (AUC), precision, F1 score, and confusion matrix metrics. Principal Component Analysis (PCA) was applied to reduce feature dimensionality while retaining 95% of cumulative variance. To optimize the classification results, an ensemble approach based on AUC-weighted probability fusion was implemented to combine predictions across classifiers. Results: YOLOv10 as a standalone model achieved an overall mAP50 of 0.845, with high AP across all four classes (range 0.797–0.901). In the hybrid pipeline, features extracted with ResNet50 outperformed those extracted with YOLO, with multiple classifiers achieving AUC scores ranging from 0.71 to 0.98 on the validation set. Among all classifiers, Logistic Regression emerged as the best-performing model, achieving the highest AUC scores across multiple classes (range 0.93–0.98). Feature selection using PCA did not improve classification performance. The AUC-weighted ensemble method further enhanced performance, leveraging the strengths of multiple classifiers to optimize prediction, as demonstrated by improved ROC-AUC scores across all organoid classes (range 0.92–0.98). Conclusions: This study demonstrates the effectiveness of YOLOv10 as a standalone model and the robustness of hybrid pipelines combining ResNet50 feature extraction and ML classifiers. Logistic Regression emerged as the best-performing classifier, achieving the highest ROC-AUC across multiple classes. This approach ensures reproducible, automated, and precise morphological analysis, with significant potential for high-throughput organoid studies and live imaging applications. Full article
Show Figures

Figure 1

Back to TopTop