Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (976)

Search Parameters:
Keywords = environmental conservation agriculture

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 958 KB  
Article
Evaluation of Economic and Ecological Benefits of Reservoir Ecological Releases Based on Reservoir Optimization Operation
by Zhen Cao, Guanjun Lei, Lin Qiu, Wenchuan Wang, Junxian Yin and Hao Wang
Appl. Sci. 2025, 15(17), 9441; https://doi.org/10.3390/app15179441 - 28 Aug 2025
Viewed by 78
Abstract
To maximize the benefits of power generation and water supply of the reservoir under the premise of ensuring ecological flow as much as possible, it is necessary to formulate a highly operational release scheme in the actual production scheduling process. To mitigate the [...] Read more.
To maximize the benefits of power generation and water supply of the reservoir under the premise of ensuring ecological flow as much as possible, it is necessary to formulate a highly operational release scheme in the actual production scheduling process. To mitigate the ecological impacts of reservoir operations, enhanced environmental flow releases are required; however, this results in diminished reservoir economic outputs. Therefore, in order to determine the government subsidy standards for ecological regulation of reservoirs and improve the enthusiasm of water conservancy departments for ecological regulation, it is necessary to conduct comprehensive analysis and research on the benefits of ecological regulation. According to the ecological releases of the reservoir, the reservoir operation scheme is formulated, and the comprehensive benefits of the reservoir operation are analyzed and studied to determine the optimal operation scheme. Based on the monthly inflow runoff of the Baishi Reservoir to the Daling River from 1956 to 2011, constrained by the ecological base flow specified by the government, and combined with the water supply and power generation functions of the reservoir, an optimal operation model of the Baishi Reservoir based on ecological release is constructed. The water supply, power generation, and ecological benefits of the reservoir discharge are comprehensively analyzed and calculated to analyze and study the loss of economic benefits caused by the reservoir discharge and the ecological benefits that can be obtained from the ecological discharge. Based on the comprehensive evaluation of multiple indicators, the Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) fuzzy comprehensive evaluation method is used to select the optimal scheduling scheme. The optimal scheduling plan for a reservoir is closely related to its characteristic water level. In order to improve the efficiency of reservoir scheduling, monthly control of reservoir discharge can be implemented. The guarantee rate of urban domestic water supply and ecological water use can be increased as much as possible, while the guarantee rate of agricultural water use can be appropriately reduced to obtain the optimal comprehensive benefits. The outflow considering ecological release is 6.5–7 m3/s from June to April and 1 m3/s in May. The outflow without considering ecological release is 4 m3/s from June to April and 1 m3/s in May. This study has certain guiding significance and value for the formulation of an ecological operation scheme for reservoirs and the analysis of benefits. Full article
(This article belongs to the Section Ecology Science and Engineering)
Show Figures

Figure 1

25 pages, 7430 KB  
Article
Sustainable Irrigation Management of Winter Wheat and Effects on Soil Gas Emissions (N2O and CH4) and Enzymatic Activity in the Brazilian Savannah
by Alexsandra Duarte de Oliveira, Jorge Cesar dos Anjos Antonini, Marcos Vinícius Araújo dos Santos, Altair César Moreira de Andrade, Juaci Vitoria Malaquias, Arminda Moreira de Carvalho, Artur Gustavo Muller, Francisco Marcos dos Santos Delvico, Ieda de Carvalho Mendes, Jorge Henrique Chagas, Angelo Aparecido Barbosa Sussel and Julio Cesar Albrecht
Sustainability 2025, 17(17), 7734; https://doi.org/10.3390/su17177734 - 28 Aug 2025
Viewed by 427
Abstract
Water scarcity and greenhouse gas (GHG) emissions pose significant challenges to sustainable wheat production in tropical regions such as the Brazilian Cerrado. This study evaluated the effects of different soil water depletion levels, denoted as f (20%, 40%, 60%, and 80% of available [...] Read more.
Water scarcity and greenhouse gas (GHG) emissions pose significant challenges to sustainable wheat production in tropical regions such as the Brazilian Cerrado. This study evaluated the effects of different soil water depletion levels, denoted as f (20%, 40%, 60%, and 80% of available water capacity—AWC), on no-tillage winter wheat irrigated after rainfed soybean cultivation. Grain yield decreased significantly at depletion levels ≥ 60%, with the highest yields observed at f = 20% (6933 kg ha−1) and f = 40% (6814 kg ha−1). Water use efficiency (WUE) ranged from 12.4 to 14.0 kg ha−1 mm−1, with no significant differences among treatments. Nitrous oxide (N2O) emissions peaked at f = 60% (4.55 kg ha−1), resulting in the highest average global warming potential (GWP = 1.185.78 kg CO2 eq ha−1) and greenhouse gas intensity (GHGI = 192.66 kg CO2 eq Mg−1 grain). Methane (CH4) acted as a net sink across all irrigation levels. Soil enzymatic activities (β-glucosidase and arylsulfatase) were not significantly affected by irrigation management. Overall, irrigation scheduling based on f = 40% soil water depletion provided the best balance between productivity and environmental sustainability, representing a climate-smart and resource-efficient strategy for wheat production in tropical agroecosystems. These findings provide promising insights for tropical agriculture by showing that sustainable irrigation can balance productivity and climate mitigation in the Cerrado. Maintaining soil water depletion below 60% significantly reduces N2O emissions and environmental impact, emphasizing the importance of conservation practices. Additionally, preserving soil biological quality supports the long-term viability of these practices and offers valuable guidance for policies promoting efficient irrigation in climate-vulnerable regions. Full article
(This article belongs to the Section Air, Climate Change and Sustainability)
Show Figures

Graphical abstract

18 pages, 6468 KB  
Review
Carbon Sequestration Under Different Agricultural Land Use in Croatia
by Igor Bogunovic
Agriculture 2025, 15(17), 1821; https://doi.org/10.3390/agriculture15171821 - 27 Aug 2025
Viewed by 132
Abstract
In order to help mitigate climate change, carbon farming methods must be urgently introduced. The research systematically reviewed peer-reviewed literature, national statistical reports, and policy documents published between 2000 and 2024, focusing on the impact of land management on soil organic carbon in [...] Read more.
In order to help mitigate climate change, carbon farming methods must be urgently introduced. The research systematically reviewed peer-reviewed literature, national statistical reports, and policy documents published between 2000 and 2024, focusing on the impact of land management on soil organic carbon in Croatia. This paper provides an overview of current agricultural practices on croplands and grasslands in Croatia. It identifies the weak points of current soil management and suggests possible measures for carbon sequestration in cropland and grassland soils. About 89% of Croatian soils are tilled conventionally, along with other harmful practices such as uncontrolled grazing and improper fertilization, which contribute to increasing carbon losses and soil degradation. Different practices are presented and discussed as possible solutions, each adapted to the specific environmental and soil conditions of Croatia. For example, studies in Croatian Stagnosols report 5% lower CO2 emissions under conservation tillage compared to conventional tillage, while long-term grass cover in perennial croplands has shown soil organic carbon increases of up to 51%. The recommendations are categorised according to the possibility of a change in carbon stocks over time and the associated carbon storage potential. Croatia needs to recognize any shortcomings in the existing system and create incentives and policies to transform management practices into site and environment-specific regional practices. Full article
Show Figures

Figure 1

14 pages, 812 KB  
Article
Species-Specific Responses of Kiwifruit Seed Germination to Climate Change Using Classifier Modeling
by Tung-Yu Hsieh, Feng Li, Shih-Li Huang and Ching-Te Chien
Plants 2025, 14(17), 2665; https://doi.org/10.3390/plants14172665 - 26 Aug 2025
Viewed by 316
Abstract
Climate change is reshaping plant reproductive processes, particularly at the vulnerable seed germination stage. This study examines the germination responses of four Actinidia species (A. rufa, A. latifolia, A. deliciosa, and A. setosa) under controlled experimental conditions, integrating empirical germination data [...] Read more.
Climate change is reshaping plant reproductive processes, particularly at the vulnerable seed germination stage. This study examines the germination responses of four Actinidia species (A. rufa, A. latifolia, A. deliciosa, and A. setosa) under controlled experimental conditions, integrating empirical germination data with classifier modeling to predict species-specific responses under future climate scenarios. Unlike traditional species distribution models (SDMs), our classifier approach incorporates physiological dormancy mechanisms and key environmental cues such as chilling requirements, temperature fluctuations, and drought stress. Results reveal significant interspecific differences: A. rufa exhibited strong ecological plasticity, maintaining stable germination under warming and drought, while A. deliciosa displayed extreme sensitivity to warming, with germination dropping below 25% due to its strict chilling requirement. A. latifolia showed latitude-dependent vulnerability, with southern populations experiencing reduced germination under warming conditions, and A. setosa demonstrated complex dormancy patterns with higher germination at high elevations. The predictive accuracy of our models was validated against long-term field data, underscoring their robustness in forecasting climate-induced germination shifts. These findings highlight the need for targeted breeding programs to develop A. deliciosa cultivars with reduced chilling requirements and suggest A. rufa as a strong candidate for ecological restoration under future warming scenarios. By refining climate impact assessments through physiological modeling, this study provides valuable insights for kiwifruit conservation, agricultural adaptation, and broader plant-climate interactions under global warming. Full article
(This article belongs to the Special Issue Seed Dormancy and Germination for Plant Adaptation to Climate Change)
Show Figures

Figure 1

20 pages, 3950 KB  
Article
Conservation for Whom? Archaeology, Heritage Policy, and Livelihoods in the Ifugao Rice Terraces
by Stephen Acabado, Adrian Albano and Marlon Martin
Land 2025, 14(9), 1721; https://doi.org/10.3390/land14091721 - 25 Aug 2025
Viewed by 670
Abstract
Heritage landscapes endure not through the preservation of fixed forms but through the capacity to adapt to changing social, political, economic, and environmental conditions. Conservation policies that privilege static ideals of authenticity risk undermining the very systems they aim to protect. This paper [...] Read more.
Heritage landscapes endure not through the preservation of fixed forms but through the capacity to adapt to changing social, political, economic, and environmental conditions. Conservation policies that privilege static ideals of authenticity risk undermining the very systems they aim to protect. This paper advances a model of shared stewardship that links conservation of heritage to support for livelihoods, functional flexibility, and community authority in decision-making. Using the Ifugao Rice Terraces of the Philippine Cordillera as a case study, we integrate archaeological, ethnographic, spatial, and agricultural economic evidence to examine the terraces as a dynamic socio-ecological system. Archaeological findings and oral histories show that wet-rice agriculture expanded in the 17th century, replacing earlier taro-based systems and incorporating swidden fields, managed forests, and ritual obligations. Contemporary changes such as the shift from heirloom tinawon rice to commercial crops, the impacts of labor migration, and climate variability reflect long-standing adaptive strategies rather than cultural decline. Comparative cases from other UNESCO and heritage sites demonstrate that economic viability, adaptability, and local governance are essential to sustaining long-inhabited agricultural landscapes. We thus argue that the Ifugao terraces, like their global counterparts, should be conserved as living systems whose cultural continuity depends on their ability to respond to present and future challenges. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement II)
Show Figures

Figure 1

10 pages, 769 KB  
Proceeding Paper
Smart Irrigation Based on Soil Moisture Sensors with Photovoltaic Energy for Efficient Agricultural Water Management: A Systematic Literature Review
by Abdul Rasyid Sidik, Akbar Tawakal, Gumilar Surya Sumirat and Panji Narputro
Eng. Proc. 2025, 107(1), 17; https://doi.org/10.3390/engproc2025107017 - 25 Aug 2025
Viewed by 1404
Abstract
A smart irrigation system based on soil moisture sensors supported by photovoltaic energy is an innovation to address water use efficiency in the agricultural sector, especially in remote areas. This technology utilizes photovoltaic panels as a renewable energy source to operate water pumps, [...] Read more.
A smart irrigation system based on soil moisture sensors supported by photovoltaic energy is an innovation to address water use efficiency in the agricultural sector, especially in remote areas. This technology utilizes photovoltaic panels as a renewable energy source to operate water pumps, while soil moisture sensors provide real-time data that is used to automatically manage irrigation according to plant needs. This technology not only increases the efficiency of water and energy use but also supports environmental conservation by reducing dependence on fossil fuels. This research was conducted using a Systematic Literature Review (SLR) approach guided by the PRISMA framework to analyze trends, benefits, and challenges in implementing this technology. The analysis results show that this system offers various advantages, including energy efficiency, reduced carbon emissions, and ease of management through the integration of Internet of Things (IoT) technology. Several challenges remain, such as high initial investment costs, limited network access, and obstacles. Technical matters related to installation and maintenance. Various solutions have been proposed, including providing subsidies for small farmers, implementing radiofrequency modules, and using modular designs to simplify implementation. This study contributes to the development of a conceptual framework that can be adapted to various geographic and socio-economic conditions. Potential further developments include the integration of artificial intelligence and additional sensors to increase efficiency and support the sustainability of the agricultural sector globally. Full article
Show Figures

Figure 1

30 pages, 390 KB  
Article
Spatial Differentiation of the Competitiveness of Organic Farming in EU Countries in 2014–2023: An Input–Output Approach
by Agnieszka Komor, Joanna Pawlak, Wioletta Wróblewska, Sebastian Białoskurski and Eugenia Czernyszewicz
Sustainability 2025, 17(17), 7614; https://doi.org/10.3390/su17177614 - 23 Aug 2025
Viewed by 435
Abstract
Organic agriculture is a production system based on environmentally friendly practices that promote the conservation of natural resources, biodiversity, and the production of high-quality food. Its tenets are linked to the concept of sustainable development, which integrates environmental, social, and economic goals. In [...] Read more.
Organic agriculture is a production system based on environmentally friendly practices that promote the conservation of natural resources, biodiversity, and the production of high-quality food. Its tenets are linked to the concept of sustainable development, which integrates environmental, social, and economic goals. In the face of global competition and changes in food systems, studying their competitiveness of organic agriculture is essential. It is key to assessing its potential for long-term development and competition with conventional agriculture. The purpose of this study is to identify and assess the spatial differentiation in the competitiveness of organic agriculture in EU countries. This study assessed the level of input and output competitiveness of organic agriculture in selected EU countries using the author’s synthetic taxonomic indicators consisting of several sub-variables. The competitiveness of organic farming in twenty-three countries (Cyprus, Latvia, Portugal, and Finland were not included due to a lack of statistical data) was analysed using one of the linear ordering methods, i.e., a non-pattern method with a system of fixed weights. The research has shown significant spatial differentiation in both the input competitiveness and the outcome competitiveness of organic agriculture in EU countries. In 2023, Estonia had the highest level of input competitiveness, followed by Austria, the Czech Republic, and Sweden. In 2023, Estonia had the highest synthetic indicator of outcome competitiveness, followed by The Netherlands and Denmark. In addition, an assessment was made of changes in EU organic agriculture in 2014–2023 by analysing the direction and dynamics of changes in selected measures of the development potential of organic agriculture in all member states (27 countries). This sector is characterised by high growth dynamics, including both the area under cultivation and the number of producers and processors of organic food. This study identified several important measures to support the development of organic farming (especially in countries where this type of activity is relatively less competitive) through targeted support mechanisms, such as policy and regulatory measures, financing, agricultural training and advisory services, scientific research, encouraging cooperation, and stimulating demand for organic products. Full article
26 pages, 4926 KB  
Article
Integrating Multi-Temporal Landsat and Sentinel Data for Enhanced Oil Palm Plantation Mapping and Age Estimation in Malaysia
by Caihui Li, Bangqian Chen, Xincheng Wang, Meilina Ong-Abdullah, Zhixiang Wu, Guoyu Lan, Kamil Azmi Tohiran, Bettycopa Amit, Hongyan Lai, Guizhen Wang, Ting Yun and Weili Kou
Remote Sens. 2025, 17(16), 2908; https://doi.org/10.3390/rs17162908 - 20 Aug 2025
Viewed by 559
Abstract
Mapping the oil palm (Elaeis guineensis), the globally leading oil-bearing crop and a crucial industrial commodity, is of vital importance for food security and raw material supply. However, existing remote sensing approaches for oil palm mapping present several methodological challenges including [...] Read more.
Mapping the oil palm (Elaeis guineensis), the globally leading oil-bearing crop and a crucial industrial commodity, is of vital importance for food security and raw material supply. However, existing remote sensing approaches for oil palm mapping present several methodological challenges including temporal resolution constraints, suboptimal feature parameterization, and limitations in age structure assessment. This study addresses these gaps by systematically optimizing temporal, spatial, and textural parameters for enhanced oil palm mapping and age structure analysis through integration of Landsat 4/5/7/8/9, Sentinel-2 multispectral, and Sentinel-1 radar data (LSMR). Analysis of oil palm distribution and dynamics in Malaysia revealed several key insights: (1) Methodological optimization: The integrated LSMR approach achieved 94% classification accuracy through optimal parameter configuration (3-month temporal interval, 3-pixel median filter, and 3 × 3 GLCM window), significantly outperforming conventional single-sensor approaches. (2) Age estimation capabilities: The adapted LandTrendr algorithm enabled precise estimation of the plantation establishment year with an RMSE of 1.14 years, effectively overcoming saturation effects that limit traditional regression-based methods. (3) Regional expansion patterns: West Malaysia exhibits continued plantation expansion, particularly in Johor and Pahang states, while East Malaysia shows significant contraction in Sarawak (3.34 × 105 hectares decline from 2019–2023), with both regions now converging toward similar topographic preferences (100–120 m elevation, 6–7° slopes). (4) Age structure concerns: Analysis identified a critical “replanting gap” with 13.3% of plantations exceeding their 25-year optimal lifespan and declining proportions of young plantations (from 60% to 47%) over the past five years. These findings provide crucial insights for sustainable land management strategies, offering policymakers an evidence-based framework to balance economic productivity with environmental conservation while addressing the identified replanting gap in one of the world’s most important agricultural commodities. Full article
Show Figures

Figure 1

34 pages, 672 KB  
Review
Intellectual Property Protection of New Animal Breeds in China: Theoretical Justification, International Comparison, and Institutional Construction
by Wenfei Zhang and Xinyi Chen
Animals 2025, 15(16), 2411; https://doi.org/10.3390/ani15162411 - 17 Aug 2025
Viewed by 406
Abstract
As vital outcomes of agricultural technological innovation, new animal breeds are not only foundational to rural revitalization but also central to preserving ecological diversity. At present, China lacks a clear and coherent legal framework of protection for new animal breeds, making it difficult [...] Read more.
As vital outcomes of agricultural technological innovation, new animal breeds are not only foundational to rural revitalization but also central to preserving ecological diversity. At present, China lacks a clear and coherent legal framework of protection for new animal breeds, making it difficult to accommodate practical demands posed by modern breeding technologies such as gene editing. The results show that international models for protecting intellectual property in new animal breeds generally fall into three categories: granting patents for animal breeds, granting patents for breeding methods, and establishing sui generis rights for animal breeds. The sui generis protecting model of animal breed rights provides stronger protection and better reflects genetic specificity of such breeds. This research recommends that, on ethical review, stricter oversight of animal welfare and genetic data usage should be implemented to promote responsible innovation. On safety assessment, detailed standards should be developed for food and environmental risk assessment to ensure biodiversity and ecological sustainability. On risk balance evaluation, efforts should be made to ensure effective alignment among animal breed rights, animal welfare, and fair competition in the market, while also striking an appropriate balance of interests between breeders and other stakeholders such as farmers, who act as conservers and providers of germplasm resources. Full article
(This article belongs to the Special Issue Animal Law and Policy Across the Globe in 2025)
Show Figures

Figure 1

18 pages, 3989 KB  
Article
Multifunctional Greenway Approach for Landscape Planning and Reclamation of a Post-Mining District: Cartagena-La Unión, SE Spain
by Angel Faz, Sebla Kabas, Raul Zornoza, Silvia Martínez-Martínez and Jose A. Acosta
Land 2025, 14(8), 1657; https://doi.org/10.3390/land14081657 - 15 Aug 2025
Viewed by 272
Abstract
Establishing a sustainable framework for remediating environmental degradation caused by historical mining operations in the Sierra Minera of Cartagena-La Unión, southeastern Spain, is a critical imperative. When the reclamation requirements of the post-mining district are considered in the context of its critical location, [...] Read more.
Establishing a sustainable framework for remediating environmental degradation caused by historical mining operations in the Sierra Minera of Cartagena-La Unión, southeastern Spain, is a critical imperative. When the reclamation requirements of the post-mining district are considered in the context of its critical location, nested among conflicting land uses, the development of practical solutions to restore ecological and cultural functions emerge as a landscape planning challenge. The greenway approach emphasizes the primary ecological and functional corridors that sustain the vitality of the region; therefore, it is essential to preserve and enhance these critical lifelines. This study aimed to design a localized greenway network to support the conservation of key ecological, agricultural, and cultural resources within the area, while simultaneously promoting reclamation activities in degraded zones. The greenway corridor is built upon key elements: conservation areas, post-mining cultural resources, dry riverbeds, and agricultural zones. In the light of greenway approach, planners and land managers can make their decisions more judiciously by considering the priority zones. The protection, leveraging, and reclamation of significant resources can be provided through a multifunctional greenway approach as seen in the case of Cartagena-La Unión Post-Mining District. Full article
(This article belongs to the Special Issue Landscapes Across the Mediterranean)
Show Figures

Figure 1

17 pages, 4182 KB  
Article
Revealing Unproductive Areas in the Caatinga Biome: A Remote Sensing Approach to Monitoring Land Degradation in Drylands
by Diêgo P. Costa, Rodrigo N. Vasconcelos, Soltan Galano Duverger, Stefanie M. Herrmann, Washington J. S. Franca Rocha, Nerivaldo Afonso Santos, Deorgia T. M. Souza, André T. Cunha Lima and Carlos A. D. Lentini
Earth 2025, 6(3), 96; https://doi.org/10.3390/earth6030096 - 11 Aug 2025
Viewed by 522
Abstract
Land degradation in drylands represents a critical environmental challenge, with persistent bare soil serving as a key indicator of ecosystem vulnerability, including in the Caatinga biome. This study maps and analyzes the spatial and temporal dynamics of persistent bare soils over three decades [...] Read more.
Land degradation in drylands represents a critical environmental challenge, with persistent bare soil serving as a key indicator of ecosystem vulnerability, including in the Caatinga biome. This study maps and analyzes the spatial and temporal dynamics of persistent bare soils over three decades using multi-temporal remote sensing data. We applied Spectral Mixture Analysis (SMA), temporal metrics, and machine learning classifiers within Google Earth Engine to process long-term Landsat datasets and to derive the Normalized Difference Fraction Index Adjusted (NDFIa). The results indicate a widespread increase in bare soil, with over 63% of mapped hexagons showing expansion, particularly in the São Francisco Basin. Peaks in soil exposure coincided with severe drought events, highlighting the link between climate variability and land degradation. Moreover, abandoned agricultural lands and pasturelands emerged as the dominant contributors to persistent bare soils. These findings reinforce the need for targeted policies to mitigate land degradation and to promote sustainable land management in semi-arid ecosystems. This research provides a robust framework for long-term environmental monitoring in drylands by integrating satellite data with advanced analytical techniques. These advancements support more effective land management and conservation strategies in semi-arid ecosystems. Full article
Show Figures

Figure 1

26 pages, 5540 KB  
Article
Enhanced Path Planning by Repositioning the Starting Point
by Gregory Gasteratos and Ioannis Karydis
Appl. Sci. 2025, 15(16), 8786; https://doi.org/10.3390/app15168786 - 8 Aug 2025
Viewed by 196
Abstract
Drone power management poses ongoing challenges that significantly impact operational effectiveness across various applications. This research examines path planning optimization, particularly focusing on distance minimization to enhance efficiency and performance. When drones must visit static ground stations, analyzing the constituent elements of flight [...] Read more.
Drone power management poses ongoing challenges that significantly impact operational effectiveness across various applications. This research examines path planning optimization, particularly focusing on distance minimization to enhance efficiency and performance. When drones must visit static ground stations, analyzing the constituent elements of flight paths reveals that segments connecting the launch pad to initial and final stations emerge as a distinct area for further path optimization. Given scenarios where launch pad relocation remains feasible, this study proposes several alternative methodologies for adjusting launch positions to minimize total flight distances across multiple drone operations. The investigation employed extensive experimentation involving diverse configurations with varying station counts and available drone units. Results demonstrate that repositioning the launch pad to serve as an optimal center point for all drone routes yields substantial improvements in total distance minimization, ranging from 4% to 22% across different operational scenarios. The geometric median approach consistently outperformed alternative positioning strategies, achieving these improvements while maintaining computational efficiency. These findings contribute to sustainable drone operations by reducing energy consumption through optimized flight planning. The methodology proves particularly valuable for applications requiring flexible launch point positioning, offering practical solutions for enhancing operational efficiency in environmental monitoring, precision agriculture, and infrastructure inspection tasks where energy conservation directly impacts mission success and operational viability. Full article
(This article belongs to the Special Issue Artificial Intelligence in Drone and UAV)
Show Figures

Figure 1

21 pages, 510 KB  
Review
IoT and Machine Learning for Smart Bird Monitoring and Repellence: Techniques, Challenges, and Opportunities
by Samson O. Ooko, Emmanuel Ndashimye, Evariste Twahirwa and Moise Busogi
IoT 2025, 6(3), 46; https://doi.org/10.3390/iot6030046 - 7 Aug 2025
Viewed by 700
Abstract
The activities of birds present increasing challenges in agriculture, aviation, and environmental conservation. This has led to economic losses, safety risks, and ecological imbalances. Attempts have been made to address the problem, with traditional deterrent methods proving to be labour-intensive, environmentally unfriendly, and [...] Read more.
The activities of birds present increasing challenges in agriculture, aviation, and environmental conservation. This has led to economic losses, safety risks, and ecological imbalances. Attempts have been made to address the problem, with traditional deterrent methods proving to be labour-intensive, environmentally unfriendly, and ineffective over time. Advances in artificial intelligence (AI) and the Internet of Things (IoT) present opportunities for enabling automated real-time bird detection and repellence. This study reviews recent developments (2020–2025) in AI-driven bird detection and repellence systems, emphasising the integration of image, audio, and multi-sensor data in IoT and edge-based environments. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses framework was used, with 267 studies initially identified and screened from key scientific databases. A total of 154 studies met the inclusion criteria and were analysed. The findings show the increasing use of convolutional neural networks (CNNs), YOLO variants, and MobileNet in visual detection, and the growing use of lightweight audio-based models such as BirdNET, MFCC-based CNNs, and TinyML frameworks for microcontroller deployment. Multi-sensor fusion is proposed to improve detection accuracy in diverse environments. Repellence strategies include sound-based deterrents, visual deterrents, predator-mimicking visuals, and adaptive AI-integrated systems. Deployment success depends on edge compatibility, power efficiency, and dataset quality. The limitations of current studies include species-specific detection challenges, data scarcity, environmental changes, and energy constraints. Future research should focus on tiny and lightweight AI models, standardised multi-modal datasets, and intelligent, behaviour-aware deterrence mechanisms suitable for precision agriculture and ecological monitoring. Full article
Show Figures

Figure 1

19 pages, 1717 KB  
Article
A Multifaceted Approach to Optimizing Processed Tomato Production: Investigating the Combined Effects of Biostimulants and Reduced Nitrogen Fertilization
by Michela Farneselli, Lara Reale, Beatrice Falcinelli, Muhammad Zubair Akram, Stefano Cimarelli, Eleonore Cinti, Michela Paglialunga, Flavia Carbone, Euro Pannacci and Francesco Tei
Horticulturae 2025, 11(8), 931; https://doi.org/10.3390/horticulturae11080931 - 7 Aug 2025
Viewed by 506
Abstract
Excessive nitrogen (N) fertilizer usage in agriculture has prompted the exploration of sustainable strategies to enhance nitrogen use efficiency (NUE) while maintaining crop yield and quality. Processed tomatoes (Solanum lycopersicum L.) were grown for two years (2023 and 2024) following a two-way [...] Read more.
Excessive nitrogen (N) fertilizer usage in agriculture has prompted the exploration of sustainable strategies to enhance nitrogen use efficiency (NUE) while maintaining crop yield and quality. Processed tomatoes (Solanum lycopersicum L.) were grown for two years (2023 and 2024) following a two-way factorial randomized complete block (RCBD) design, considering three biostimulants and three N regimes as two factors, to assess their morphophysiological, biochemical, anatomical and yield performances. Nitrogen application significantly influenced biomass accumulation, the leaf area index (LAI), nitrogen uptake and yield with notable comparable values between reduced and optimal nitrogen dose, indicating improved nitrogen use efficiency. Biostimulants showed limited effects alone but enhanced plant performance under reduced nitrogen conditions, particularly improving chlorophyll content, crop growth, N uptake, yield and anatomical adaptations. Moreover, compared to 2024, biostimulant application enhanced tomato growth more evidently in 2023 due to environmental variations, likely due to the occurrence of stress conditions. Importantly, biostimulants, together with N regimes, i.e., optimal and reduced doses, showed improved anatomical traits, especially regarding leaf thickness and thickness between the two epidermises, indicating adaptive responses that may support sustained productivity under N-limited conditions. Among the biostimulants used, the processed tomatoes responded better to protein hydrolysate and endophytic N-fixing bacteria than to seaweed extract. These findings suggest that although biostimulants alone were not affected, integrating them with reduced N fertilization provides a viable strategy for optimizing tomato production, conserving resources and minimizing the environmental impact without compromising yield or quality. Full article
(This article belongs to the Special Issue Effects of Biostimulants on Horticultural Crop Production)
Show Figures

Graphical abstract

22 pages, 10285 KB  
Article
Biophysical and Social Constraints of Restoring Ecosystem Services in the Border Regions of Tibet, China
by Lizhi Jia, Silin Liu, Xinjie Zha and Ting Hua
Land 2025, 14(8), 1601; https://doi.org/10.3390/land14081601 - 6 Aug 2025
Viewed by 415
Abstract
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with [...] Read more.
Ecosystem restoration represents a promising solution for enhancing ecosystem services and environmental sustainability. However, border regions—characterized by ecological fragility and geopolitical complexity—remain underrepresented in ecosystem service and restoration research. To fill this gap, we coupled spatially explicit models (e.g., InVEST and RUSLE) with scenario analysis to quantify the ecosystem service potential that could be achieved in China’s Tibetan borderlands under two interacting agendas: ecological restoration and border-strengthening policies. Restoration feasibility was evaluated through combining local biophysical constraints, economic viability (via restoration-induced carbon gains vs. opportunity costs), operational practicality, and simulated infrastructure expansion. The results showed that per-unit-area ecosystem services in border counties (particularly Medog, Cona, and Zayu) exceed that of interior Tibet by a factor of two to four. Combining these various constraints, approximately 4–17% of the border zone remains cost-effective for grassland or forest restoration. Under low carbon pricing (US$10 t−1 CO2), the carbon revenue generated through restoration is insufficient to offset the opportunity cost of agricultural production, constituting a major constraint. Habitat quality, soil conservation, and carbon sequestration increase modestly when induced by restoration, but a pronounced carbon–water trade-off emerges. Planned infrastructure reduces restoration benefits only slightly, whereas raising the carbon price to about US$50 t−1 CO2 substantially expands such benefits. These findings highlight both the opportunities and limits of ecosystem restoration in border regions and point to carbon pricing as the key policy lever for unlocking cost-effective restoration. Full article
(This article belongs to the Special Issue The Role of Land Policy in Shaping Rural Development Outcomes)
Show Figures

Figure 1

Back to TopTop