Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (11,991)

Search Parameters:
Keywords = environmental benefit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 2552 KB  
Article
Equitable Allocation of Interprovincial Industrial Carbon Footprints in China Based on Economic and Energy Flow Principles
by Jing Zhao, Yongyu Wang, Xiaoying Shi and Muhammad Umer Arshad
Sustainability 2025, 17(20), 9036; https://doi.org/10.3390/su17209036 (registering DOI) - 12 Oct 2025
Abstract
The equitable allocation of carbon emission responsibility is fundamental to advancing China’s industrial decarbonization, achieving its dual-carbon goals, and realizing regional sustainable development. However, prevailing interprovincial carbon accounting frameworks often neglect the coupled dynamics of economic benefits, energy flows, and ecological capacity, leading [...] Read more.
The equitable allocation of carbon emission responsibility is fundamental to advancing China’s industrial decarbonization, achieving its dual-carbon goals, and realizing regional sustainable development. However, prevailing interprovincial carbon accounting frameworks often neglect the coupled dynamics of economic benefits, energy flows, and ecological capacity, leading to systematic misattribution of industrial carbon footprint transfers. Here, we develop an integrated analytical framework combining multi-regional input–output (MRIO) modeling and net primary productivity (NPP) assessment to comprehensively quantify industrial carbon footprints and their transfers across 30 Chinese provinces. By embedding both the benefit principle (aligning responsibility with trade-generated economic gains) and the energy flow principle (accounting for interprovincial energy trade), we construct a dual-adjustment mechanism that rectifies spatial and sectoral imbalances in traditional accounting. Our results reveal pronounced east-to-west industrial carbon footprint transfers, with resource-rich provinces (e.g., Inner Mongolia, Xinjiang) disproportionately burdened by external consumption, impacting the balance of sustainable development in these regions. Implementing benefit and energy flow adjustments redistributes responsibility more fairly: high-benefit, energy-importing provinces (e.g., Shanghai, Jiangsu, Beijing) assume greater carbon obligations, while energy-exporting, resource-dependent regions see reduced responsibilities. This approach narrows the gap between production- and consumption-based accounting, offering a scientifically robust, policy-relevant pathway to balance regional development and environmental accountability. The proposed framework provides actionable insights for designing carbon compensation mechanisms and formulating equitable decarbonization policies in China and other economies facing similar regional disparities. Full article
Show Figures

Figure 1

17 pages, 795 KB  
Review
Methodologies for Detoxifying Bivalves from Marine Paralytic Shellfish Toxins
by Adewale Aderogba, Joana F. Leal and Maria L. S. Cristiano
Mar. Drugs 2025, 23(10), 398; https://doi.org/10.3390/md23100398 (registering DOI) - 12 Oct 2025
Abstract
The marine environment emerges as a key provider of food and sustainable products. However, these benefits are accompanied by numerous challenges owing to harmful algal blooms (HAB) and their associated biotoxins, which accumulate in organisms, like bivalves, threatening seafood quality. Among the various [...] Read more.
The marine environment emerges as a key provider of food and sustainable products. However, these benefits are accompanied by numerous challenges owing to harmful algal blooms (HAB) and their associated biotoxins, which accumulate in organisms, like bivalves, threatening seafood quality. Among the various biotoxins, paralytic shellfish toxins (PST), the causative agents of paralytic shellfish poisoning (PSP), are among the most potent, lethal, and frequently reported instances of human intoxication. Removing PST from marine system is particularly challenging because of their hydrophilicity, susceptibility to biotransformation and the potential influence of other substances naturally present in the environment. Although there are several methods applied to mitigate HAB, to the best of our knowledge there are no proven effective methods for removing PST in marine environments. Consequently, there is a need to develop efficient removal technologies, especially envisaging fast, environmentally safe, inexpensive, and readily available solutions. Having examined several proposed methods for removing PST (e.g., thermal and industrial procedures, adsorption using different materials, photodegradation, AOPs) and comparing their efficacy, this study aims to streamline the current knowledge on PST removal, identify knowledge gaps, and provide valuable insights for researchers, environmental managers, and policymakers engaged in mitigating the risks associated with PST. Full article
Show Figures

Graphical abstract

36 pages, 4822 KB  
Review
Converting Wastewater Sludge into Slow-Release Fertilizers via Biochar and Encapsulation Technologies
by Babar Azeem
Appl. Sci. 2025, 15(20), 10954; https://doi.org/10.3390/app152010954 (registering DOI) - 12 Oct 2025
Abstract
The rising demand for sustainable agriculture and circular resource management has intensified interest in converting wastewater sludge into value-added products. This review explores the transformation of sewage sludge into slow- and controlled-release fertilizers (CRFs), with a focus on biochar production and encapsulation technologies. [...] Read more.
The rising demand for sustainable agriculture and circular resource management has intensified interest in converting wastewater sludge into value-added products. This review explores the transformation of sewage sludge into slow- and controlled-release fertilizers (CRFs), with a focus on biochar production and encapsulation technologies. Sewage sludge is rich in essential macronutrients (N, P, K), micronutrients, and organic matter, making it a promising feedstock for agricultural applications. However, its use is constrained by challenges including compositional variability, presence of heavy metals, pathogens, and emerging contaminants such as microplastics and PFAS (Per- and Polyfluoroalkyl Substances). The manuscript discusses a range of stabilization and conversion techniques, such as composting, anaerobic digestion, pyrolysis, hydrothermal carbonization, and nutrient recovery from incinerated sludge ash. Special emphasis is placed on coating and encapsulation technologies that regulate nutrient release, improve fertilizer efficiency, and reduce environmental losses. The role of natural, synthetic, and biodegradable polymers in enhancing release mechanisms is analyzed in the context of agricultural performance and soil health. While these technologies offer environmental and agronomic benefits, large-scale adoption is hindered by technical, economic, and regulatory barriers. The review highlights key challenges and outlines future perspectives, including the need for advanced coating materials, improved contaminant mitigation strategies, harmonized regulations, and field-scale validation of CRFs. Overall, the valorisation of sewage sludge into CRFs presents a viable strategy for nutrient recovery, waste minimization, and sustainable food production. With continued innovation and policy support, sludge-based fertilizers can become a critical component of the green transition in agriculture. Full article
(This article belongs to the Section Green Sustainable Science and Technology)
Show Figures

Figure 1

18 pages, 573 KB  
Article
Green Growth’s Unintended Burden: The Distributional and Well-Being Impacts of China’s Energy Transition
by Li Liu and Jichuan Sheng
Energies 2025, 18(20), 5367; https://doi.org/10.3390/en18205367 (registering DOI) - 11 Oct 2025
Abstract
Achieving environmentally sustainable growth is a core challenge for developing economies, yet the welfare consequences of green development policies for vulnerable populations remain understudied. This article investigates the distributional impacts of one of the world’s largest development interventions: China’s energy transition. By integrating [...] Read more.
Achieving environmentally sustainable growth is a core challenge for developing economies, yet the welfare consequences of green development policies for vulnerable populations remain understudied. This article investigates the distributional impacts of one of the world’s largest development interventions: China’s energy transition. By integrating provincial-level energy metrics with a decade-long household panel survey (CFPS), we employ a fixed-effects model to provide a holistic assessment of the policy’s effects on household well-being. The analysis reveals a stark trade-off: a 10% increase in clean energy adoption generates significant non-monetary well-being gains, equivalent to a 190,000 CNY annual income rise, primarily through improved environmental quality and cleaner cooking fuel access. However, these benefits are partially offset by rising energy costs. Our heterogeneity analysis reveals a clear regressive burden: the transition significantly increases energy expenditures for rural and low-income households, while having a negligible or even cost-reducing effect on their urban and high-income counterparts. Our findings demonstrate that while the energy transition promotes aggregate welfare, its benefits are unevenly distributed, potentially exacerbating energy poverty and inequality. This underscores a critical development challenge: green growth is not automatically inclusive. We argue that for the energy transition to be truly pro-poor, it must be accompanied by robust social protection mechanisms, such as targeted subsidies, to shield the most vulnerable from the adverse economic shocks of the policy. Full article
Show Figures

Figure 1

21 pages, 6661 KB  
Article
Bioactive Antioxidants from Avocado By-Products: Mechanistic Study and Laboratory-Scale Extraction Optimization
by Ziyao Xin, Yicheng Gao, Leiyu He, Zhilong Xiu and Lihui Sun
Antioxidants 2025, 14(10), 1225; https://doi.org/10.3390/antiox14101225 (registering DOI) - 11 Oct 2025
Abstract
This study aimed to develop an environmentally friendly and relatively efficient method for extracting natural antioxidants from avocado by-products while investigating the antioxidant mechanisms of their core bioactive components on multiple dimensions. In vitro antioxidant assays (ABTS, FRAP, SAFR, SFR, ORAC, DPPH) demonstrated [...] Read more.
This study aimed to develop an environmentally friendly and relatively efficient method for extracting natural antioxidants from avocado by-products while investigating the antioxidant mechanisms of their core bioactive components on multiple dimensions. In vitro antioxidant assays (ABTS, FRAP, SAFR, SFR, ORAC, DPPH) demonstrated that flavonoid procyanidin was the primary antioxidant component in avocado seeds, exhibiting the strongest activity (DPPH EC50 = 3.6 µg/mL). The Hill model indicated a positive synergistic effect (n = 3.1). Chemical and molecular mechanism analyses revealed that avocado seeds exert antioxidant activity predominantly through hydrogen atom transfer (HAT) and electron transfer (ET) pathways. The model predictions suggested procyanidins may stably bind to protein targets in the Keap1-Nrf2 pathway and NOX2 via hydrogen bonding, hydrophobic interactions, and π-cation interactions. Furthermore, response surface methodology (RSM) was employed to optimize the extraction process of avocado seed antioxidants in an ethanol-water system. This study underscores the considerable health benefits and antioxidant capacity of avocado by-products, supporting their promising application in functional foods formulations. Full article
Show Figures

Figure 1

23 pages, 1275 KB  
Article
Roles, Risks and Responsibility: Foundations of Pro-Environmental Culture in Everyday Choices
by Olena Pavlova, Oksana Liashenko, Olena Mykhailovska, Kostiantyn Pavlov, Krzysztof Posłuszny and Antoni Korcyl
Sustainability 2025, 17(20), 9019; https://doi.org/10.3390/su17209019 (registering DOI) - 11 Oct 2025
Abstract
This study explores how contextual framings influence sustainable decision-making in everyday situations. Building on the literature about the intention–behaviour gap, we examine the combined effect of role activation and environmental risk on pro-environmental preferences. A scenario-based behavioural experiment, conducted via oTree, integrated within-subject [...] Read more.
This study explores how contextual framings influence sustainable decision-making in everyday situations. Building on the literature about the intention–behaviour gap, we examine the combined effect of role activation and environmental risk on pro-environmental preferences. A scenario-based behavioural experiment, conducted via oTree, integrated within-subject role framing (citizen, consumer, neutral) with randomised environmental risk conditions. Participants completed repeated binary choice tasks, where Eco-Preference was defined as the frequency with which they chose the sustainable option. The results indicate that activating a citizen role significantly increased Eco-Preference compared to consumer or neutral framings, while high-risk contexts did not directly boost sustainable behaviour. Instead, risk cues had an indirect effect through motivational states, highlighting the mediating role of Eco-Preference. Theoretically, this study advances Eco-Preference as a latent behavioural construct linking identity-based theories of responsibility with decision-based models of sustainability. Practically, the findings underscore the potential of role-based communication strategies to enhance ecological responsibility, suggesting that both policy and organisational interventions can benefit from fostering civic identities. Ultimately, the framework is applicable across cultures by offering a behavioural measure less prone to survey bias, supporting future comparative research on environmental decision-making. Full article
(This article belongs to the Special Issue Quality of Life in the Context of Sustainable Development)
17 pages, 2277 KB  
Article
Mitigating Microbiologically Influenced Corrosion of Iron Caused by Sulphate-Reducing Bacteria Using ZnO Nanoparticles
by Harith Ambepitiya, Supun Rathnayaka, Yashodha Perera, Chamindu Jayathilake, Himashi Ferdinandez, Ajith Herath, Udul Sanjula, Aishwarya Rathnayake, Charitha Basnayaka and Eustace Fernando
Processes 2025, 13(10), 3239; https://doi.org/10.3390/pr13103239 (registering DOI) - 11 Oct 2025
Abstract
Microbiologically Influenced Corrosion (MIC) significantly endangers steel infrastructure, particularly in marine and buried environments, causing considerable economic and environmental damage. Sulphate-reducing bacteria (SRB) are primary supporters of MIC, accelerating iron corrosion through hydrogen sulfide production. Conventional mitigation strategies, including protective coatings and cathodic [...] Read more.
Microbiologically Influenced Corrosion (MIC) significantly endangers steel infrastructure, particularly in marine and buried environments, causing considerable economic and environmental damage. Sulphate-reducing bacteria (SRB) are primary supporters of MIC, accelerating iron corrosion through hydrogen sulfide production. Conventional mitigation strategies, including protective coatings and cathodic protection, often face challenges such as limited effectiveness against SRB and the aggressiveness of saltwater corrosion. This study explores a novel approach by directly introducing zinc oxide (ZnO) nanoparticles into the microbial medium to inhibit SRB activity and reduce MIC. Iron metal coupons were immersed in seawater under three conditions: control (seawater only), seawater with SRB, and SRB with ZnO nanoparticles. These coupons were used as electrodes in microbial fuel cells to obtain real-time voltage readings. At the same time, corrosion was evaluated using cyclic voltammetry (CV), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), mass loss, and pH measurements. Results demonstrate that ZnO nanoparticles significantly inhibited SRB growth, as confirmed by the antibiotic susceptibility test (ABST). It was revealed that the corrosion rate increased by 21.3% in the presence of SRB compared to the control, whereas the ZnO-added electrode showed a 21.7% reduction in corrosion rate relative to the control. SEM showed prominent corrosive products on SRB-exposed coupons. ZnO-added coupons exhibited a protective layer with grass-like whisker structures, and EDX results confirmed reduced sulfur and iron sulfide deposits, indicating suppressed SRB metabolic activity. ABST confirmed ZnO’s antimicrobial properties by producing clear inhibition zones. ZnO nanoparticles offer the dual benefits of antimicrobial activity and corrosion resistance by forming protective self-coatings and inhibiting microbial growth, making them a scalable and eco-friendly alternative to traditional corrosion inhibitors. This application can significantly extend the lifespan of iron structures, particularly in environments prone to microbial corrosion, demonstrating the potential of nanomaterials in combating microbiologically influenced corrosion (MIC). Full article
Show Figures

Figure 1

42 pages, 3394 KB  
Article
Synergistic Air Quality and Cooling Efficiency in Office Space with Indoor Green Walls
by Ibtihaj Saad Rashed Alsadun, Faizah Mohammed Bashir, Zahra Andleeb, Zeineb Ben Houria, Mohamed Ahmed Said Mohamed and Oluranti Agboola
Buildings 2025, 15(20), 3656; https://doi.org/10.3390/buildings15203656 (registering DOI) - 11 Oct 2025
Abstract
Enhancing indoor environmental quality while reducing building energy consumption represents a critical challenge for sustainable building design, particularly in hot arid climates where cooling loads dominate energy use. Despite extensive research on green wall systems (GWSs), robust quantitative data on their combined impact [...] Read more.
Enhancing indoor environmental quality while reducing building energy consumption represents a critical challenge for sustainable building design, particularly in hot arid climates where cooling loads dominate energy use. Despite extensive research on green wall systems (GWSs), robust quantitative data on their combined impact on air quality and thermal performance in real-world office environments remains limited. This research quantified the synergistic effects of an active indoor green wall system on key indoor air quality indicators and cooling energy consumption in a contemporary office environment. A comparative field study was conducted over 12 months in two identical office rooms in Dhahran, Saudi Arabia, with one room serving as a control while the other was retrofitted with a modular hydroponic green wall system. High-resolution sensors continuously monitored indoor CO2, volatile organic compounds via photoionization detection (VOC_PID; isobutylene-equivalent), and PM2.5 concentrations, alongside dedicated sub-metering of cooling energy consumption. The green wall system achieved statistically significant improvements across all parameters: 14.1% reduction in CO2 concentrations during occupied hours, 28.1% reduction in volatile organic compounds, 20.9% reduction in PM2.5, and 13.5% reduction in cooling energy consumption (574.5 kWh annually). Economic analysis indicated financial viability (2.0-year payback; benefit–cost ratio 3.0; 15-year net present value SAR 31,865). Productivity-related benefits were valued from published relationships rather than measured in this study; base-case viability remained strictly positive in energy-only and conservative sensitivity scenarios. Strong correlations were established between evapotranspiration rates and cooling benefits (r = 0.734), with peak performance during summer months reaching 17.1% energy savings. Active indoor GWSs effectively function as multifunctional strategies, delivering simultaneous air quality improvements and measurable cooling energy reductions through evapotranspiration-mediated mechanisms, supporting their integration into sustainable building design practices. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
26 pages, 3185 KB  
Article
Preparation and Performance Research of Ultra-High-Performance Concrete Incorporating Municipal Solid Waste Incineration Bottom Ash
by Fengli Liu, Yize He, Junhua Liu, Wu Li, Xiaofei Hao and Chang Liu
Buildings 2025, 15(20), 3659; https://doi.org/10.3390/buildings15203659 (registering DOI) - 11 Oct 2025
Abstract
Low carbon, low cost and sustainability are important development trends of ultra-high-performance concrete (UHPC). In this study, municipal solid waste incineration bottom ash (MSWIBA) was used to replace 5%, 10%, 20% and 30% of quartz sand (QS), respectively, and the effect of the [...] Read more.
Low carbon, low cost and sustainability are important development trends of ultra-high-performance concrete (UHPC). In this study, municipal solid waste incineration bottom ash (MSWIBA) was used to replace 5%, 10%, 20% and 30% of quartz sand (QS), respectively, and the effect of the MSWIBA substitution rate on the workability, wet packing density, mechanical properties, shrinkage, resistance to chloride ion corrosion, and resistance to sulfate corrosion of UHPC was studied. The mechanism analysis was carried out by combining X-ray diffraction (XRD), thermogravimetric analysis (TG), and scanning electron microscopy (SEM) tests, and UHPC heavy metal leaching tests, environmental impact assessment, and economic analysis were conducted. Results show that the active silicon and aluminum components in MSWIBA reacted with cement hydration products to optimize the matrix density. MSWIBA has an internal curing effect, which is beneficial for reducing the shrinkage of UHPC. When the MSWIBA replacement rate is 10%, the 28-day compressive strength of MSWIBA-UHPC is 128.7 MPa, which is equivalent to the benchmark group. The fluidity, corrosion resistance and heavy metal leaching all meet the requirements. The energy consumption, carbon emissions and costs are reduced by 0.22%, 2.30% and 6.67%, respectively. The research results can provide a reference for the development of ecological UHPC with economic, low-carbon and environmental benefits, as well as the harmless disposal and resource utilization of hazardous wastes such as MSWIBA. Full article
Show Figures

Figure 1

21 pages, 5262 KB  
Article
Financial Assessment of the Sustainability of Solar-Powered Electric School Buses in Vehicle-to-Grid Systems in the United States
by Francisco Haces-Fernandez
Sustainability 2025, 17(20), 9002; https://doi.org/10.3390/su17209002 (registering DOI) - 11 Oct 2025
Abstract
Transition to electric vehicles has accelerated in diverse consumer sectors all over the world. Electric School Buses (ESBs) are a particular area of interest due to their environmental and financial potential benefits, including Vehicle-to-Grid (V2G) synergies. Storing electricity in times of lower demand [...] Read more.
Transition to electric vehicles has accelerated in diverse consumer sectors all over the world. Electric School Buses (ESBs) are a particular area of interest due to their environmental and financial potential benefits, including Vehicle-to-Grid (V2G) synergies. Storing electricity in times of lower demand to supply the grid at optimal times can provide significant sustainability benefits, among them a reduction in new generation capacity and financial revenue for battery owners. ESBs, with their high-capacity batteries, have significant potential to supply the grid in V2G systems. There are more than half a million school buses in the US, with a wide geographical distribution, which have significant idle times during school days and holidays. This presents very attractive investment possibilities, providing school districts with additional revenue and supplying local communities with sustainable electricity at high-demand times. This study develops a framework to financially evaluate sustainability of ESB V2G schemes in the US. It applies data analytics, GIS, and Business Intelligence to integrate and assess publicly available data to provide stakeholders with decision-making tools in selecting optimal locations and operation times for these projects. Results indicate that revenue for these projects is significant in most schools, with some locations generating very high revenue potential. Geospatial analysis for most locations and time frames indicates very promising results, with schools potentially receiving significant income from these systems. The framework provides, therefore, relevant information for stakeholders to make sustainable decisions on the development of these projects. Full article
Show Figures

Figure 1

29 pages, 11644 KB  
Article
Machine Learning-Driven Optimization for Evaluating the Durability of Basalt Fibers in Alkaline Environments
by Aamir Mahmood, Miroslava Pechočiaková, Blanka Tomková, Muhammad Tayyab Noman, Mohammad Gheibi, Kourosh Behzadian, Jakub Wiener and Luboš Hes
Fibers 2025, 13(10), 137; https://doi.org/10.3390/fib13100137 (registering DOI) - 11 Oct 2025
Abstract
Basalt fiber-reinforced composites are increasingly utilized in sustainable construction due to their high strength, environmental benefits, and durability. However, the long-term tensile performance of these composites in alkaline environments remains a critical concern. This study investigates the degradation performance of basalt fibers exposed [...] Read more.
Basalt fiber-reinforced composites are increasingly utilized in sustainable construction due to their high strength, environmental benefits, and durability. However, the long-term tensile performance of these composites in alkaline environments remains a critical concern. This study investigates the degradation performance of basalt fibers exposed to different alkaline solutions (NaOH, KOH, and Ca(OH)2) with varying concentrations (5 g/L, 15 g/L, and 30 g/L) over various exposure periods (7, 14, and 28 days). The performance assessment is carried out by mechanical properties, including tensile strength and modulus of elasticity, using experimental techniques and Response Surface Methodology (RSM) to find influential factors on tensile performance. The findings indicate that tensile strength degradation is highly dependent on alkali type and concentration, with Ca(OH)2-treated fibers exhibiting superior mechanical retention (max tensile strength: 938.94 MPa) compared to NaOH-treated samples, which showed the highest degradation rate. Five machine learning (ML) models, including Tree Random Forest (TRF), Function Multilayer Perceptron (FMP), Lazy IBK, Meta Bagging, and Function SMOreg (FSMOreg), were also implemented to predict tensile strength based on exposure parameters. FSMOreg demonstrated the highest prediction accuracy with a correlation coefficient of 0.928 and the lowest error metrics (RMSE 181.94). The analysis boosts basalt fiber durability evaluations in cement-based composites. Full article
Show Figures

Figure 1

14 pages, 1272 KB  
Article
Evaluation of the Incidence of Mineral Fertilizer Entrapment in Organic Matrix of Residual Biosolids, Cellulose and Sawdust in Maize (Zea mays) Crop
by Rodrigo Ramírez Palacios, Wanderley José Melo, Antonio Mauricio Souza Rocha, Ademir Sérgio Ferreira Araújo, Nora Restrepo-Sánchez and Carlos Alberto Peláez Jaramillo
AgriEngineering 2025, 7(10), 343; https://doi.org/10.3390/agriengineering7100343 (registering DOI) - 11 Oct 2025
Abstract
Sustainable fertilizers are needed to improve nutrient efficiency and reduce environmental impacts. Greenhouse experiments were conducted to evaluate matrix-based organo-mineral fertilizers (OMFs) for Zea mays over 60 days. The study took place during the dry season in Jaboticabal, São Paulo, using 5.5 dm [...] Read more.
Sustainable fertilizers are needed to improve nutrient efficiency and reduce environmental impacts. Greenhouse experiments were conducted to evaluate matrix-based organo-mineral fertilizers (OMFs) for Zea mays over 60 days. The study took place during the dry season in Jaboticabal, São Paulo, using 5.5 dm3 plastic pots. Biosolids, deinked paper sludge (cellulose), and sawdust were used as organic matrices. Four treatments (n = 6) were tested: BC (biosolids/cellulose), BS (biosolids/sawdust), FF (uncoated NPK), and NF (no fertilizer). FF received 4.0 g NPK (4-14-8) per pot in two split doses; BC and BS each received 2.0 g NPK entrapped in 2.0 g matrix, applied once at sowing. BC provided the most controlled nutrient release and outperformed FF, increasing plant height by 20.4%, stem diameter by 13.7%, and leaf area by 5.3%. Considering nutrient uptake, BC exceeded FF by 22.5% for N, 38.6% for P, and 22.7% for K while using half the mineral fertilizer. Overall, matrix-based OMFs improved Zea mays growth and nutrient assimilation and may reduce nutrient losses relative to conventional split applications. Because the results derive from a single dry-season greenhouse trial with pots, field-scale validation to the production stage is required to confirm agronomic performance and quantify economic and environmental benefits. Full article
(This article belongs to the Section Sustainable Bioresource and Bioprocess Engineering)
Show Figures

Figure 1

27 pages, 358 KB  
Review
Vitamin D as an Immune Modulator in Systemic Lupus Erythematosus: A Narrative Review
by Oana Raluca Predescu, Florentin Ananu Vreju, Stefan Cristian Dinescu, Cristina Elena Bita, Anca Emanuela Musetescu, Alesandra Florescu and Paulina Lucia Ciurea
Life 2025, 15(10), 1580; https://doi.org/10.3390/life15101580 - 10 Oct 2025
Abstract
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease in which environmental factors modulate genetically determined immune dysregulation. Vitamin D has emerged as a plausible modifier of disease expression because its active metabolite signals through the vitamin D receptor on innate and adaptive [...] Read more.
Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease in which environmental factors modulate genetically determined immune dysregulation. Vitamin D has emerged as a plausible modifier of disease expression because its active metabolite signals through the vitamin D receptor on innate and adaptive immune cells and influences antigen presentation, cytokine balance, and lymphocyte differentiation. This narrative review synthesizes current evidence on vitamin D status and supplementation in SLE with attention to organ-specific domains. Observational studies consistently report high rates of hypovitaminosis D in SLE and associations with less favorable clinical profiles, including higher global and renal disease activity, adverse cardiometabolic features, greater infection vulnerability, and neuropsychiatric manifestations. Preclinical models demonstrate neuroprotective and barrier-stabilizing actions of vitamin D analogs, supporting biological plausibility. Interventional trials indicate that supplementation safely corrects deficiency and shows signals of benefit for selected outcomes (e.g., modest activity reductions or fatigue in specific contexts), although effects on interferon signatures, complement, and autoantibodies are heterogeneous and often limited. Overall, current evidence supports optimization of vitamin D status as a low-risk adjunct in comprehensive SLE care while highlighting the need for adequately powered, organ-focused randomized trials using standardized measurements and prespecified endpoints to define causality, therapeutic targets, and long-term safety. Full article
(This article belongs to the Section Medical Research)
26 pages, 6872 KB  
Review
Biophilic Façades: The Potentiality of Bioreceptive Concrete
by Ronaldas Jakubovskis
Buildings 2025, 15(20), 3646; https://doi.org/10.3390/buildings15203646 - 10 Oct 2025
Abstract
The growth of microorganisms and lower plants on building walls may respond the central principle of the biophilic design: sustained engagement with nature. As such, bioreceptive concrete has great potential to increase the biodiversity in our cities. In addition, by actively participating in [...] Read more.
The growth of microorganisms and lower plants on building walls may respond the central principle of the biophilic design: sustained engagement with nature. As such, bioreceptive concrete has great potential to increase the biodiversity in our cities. In addition, by actively participating in the carbon and nitrogen cycles, biologically active, bioreceptive concrete has the potential to reduce the building’s environmental impact considerably. In the present study, we analyze the biological growth on concrete and critically review the current research approaches in the bioreceptivity evaluation. The uncontrolled and unaesthetic growth of fungal colonies, poor long-term survivability of the laboratory-developed biofilms, and a lack of field applications were identified among the major factors that hinder the practical application of bioreceptive concrete in the building envelope. Our ongoing field tests have shown that concrete’s controlled and aesthetically pleasant greening may be achieved in several years. We argue that such nature-integrated solutions would emphasize the beauty of the aging buildings while offering clear, practical benefits. Full article
Show Figures

Graphical abstract

17 pages, 5596 KB  
Article
Comparison of the Removal of Synthetic Wastewater Samples Containing Basic Blue 3 Dye Using Electrochemical and Adsorption Methods
by Beyza Moralı and Türkan Börklü Budak
Molecules 2025, 30(20), 4039; https://doi.org/10.3390/molecules30204039 - 10 Oct 2025
Abstract
Water pollution, a significant environmental issue, is growing more urgent. This study evaluated the effectiveness of adsorption and electrocoagulation methods in removing Ba-sic Blue 3 (BB3), a common dye used in the textile industry, from water. For the adsorption process, linden tree leaves—often [...] Read more.
Water pollution, a significant environmental issue, is growing more urgent. This study evaluated the effectiveness of adsorption and electrocoagulation methods in removing Ba-sic Blue 3 (BB3), a common dye used in the textile industry, from water. For the adsorption process, linden tree leaves—often used for health benefits in existing literature—were employed, while in the electrocoagulation (EC) method, an aluminum electrode was used. The results show that the optimal conditions for adsorption were an initial BB3 concentration of 5 mg/L, 50 mL of 0.9 g Tilia L. adsorbent, 60 min, 180 rpm, 30 °C, and pH 10, achieving a removal efficiency of 99.21%. The optimal conditions for electrocoagulation were 1 L of 15 mg/L initial BB3, a current density of 2.64 mA/cm2, 15 mL of 0.2 M KCl, a reaction time of 90 min, a stirring speed of 100 rpm, and a pH of 10, resulting in a removal efficiency of 97.98%. The results indicate that linden leaves, a natural and sustainable material, showed a slightly higher removal percentage (99.21%) in the EC method over a shorter period (60 min). Conversely, the EC method also achieved a significant removal rate (97.98%, 90 min). In summary, both methods demonstrate strong BB3 removal capabilities and could help improve wastewater treatment processes. Full article
(This article belongs to the Section Applied Chemistry)
Show Figures

Figure 1

Back to TopTop