Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,816)

Search Parameters:
Keywords = ensemble model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 11687 KB  
Article
Improved Inversion and Digital Mapping of Soil Organic Carbon Content by Combining Crop-Lush Period Vegetation Indices with Ensemble Learning: A Case Study for Liaoning, Northeast China
by Quanping Zhang, Guochen Li, Huimin Dai, Jian Wang, Zhi Quan, Nana Fang, Ang Wang, Wenxin Huo and Yunting Fang
Land 2025, 14(10), 2022; https://doi.org/10.3390/land14102022 - 9 Oct 2025
Abstract
Soil organic carbon (SOC) is a crucial indicator of soil quality and carbon cycling. While remote sensing and machine learning enable regional scale SOC prediction, most studies rely on vegetation indices (VIs) derived from bare-soil periods, potentially neglecting vegetation–soil interactions during crop growth. [...] Read more.
Soil organic carbon (SOC) is a crucial indicator of soil quality and carbon cycling. While remote sensing and machine learning enable regional scale SOC prediction, most studies rely on vegetation indices (VIs) derived from bare-soil periods, potentially neglecting vegetation–soil interactions during crop growth. Given the bidirectional relationship between SOC and crop growth, we hypothesized that using crop-lush period VIs (VIs_lush) instead of bare-soil period VIs (VIs_bare) would increase the inversion accuracy. To test this hypothesis, we chose the cropland area in Liaoning Province as the study area and developed three modeling strategies (MS-1: VIs_lush + other features; MS-2: VIs_bare + other features; and MS-3: without VIs) using Landsat 8 imagery, topographic and precipitation data, and ensemble learning models (XGBoost, RF, and AdaBoost), with SHapley Additive exPlanations (SHAP) analysis for variable interpretation. We found that (1) all models achieved their highest performance under MS-1, with XGBoost outperforming the others across all modeling strategies; (2) for XGBoost, MS-1 yielded the highest inversion accuracy (R2 = 0.84, RMSE = 2.22 g·kg−1, RPD = 2.49, and RPIQ = 3.25); compared with MS-2, MS-1 reduced the RMSE by 0.31 g·kg−1, increased R2 from 0.77 to 0.84, and reduced the RPD by 0.31 and the RPIQ by 0.40, and compared with MS-3, MS-1 reduced the RMSE by 0.41 g·kg−1, increased R2 from 0.79 to 0.84, and reduced the RPD by 0.39 and the RPIQ by 0.51; (3) based on the SHAP analysis of the three modeling strategies, it is considered that precipitation, terrain and terrain analysis results are important indicators for SOC content inversion, and it is confirmed that VIs_lush contributed more than VIs_bare, supporting the rationale of using lush-period imagery; and (4) Liaoning Province exhibited distinct SOC spatial patterns (mean: 13.08 g·kg−1), with values ranging from 2.19 g·kg−1 (sandy central–western area) to 33.86 g·kg−1 (eastern mountains/coast). This study demonstrates that integrating growth stage-specific VIs with ensemble learning can significantly enhance regional-scale SOC prediction. Full article
(This article belongs to the Special Issue Digital Soil Mapping and Precision Agriculture)
26 pages, 2705 KB  
Article
GIS-Based Landslide Susceptibility Mapping with a Blended Ensemble Model and Key Influencing Factors in Sentani, Papua, Indonesia
by Zulfahmi Zulfahmi, Moch Hilmi Zaenal Putra, Dwi Sarah, Adrin Tohari, Nendaryono Madiutomo, Priyo Hartanto and Retno Damayanti
Geosciences 2025, 15(10), 390; https://doi.org/10.3390/geosciences15100390 - 9 Oct 2025
Abstract
Landslides represent a recurrent hazard in tropical mountain environments, where rapid urbanization and extreme rainfall amplify disaster risk. The Sentani region of Papua, Indonesia, is highly vulnerable, as demonstrated by the catastrophic debris flows of March 2019 that caused fatalities and widespread losses. [...] Read more.
Landslides represent a recurrent hazard in tropical mountain environments, where rapid urbanization and extreme rainfall amplify disaster risk. The Sentani region of Papua, Indonesia, is highly vulnerable, as demonstrated by the catastrophic debris flows of March 2019 that caused fatalities and widespread losses. This study developed high-resolution landslide susceptibility maps for Sentani using an ensemble machine learning framework. Three base learners—Random Forest, eXtreme Gradient Boosting (XGBoost), and CatBoost—were combined through a logistic regression meta-learner. Predictor redundancy was controlled using Pearson correlation and Variance Inflation Factor/Tolerance (VIF/TOL). The landslide inventory was constructed from multitemporal satellite imagery, integrating geological, topographic, hydrological, environmental, and seismic factors. Results showed that lithology, Slope Length and Steepness Factor (LS Factor), and earthquake density consistently dominated model predictions. The ensemble achieved the most balanced predictive performance, Area Under the Curve (AUC) > 0.96, and generated susceptibility maps that aligned closely with observed landslide occurrences. SHapley Additive Explanations (SHAP) analyses provided transparent, case-specific insights into the directional influence of key factors. Collectively, the findings highlight both the robustness and interpretability of ensemble learning for landslide susceptibility mapping, offering actionable evidence to support disaster preparedness, land-use planning, and sustainable development in Papua. Full article
24 pages, 4428 KB  
Article
Landscape Patterns and Carbon Emissions in the Yangtze River Basin: Insights from Ensemble Models and Nighttime Light Data
by Banglong Pan, Qi Wang, Zhuo Diao, Jiayi Li, Wuyiming Liu, Qianfeng Gao, Ying Shu and Juan Du
Atmosphere 2025, 16(10), 1173; https://doi.org/10.3390/atmos16101173 - 9 Oct 2025
Abstract
Land use patterns are a critical driver of changes in carbon emissions, making it essential to elucidate the relationship between regional carbon emissions and land use types. As a nationally designated economic strategic zone, the Yangtze River Basin encompasses megacities, rapidly developing medium-sized [...] Read more.
Land use patterns are a critical driver of changes in carbon emissions, making it essential to elucidate the relationship between regional carbon emissions and land use types. As a nationally designated economic strategic zone, the Yangtze River Basin encompasses megacities, rapidly developing medium-sized cities, and relatively underdeveloped regions. However, the mechanism underlying the interaction between landscape patterns and carbon emissions across such gradients remains inadequately understood. This study utilizes nighttime light, land use and carbon emissions datasets, employing XGBoost, CatBoost, LightGBM and a stacking ensemble model to analyze the impacts and driving factors of land use changes on carbon emissions in the Yangtze River Basin from 2002 to 2022. The results showed: (1) The stacking ensemble learning model demonstrated the best predictive performance, with a coefficient of determination (R2) of 0.80, a residual prediction deviation (RPD) of 2.22, and a root mean square error (RMSE) of 4.46. Compared with the next-best models, these performance metrics represent improvements of 19.40% in R2 and 28.32% in RPD, and a 22.16% reduction in RMSE. (2) Based on SHAP feature importance and Pearson correlation analysis, the primary drivers influencing CO2 net emissions in the Yangtze River Basin are GDP per capita (GDPpc), population density (POD), Tertiary industry share (TI), land use degree comprehensive index (LUI), dynamic degree of water-body land use (Kwater), Largest patch index (LPI), and number of patches (NP). These findings indicate that changes in regional landscape patterns exert a significant effect on carbon emissions in strategic economic regions, and that stacked ensemble models can effectively simulate and interpret this relationship with high predictive accuracy, thereby providing decision support for regional low-carbon development planning. Full article
(This article belongs to the Special Issue Urban Carbon Emissions: Measurement and Modeling)
17 pages, 1112 KB  
Article
Management of Severe COVID-19 Diagnosis Using Machine Learning
by Larysa Sydorchuk, Maksym Sokolenko, Miroslav Škoda, Daniel Lajcin, Yaroslav Vyklyuk, Ruslan Sydorchuk, Alina Sokolenko and Dmytro Martjanov
Computation 2025, 13(10), 238; https://doi.org/10.3390/computation13100238 - 9 Oct 2025
Abstract
COVID-19 remains a global health challenge, with severe cases often leading to complications and fatalities. The objective of this study was to assess supervised machine learning algorithms for predicting severe COVID-19 based on demographic, clinical, biochemical, and genetic variables, with the aim of [...] Read more.
COVID-19 remains a global health challenge, with severe cases often leading to complications and fatalities. The objective of this study was to assess supervised machine learning algorithms for predicting severe COVID-19 based on demographic, clinical, biochemical, and genetic variables, with the aim of identifying the most informative prognostic markers. For Machine Learning (ML) analysis, we utilized a dataset comprising 226 observations with 68 clinical, biochemical, and genetic features collected from 226 patients with confirmed COVID-19 (54—moderate, 142—severe and 30 with mild disease). The target variable was disease severity (mild, moderate, severe). The feature set included demographic variables (age, sex), genetic markers (single-nucleotide polymorphisms (SNPs) in FGB (rs1800790), NOS3 (rs2070744), and TMPRSS2 (rs12329760)), biochemical indicators (IL-6, endothelin-1, D-dimer, fibrinogen, among others), and clinical parameters (blood pressure, body mass index, comorbidities). The target variable was disease severity. To identify the most effective predictive models for COVID-19 severity, we systematically evaluated multiple supervised learning algorithms, including logistic regression, k-nearest neighbors, decision trees, random forest, gradient boosting, bagging, naïve Bayes, and support vector machines. Model performance was assessed using accuracy and the area under the receiver operating characteristic curve (AUC-ROC). Among the predictors, IL-6, presence of depression/pneumonia, LDL cholesterol, AST, platelet count, lymphocyte count, and ALT showed the strongest correlations with severity. The highest predictive accuracy, with negligible error rates, was achieved by ensemble-based models such as ExtraTreesClassifier, HistGradientBoostingClassifier, BaggingClassifier, and GradientBoostingClassifier. Notably, decision tree models demonstrated high classification precision at terminal nodes, many of which yielded a 100% probability for a specific severity class. Full article
(This article belongs to the Special Issue Artificial Intelligence Applications in Public Health: 2nd Edition)
Show Figures

Figure 1

17 pages, 2986 KB  
Article
Physics-Aware Ensemble Learning for Superior Crop Recommendation in Smart Agriculture
by Hemalatha Gunasekaran, Krishnamoorthi Ramalakshmi, Saswati Debnath and Deepa Kanmani Swaminathan
Sensors 2025, 25(19), 6243; https://doi.org/10.3390/s25196243 - 9 Oct 2025
Abstract
Agriculture remains the backbone of many countries; it plays a pivotal role in shaping a country’s overall economy. Accurate prediction in agriculture practices, particularly crop recommendations, can greatly enhance productivity and resource management. IoT and AI technologies have great potential for enhancing precision [...] Read more.
Agriculture remains the backbone of many countries; it plays a pivotal role in shaping a country’s overall economy. Accurate prediction in agriculture practices, particularly crop recommendations, can greatly enhance productivity and resource management. IoT and AI technologies have great potential for enhancing precision farming; traditional machine learning (ML) and ensemble learning (EL) models rely primarily on the training data for predictions. When the training data is noisy or limited, these models can result in inaccurate or unrealistic predictions. These limitations are addressed by incorporating physical laws into the ML framework, thereby ensuring that the predictions remain physically plausible. In this study, we conducted a detailed analysis of ML and EL models, both with and without optimization, and compared their performance against a physics-informed ML model. In the proposed stacking physics-informed ML model, the optimal temperature and the pH for each crop (physics law) are provided as input during the training process in addition to the training data. The physics-informed model was trained to simultaneously satisfy two objectives: (1) fitting the data, and (2) adhering to the physics law. This was achieved by including a penalty term within its total loss function, forcing the model to make predictions that are both accurate and physically feasible. Our findings indicate that the proposed novel stacking physics-informed model achieved a highest accuracy of 99.50% when compared to ML and EL models with optimization. Full article
Show Figures

Figure 1

11 pages, 570 KB  
Proceeding Paper
Evaluating the Role of Machine Learning in Migraine Detection and Classification
by Irsa Imtiaz, Hamza Afzal, Attique Ur Rehman and Gina Purnama Insany
Eng. Proc. 2025, 107(1), 122; https://doi.org/10.3390/engproc2025107122 - 9 Oct 2025
Abstract
Migraine is a common neurological illness that has a major influence on the quality of life; yet, precise categorization and prediction remain difficult because of its complicated symptoms and multiple triggers. This work investigates the use of advanced machine learning (ML) algorithms to [...] Read more.
Migraine is a common neurological illness that has a major influence on the quality of life; yet, precise categorization and prediction remain difficult because of its complicated symptoms and multiple triggers. This work investigates the use of advanced machine learning (ML) algorithms to improve migraine diagnosis and prediction, drawing on a large dataset that includes clinical, lifestyle, and environmental aspects. Various machine learning models, such as ensemble methods, deep learning, and hybrid approaches, are tested to see how well they discriminate migraine from other headache conditions and predict migraine episodes. Feature selection approaches are used to identify the most important predictors, which improve model interpretability and performance. Experimental results show that the proposed machine learning framework outperforms established diagnostic methods in terms of classification accuracy, sensitivity, and specificity. The study demonstrates how ML-driven solutions may be used to manage migraines in a tailored way, helping medical practitioners with early diagnosis and intervention techniques. My suggested framework, NeuroVote(ensemble model), offers a remarkable 99.99% classification accuracy for migraines. Future studies will concentrate on optimizing models for clinical deployment and incorporating real-time data from wearable technology. Full article
Show Figures

Figure 1

25 pages, 3602 KB  
Article
Rulers of the Open Sky at Risk: Climate-Driven Habitat Shifts of Three Conservation-Priority Raptors in the Eastern Himalayas
by Pranjal Mahananda, Imon Abedin, Anubhav Bhuyan, Malabika Kakati Saikia, Prasanta Kumar Saikia, Hilloljyoti Singha and Shantanu Kundu
Biology 2025, 14(10), 1376; https://doi.org/10.3390/biology14101376 - 8 Oct 2025
Abstract
Raptors, being at top of the food chain, serve as important models to study the impact of changing climate, as they are more vulnerable due to their unique ecology. They are vulnerable to extinction, with 52% species declining population and 18% are threatened [...] Read more.
Raptors, being at top of the food chain, serve as important models to study the impact of changing climate, as they are more vulnerable due to their unique ecology. They are vulnerable to extinction, with 52% species declining population and 18% are threatened globally. The effect of climate change on raptors is poorly studied in the Eastern Himalayan region. The present study offers a complete investigation of climate change effects on the raptors in the northeast region of the Eastern Himalayas, employing ensemble species distribution modeling. The future predictions were employed to model the climate change across two socioeconomic pathways (SSP) i.e. SSP245 and SSP585 for the periods 2041–2060 and 2061–2080. Specifically, five algorithms were employed for the ensemble model, viz. boosted regression tree (BRT), generalized linear model (GLM), multivariate adaptive regression splines (MARS), maximum entropy (MaxEnt) and random forest (RF). The study highlights worrying results, as only 10.5% area of the NE region is presently suitable for Falco severus, 11.4% for the critically endangered Gyps tenuirostris, and a mere 6.9% area is presently suitable for the endangered Haliaeetus leucoryphus. The most influential covariates were precipitation of the driest quarter, precipitation of the wettest month, and temperature seasonality. Future projection revealed reduction of 33–41% in suitable habitats for F. severus, G. tenuirostris is expected to lose 53–96% of its suitable habitats, and H. leucoryphus has lost nearly 94–99% of its suitable habitats. Such decline indicates apparent habitat fragmentation, with shrinking habitat patches. Full article
Show Figures

Figure 1

16 pages, 2029 KB  
Article
Intelligent Hybrid Modeling for Heart Disease Prediction
by Mona Almutairi and Samia Dardouri
Information 2025, 16(10), 869; https://doi.org/10.3390/info16100869 - 7 Oct 2025
Viewed by 33
Abstract
Background: Heart disease continues to be one of the foremost causes of mortality worldwide, emphasizing the urgent need for reliable and early diagnostic tools. Accurate prediction methods can support timely interventions and improve patient outcomes. Methods: This study presents the development and comparative [...] Read more.
Background: Heart disease continues to be one of the foremost causes of mortality worldwide, emphasizing the urgent need for reliable and early diagnostic tools. Accurate prediction methods can support timely interventions and improve patient outcomes. Methods: This study presents the development and comparative evaluation of multiple machine learning models for heart disease prediction using a structured clinical dataset. Algorithms such as Logistic Regression, Random Forest, Support Vector Machine (SVM), XGBoost, and Deep Neural Networks were implemented. Additionally, a hybrid ensemble model combining XGBoost and SVM was proposed. Models were evaluated using key performance metrics including accuracy, precision, recall, and F1-score. Results: Among all models, the proposed hybrid model demonstrated the best performance, achieving an accuracy of 89.3%, a precision of 0.90, recall of 0.91, and an F1-score of 0.905, and outperforming all individual classifiers. These results highlight the benefits of combining complementary algorithms for improved generalization and diagnostic reliability. Conclusions: The findings underscore the effectiveness of ensemble and deep learning techniques in addressing key challenges such as data imbalance, feature selection, and model interpretability. The proposed hybrid model shows significant potential as a clinical decision-support tool, contributing to enhanced diagnostic accuracy and supporting medical professionals in real-world settings. Full article
Show Figures

Figure 1

32 pages, 16950 KB  
Article
Regression-Based Performance Prediction in Asphalt Mixture Design and Input Analysis with SHAP
by Kemal Muhammet Erten and Remzi Gürfidan
Appl. Sci. 2025, 15(19), 10779; https://doi.org/10.3390/app151910779 - 7 Oct 2025
Viewed by 46
Abstract
The primary aim of this study is to predict the Marshall stability and flow values of hot-mix asphalt samples prepared according to the Marshall design method using regression-based machine learning algorithms. To overcome the limited number of experimental observations, synthetic data generation was [...] Read more.
The primary aim of this study is to predict the Marshall stability and flow values of hot-mix asphalt samples prepared according to the Marshall design method using regression-based machine learning algorithms. To overcome the limited number of experimental observations, synthetic data generation was applied using the Conditional Tabular Generative Adversarial Network (CTGAN), while the structural consistency of the generated data was validated through Principal Component Analysis (PCA). Two datasets containing 17 physical and mechanical input variables were analyzed, and multiple regression models were compared, including Extra Trees, Random Forest, Gradient Boosting, AdaBoost, and K-Nearest Neighbors. Among these, the Extra Trees Regressor consistently achieved the best results with near-perfect accuracy in flow predictions (MAE ≈ 4.06 × 10−15, RMSE ≈ 4.97 × 10−15, Accuracy ≈ 99.99%) and high performance in stability predictions (MAE = 109.52, RMSE = 150.67, accuracy = 90.45%). Furthermore, model interpretability was ensured by applying SHapley Additive Explanations (SHAP), which revealed that parameters such as softening point, VMA, penetration, and void ratios were the most influential features. These findings demonstrate that regression-based ensemble models, combined with synthetic data augmentation and explainable AI methods, can serve as reliable and interpretable tools in asphalt mixture design. Full article
Show Figures

Figure 1

0 pages, 1868 KB  
Proceeding Paper
Reliability Evaluation of CAMS Air Quality Products in the Context of Different Land Uses: The Example of Cyprus
by Jude Brian Ramesh, Stelios P. Neophytides, Orestis Livadiotis, Diofantos G. Hadjimitsis, Silas Michaelides and Maria N. Anastasiadou
Environ. Earth Sci. Proc. 2025, 35(1), 64; https://doi.org/10.3390/eesp2025035064 - 6 Oct 2025
Viewed by 86
Abstract
Cyprus is located between Europe, Asia and Africa, and its location is vulnerable to dust transport from the Sahara Desert, wildfire smoke particles from surrounding regions, and other anthropogenic emissions caused by several factors, mostly due to business activities on harbor areas. Moreover, [...] Read more.
Cyprus is located between Europe, Asia and Africa, and its location is vulnerable to dust transport from the Sahara Desert, wildfire smoke particles from surrounding regions, and other anthropogenic emissions caused by several factors, mostly due to business activities on harbor areas. Moreover, the country suffers from heavy traffic conditions caused by the limited public transportation system in Cyprus. Therefore, taking into consideration the country’s geographic location, heavy commercial activities, and lack of good public transportation system, Cyprus is exposed to dust episodes and high anthropogenic emissions associated with multiple health and environmental issues. Therefore, continuous and qualitative air quality monitoring is essential. The Department of Labor Inspection of Cyprus (DLI) has established an air quality monitoring network that consists of 11 stations at strategic geographic locations covering rural, residential, traffic and industrial zones. This network measures the following pollutants: nitrogen oxide, nitrogen dioxide, sulfur dioxide, ozone, carbon monoxide, particulate matter 2.5, and particulate matter 10. This case study compares and evaluates the agreement between Copernicus Atmosphere Monitoring Service (CAMS) air quality products and ground-truth data from the DLI air quality network. The study period spans from January to December 2024. This study focuses on the following three pollutants: particulate matter 2.5, particulate matter 10, and ozone, using Ensemble Median, EMEP, and CHIMERE near-real-time model data provided by CAMS. A data analysis was performed to identify the agreement and the error rate between those two datasets (i.e., ground-truth air quality data and CAMS air quality data). In addition, this study assesses the reliability of assimilated datasets from CAMS across rural, residential, traffic and industrial zones. The results showcase how CAMS near-real-time analysis data can supplement air quality monitoring in locations without the availability of ground-truth data. Full article
Show Figures

Figure 1

35 pages, 5316 KB  
Review
Machine Learning for Quality Control in the Food Industry: A Review
by Konstantinos G. Liakos, Vassilis Athanasiadis, Eleni Bozinou and Stavros I. Lalas
Foods 2025, 14(19), 3424; https://doi.org/10.3390/foods14193424 - 4 Oct 2025
Viewed by 514
Abstract
The increasing complexity of modern food production demands advanced solutions for quality control (QC), safety monitoring, and process optimization. This review systematically explores recent advancements in machine learning (ML) for QC across six domains: Food Quality Applications; Defect Detection and Visual Inspection Systems; [...] Read more.
The increasing complexity of modern food production demands advanced solutions for quality control (QC), safety monitoring, and process optimization. This review systematically explores recent advancements in machine learning (ML) for QC across six domains: Food Quality Applications; Defect Detection and Visual Inspection Systems; Ingredient Optimization and Nutritional Assessment; Packaging—Sensors and Predictive QC; Supply Chain—Traceability and Transparency and Food Industry Efficiency; and Industry 4.0 Models. Following a PRISMA-based methodology, a structured search of the Scopus database using thematic Boolean keywords identified 124 peer-reviewed publications (2005–2025), from which 25 studies were selected based on predefined inclusion and exclusion criteria, methodological rigor, and innovation. Neural networks dominated the reviewed approaches, with ensemble learning as a secondary method, and supervised learning prevailing across tasks. Emerging trends include hyperspectral imaging, sensor fusion, explainable AI, and blockchain-enabled traceability. Limitations in current research include domain coverage biases, data scarcity, and underexplored unsupervised and hybrid methods. Real-world implementation challenges involve integration with legacy systems, regulatory compliance, scalability, and cost–benefit trade-offs. The novelty of this review lies in combining a transparent PRISMA approach, a six-domain thematic framework, and Industry 4.0/5.0 integration, providing cross-domain insights and a roadmap for robust, transparent, and adaptive QC systems in the food industry. Full article
(This article belongs to the Special Issue Artificial Intelligence for the Food Industry)
Show Figures

Figure 1

43 pages, 4746 KB  
Article
The BTC Price Prediction Paradox Through Methodological Pluralism
by Mariya Paskaleva and Ivanka Vasenska
Risks 2025, 13(10), 195; https://doi.org/10.3390/risks13100195 - 4 Oct 2025
Viewed by 303
Abstract
Bitcoin’s extreme price volatility presents significant challenges for investors and traders, necessitating accurate predictive models to guide decision-making in cryptocurrency markets. This study compares the performance of machine learning approaches for Bitcoin price prediction, specifically examining XGBoost gradient boosting, Long Short-Term Memory (LSTM), [...] Read more.
Bitcoin’s extreme price volatility presents significant challenges for investors and traders, necessitating accurate predictive models to guide decision-making in cryptocurrency markets. This study compares the performance of machine learning approaches for Bitcoin price prediction, specifically examining XGBoost gradient boosting, Long Short-Term Memory (LSTM), and GARCH-DL neural networks using comprehensive market data spanning December 2013 to May 2025. We employed extensive feature engineering incorporating technical indicators, applied multiple machine and deep learning models configurations including standalone and ensemble approaches, and utilized cross-validation techniques to assess model robustness. Based on the empirical results, the most significant practical implication is that traders and financial institutions should adopt a dual-model approach, deploying XGBoost for directional trading strategies and utilizing LSTM models for applications requiring precise magnitude predictions, due to their superior continuous forecasting performance. This research demonstrates that traditional technical indicators, particularly market capitalization and price extremes, remain highly predictive in algorithmic trading contexts, validating their continued integration into modern cryptocurrency prediction systems. For risk management applications, the attention-based LSTM’s superior risk-adjusted returns, combined with enhanced interpretability, make it particularly valuable for institutional portfolio optimization and regulatory compliance requirements. The findings suggest that ensemble methods offer balanced performance across multiple evaluation criteria, providing a robust foundation for production trading systems where consistent performance is more valuable than optimization for single metrics. These results enable practitioners to make evidence-based decisions about model selection based on their specific trading objectives, whether focused on directional accuracy for signal generation or precision of magnitude for risk assessment and portfolio management. Full article
(This article belongs to the Special Issue Portfolio Theory, Financial Risk Analysis and Applications)
Show Figures

Figure 1

22 pages, 2624 KB  
Article
Seismic Damage Assessment of RC Structures After the 2015 Gorkha, Nepal, Earthquake Using Gradient Boosting Classifiers
by Murat Göçer, Hakan Erdoğan, Baki Öztürk and Safa Bozkurt Coşkun
Buildings 2025, 15(19), 3577; https://doi.org/10.3390/buildings15193577 - 4 Oct 2025
Viewed by 205
Abstract
Accurate prediction of earthquake—induced building damage is essential for timely disaster response and effective risk mitigation. This study explores a machine learning (ML)-based classification approach using data from the 2015 Gorkha, Nepal earthquake, with a specific focus on reinforced concrete (RC) structures. The [...] Read more.
Accurate prediction of earthquake—induced building damage is essential for timely disaster response and effective risk mitigation. This study explores a machine learning (ML)-based classification approach using data from the 2015 Gorkha, Nepal earthquake, with a specific focus on reinforced concrete (RC) structures. The original dataset from the 2015 Nepal earthquake contained 762,094 building entries across 127 variables describing structural, functional, and contextual characteristics. Three ensemble ML modelsGradient Boosting Machine (GBM), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM) were trained and tested on both the full dataset and a filtered RC-only subset. Two target variables were considered: a three-class variable (damage_class) and the original five-level damage grade (damage_grade). To address class imbalance, oversampling and undersampling techniques were applied, and model performance was evaluated using accuracy and F1 scores. The results showed that LightGBM consistently outperformed the other models, especially when oversampling was applied. For the RC dataset, LightGBM achieved up to 98% accuracy for damage_class and 93% accuracy for damage_grade, along with high F1 scores ranging between 0.84 and 1.00 across all classes. Feature importance analysis revealed that structural characteristics such as building area, age, and height were the most influential predictors of damage. These findings highlight the value of building-type-specific modeling combined with class balancing techniques to improve the reliability and generalizability of ML-based earthquake damage prediction. Full article
Show Figures

Figure 1

21 pages, 1538 KB  
Article
SarcoNet: A Pilot Study on Integrating Clinical and Kinematic Features for Sarcopenia Classification
by Muthamil Balakrishnan, Janardanan Kumar, Jaison Jacob Mathunny, Varshini Karthik and Ashok Kumar Devaraj
Diagnostics 2025, 15(19), 2513; https://doi.org/10.3390/diagnostics15192513 - 3 Oct 2025
Viewed by 307
Abstract
Background and Objectives: Sarcopenia is a progressive loss of skeletal muscle mass and function in elderly adults, posing a significant risk of frailty, falls, and morbidity. The current study designs and evaluates SarcoNet, a novel artificial neural network (ANN)-based classification framework developed in [...] Read more.
Background and Objectives: Sarcopenia is a progressive loss of skeletal muscle mass and function in elderly adults, posing a significant risk of frailty, falls, and morbidity. The current study designs and evaluates SarcoNet, a novel artificial neural network (ANN)-based classification framework developed in order to classify Sarcopenic from non-Sarcopenic subjects using a comprehensive real-time dataset. Methods: This pilot study involved 30 subjects, who were divided into Sarcopenic and non-Sarcopenic groups based on physician assessment. The collected dataset consists of thirty-one clinical parameters like skeletal muscle mass, which is collected using various equipment such as Body Composition Analyser, along with ten kinetic features which are derived from video-based gait analysis of joint angles obtained during walking on three terrain types such as slope, steps, and parallel path. The performance of the designed ANN-based SarcoNet was benchmarked against the traditional machine learning classifiers utilised including Support Vector Machine (SVM), k-Nearest Neighbours (k-NN), and Random Forest (RF), as well as hard and soft voting ensemble classifiers. Results: SarcoNet achieved the highest overall classification accuracy of about 94%, with a specificity and precision of about 100%, an F1-score of about 92.4%, and an AUC of 0.94, outperforming all other models. The incorporation of lower-limb joint kinetics such as knee flexion, extension, ankle plantarflexion and dorsiflexion significantly enhanced predictive capability of the model and thus reflecting the functional deterioration characteristic of muscles in Sarcopenia. Conclusions: SarcoNet provides a promising AI-driven solution in Sarcopenia diagnosis, especially in low-resource healthcare settings. Future work will focus on improving the dataset, validating the model across diverse populations, and incorporating explainable AI to improve clinical adoption. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

24 pages, 2798 KB  
Article
Machine Learning-Aided Supply Chain Analysis of Waste Management Systems: System Optimization for Sustainable Production
by Zhe Wee Ng, Biswajit Debnath and Amit K Chattopadhyay
Sustainability 2025, 17(19), 8848; https://doi.org/10.3390/su17198848 - 2 Oct 2025
Viewed by 257
Abstract
Electronic-waste (e-waste) management is a key challenge in engineering smart cities due to its rapid accumulation, complex composition, sparse data availability, and significant environmental and economic impacts. This study employs a bespoke machine learning infrastructure on an Indian e-waste supply chain network (SCN) [...] Read more.
Electronic-waste (e-waste) management is a key challenge in engineering smart cities due to its rapid accumulation, complex composition, sparse data availability, and significant environmental and economic impacts. This study employs a bespoke machine learning infrastructure on an Indian e-waste supply chain network (SCN) focusing on the three pillars of sustainability—environmental, economic, and social. The economic resilience of the SCN is investigated against external perturbations, like market fluctuations or policy changes, by analyzing six stochastically perturbed modules, generated from the optimal point of the original dataset using Monte Carlo Simulation (MCS). In the process, MCS is demonstrated as a powerful technique to deal with sparse statistics in SCN modeling. The perturbed model is then analyzed to uncover “hidden” non-linear relationships between key variables and their sensitivity in dictating economic arbitrage. Two complementary ensemble-based approaches have been used—Feedforward Neural Network (FNN) model and Random Forest (RF) model. While FNN excels in regressing the model performance against the industry-specified target, RF is better in dealing with feature engineering and dimensional reduction, thus identifying the most influential variables. Our results demonstrate that the FNN model is a superior predictor of arbitrage conditions compared to the RF model. The tangible deliverable is a data-driven toolkit for smart engineering solutions to ensure sustainable e-waste management. Full article
Show Figures

Figure 1

Back to TopTop