Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,215)

Search Parameters:
Keywords = environmental hazards

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 456 KB  
Article
Alcohol and Tea Consumption in Relation to Liver Cancer Risk by Diabetes Status: A Prospective Cohort Study of 0.5 Million Chinese Adults
by Xiaoru Feng, Ruoqian Li, Minqing Yan, Changzheng Yuan and You Wu
Nutrients 2025, 17(17), 2870; https://doi.org/10.3390/nu17172870 - 4 Sep 2025
Abstract
Background: Liver cancer is a significant disease burden, with metabolic factors potentially influencing its risk. Diabetics, due to metabolic abnormalities, may be more sensitive to environmental exposures. Beverages like tea and alcohol could impact liver cancer risk and may influence prevention in diabetics. [...] Read more.
Background: Liver cancer is a significant disease burden, with metabolic factors potentially influencing its risk. Diabetics, due to metabolic abnormalities, may be more sensitive to environmental exposures. Beverages like tea and alcohol could impact liver cancer risk and may influence prevention in diabetics. Methods: This study included 30,289 diabetics and 482,292 non-diabetics aged 30–79 years from the China Kadoorie Biobank. Baseline alcohol and tea consumption during the past year was collected through questionnaires, including frequency, amount, duration, and types. Incident liver cancer cases were identified from the national health insurance system and local disease registries. Cox proportional hazards regression models estimated hazard ratios (HRs) and 95% confidence intervals (CIs). Results: During a median follow-up of 9.6 years for diabetics and 10.1 years for non-diabetics, 193 (0.69 cases/1000 person-years) and 398 (0.45 cases/1000 person-years) incident liver cancer cases were documented, respectively. Weekly alcohol consumption was associated with higher liver cancer risk in both groups, stronger in diabetics (HR = 1.62; 95% CI: 1.12, 2.34) than in non-diabetics (HR = 1.20, 95% CI: 1.07, 1.35). Among diabetics, the risk was higher in some weekly alcohol consumption subgroups: high-level intake (HR = 2.21; 95% CI: 1.28, 3.80), ≥30 years (HR = 1.70; 95% CI: 1.06, 2.71), or spirit (≥50% alcohol) alcohol-specific consumption (HR = 1.91; 95% CI: 1.20, 3.04), and these associations were stronger than those in non-diabetics. For weekly tea consumption, low-level intake (HR = 0.82; 95% CI: 0.68, 0.99), <10 years (HR = 0.74; 95% CI: 0.58, 0.93), 10–29 years (HR = 0.84; 95% CI: 0.71, 0.99), and green tea-specific consumption (HR = 0.86; 95% CI: 0.75, 0.98) were associated with reduced liver cancer risk in non-diabetics. However, these associations were not significant in those with diabetes. Conclusions: Weekly alcohol consumption is significantly associated with an increased risk of liver cancer, especially in diabetics, while tea consumption appears to lower risk only in non-diabetics, highlighting the need for alcohol reduction in diabetics. Full article
12 pages, 259 KB  
Article
Multifactorial Risk Assessment of Falls in Thai Community-Dwelling Older Adults: Findings from a Geriatric Cohort Study
by Natthaphon Ubonsutvanich, Aisawan Petchlorlian, Bhorn-Ake Manasvanich, Rapas Samalapa, Thanyaporn Hengpongthorn, Jirapa Champaiboon, Kaewkanda Lekmanee, Seangarun Surawong and Kearkiat Praditpornsilpa
Geriatrics 2025, 10(5), 118; https://doi.org/10.3390/geriatrics10050118 - 3 Sep 2025
Abstract
Background/Objectives: Falls are a major public health concern among older adults, often resulting in injury, mortality, and loss of independence. Understanding fall-related risk factors is essential for developing effective prevention strategies. This study examined the multifactorial risk assessment of falls among Thai [...] Read more.
Background/Objectives: Falls are a major public health concern among older adults, often resulting in injury, mortality, and loss of independence. Understanding fall-related risk factors is essential for developing effective prevention strategies. This study examined the multifactorial risk assessment of falls among Thai community-dwelling older adults, aiming to identify and prioritize modifiable risk factors for targeted interventions in the Thai context. Methods: A cross-sectional study was conducted among 5694 adults aged ≥60 years who attended a comprehensive geriatric clinic in Bangkok, Thailand, between March 2019 and December 2023. All participants underwent a comprehensive geriatric assessment and fall history screening. Logistic regression analysis was performed to identify independent predictors of falls and recurrent falls. Results: Among the 5694 participants, 17.7% reported at least one fall in the past year, and 4.1% experienced recurrent falls. Independent risk factors for falls included female sex (OR = 1.74), unsteadiness (OR = 1.54), fear of falling (OR = 1.22), sedative drug use (OR = 1.38), and low gait speed (<1 m/s; OR = 1.70). Recurrent falls were additionally associated with urinary incontinence (OR = 1.78). Most falls occurred outdoors (58.5%), primarily due to environmental hazards such as slippery floors and uneven surfaces. The Clinical Test of Sensory Integration of Balance (CTSIB) showed no difference between fallers and non-fallers, except under the eyes-open on firm surface condition, where recurrent fallers exhibited significantly greater postural sway (p = 0.048). Conclusions: In community-dwelling Thai older adults with robust or pre-frail status, the three key questions for fall risk screening appear to be the most effective tool. Modifiable risk factors strongly associated with fallers and recurrent fallers include sedative use, urinary incontinence, and unsteadiness. Accordingly, medication review, urinary incontinence screening, and balance assessment may help prevent falls. The CTSIB may have only limited value in differentiating fall risk between fallers and non-fallers in this population. Full article
23 pages, 2107 KB  
Article
Effectiveness of Applying Hyperbranched PVAc Copolymer Emulsion for Ecological Sand-Fixing in the High Salt-Affected Sandy Land
by Meilan Li, Yayi Jin, Jiale Wan, Wei Gong, Keying Sun and Liangliang Chang
Polymers 2025, 17(17), 2403; https://doi.org/10.3390/polym17172403 - 3 Sep 2025
Abstract
This research seeks to reduce wind-blown sand hazards in saline deserts by introducing hyperbranched PVAc copolymer emulsion as a novel ecological sand-fixing material. The study began with the preparation of the emulsion, then evaluated its fundamental properties and the salt tolerance of latex [...] Read more.
This research seeks to reduce wind-blown sand hazards in saline deserts by introducing hyperbranched PVAc copolymer emulsion as a novel ecological sand-fixing material. The study began with the preparation of the emulsion, then evaluated its fundamental properties and the salt tolerance of latex films through FTIR, SEM, and mechanical strength assessments. The sand-fixing properties (compressive strength, anti-water erosion, anti-wind erosion, thermal aging, freeze–thaw stability, and water retention) were evaluated. In addition, their effects on increasing both the growth of microbes and plants in salty deserts have been evaluated by field experiments to understand their ecological effects. The experimental results showed that the hyperbranched PVAc copolymer emulsion has excellent salt resistance and can be used as an ecological sand-fixing material in salty deserts. The research findings demonstrate that the hyperbranched PVAc copolymer emulsion exhibits superior salt tolerance, rendering it an effective ecological sand-fixing material for saline deserts. Notable attributes encompass its capacity to significantly mitigate NaCl-induced aggregate damage to sand-fixing materials, thereby enhancing sand fixation performance; its robust thermal aging resistance, freeze–thaw stability, and salt tolerance, which enable it to withstand environmental temperature variations; and experimental assessments of sand-based plant and microbial growth confirming favorable ecological impacts. This study presents novel methodologies for designing ecological sand-fixing materials in saline deserts to combat desertification. Full article
17 pages, 1892 KB  
Article
The Use of Collagen Hydrolysate from Chromium Waste in the Optimization of Leather Retanning
by Jan Zarlok, Małgorzata Kowalska and Jerzy Szakiel
Sustainability 2025, 17(17), 7912; https://doi.org/10.3390/su17177912 - 3 Sep 2025
Abstract
Leather tanning generates substantial amounts of solid waste and effluents, posing significant environmental challenges due to the presence of hazardous chromium compounds. The aim of this study was to develop and optimize a method for recycling chromium-tanned leather waste by utilizing it as [...] Read more.
Leather tanning generates substantial amounts of solid waste and effluents, posing significant environmental challenges due to the presence of hazardous chromium compounds. The aim of this study was to develop and optimize a method for recycling chromium-tanned leather waste by utilizing it as a raw material in the retanning process. Collagen hydrolysate was extracted from chrome-tanned leather shavings through acid hydrolysis and subsequently incorporated, together with melamine, into novel retanning compositions. The experimental design, based on the Kleeman method, involved varying the hydrolysate content (25%, 30%, 35%) and melamine concentration (2.5%, 3.0%, 3.5%, 4.0%) to assess their impact on the physicochemical properties of retanned wet-blue leathers. An innovative aspect of the study was the integration of the Kateskór computer program, employing the Kleeman experimental planning method, to optimize the formulation of retanning compositions. This computational approach enabled the precise determination of hydrolysate and melamine quantities required to achieve leather properties that meet both producer and consumer expectations. The optimized formulation identified the hydrolysate content in the range of 28.78–29.63% and melamine in the range of 3.61–3.68% as optimal for obtaining leathers with the desired mechanical strength, shrinkage temperature, and water vapor permeability. The study presents a practical model of a circular economy within the leather industry, aligning with the European Green Deal Strategy by promoting resource efficiency and minimizing hazardous waste. The proposed methodology provides a viable pathway for sustainable leather production through waste valorization and process optimization. Full article
(This article belongs to the Special Issue Organic Matter Degradation, Biomass Conversion and CO2 Reduction)
Show Figures

Figure 1

22 pages, 3112 KB  
Article
Health Assessment of Zoned Earth Dams by Multi-Epoch In Situ Investigations and Laboratory Tests
by Ernesto Ausilio, Maria Giovanna Durante, Roberto Cairo and Paolo Zimmaro
Geotechnics 2025, 5(3), 60; https://doi.org/10.3390/geotechnics5030060 - 3 Sep 2025
Abstract
The long-term safety and operational reliability of zoned earth dams depend on the structural integrity of their internal components, including core, filters, and shell zones. This is particularly relevant for old dams which have been operational for a long period of time. Such [...] Read more.
The long-term safety and operational reliability of zoned earth dams depend on the structural integrity of their internal components, including core, filters, and shell zones. This is particularly relevant for old dams which have been operational for a long period of time. Such existing infrastructure systems are exposed to various loading types over time, including environmental, seepage-related, extreme event, and climate change effects. As a result, even when they look intact externally, changes might affect their internal structure, composition, and possibly functionality. Thus, it is important to delineate a comprehensive and cost-effective strategy to identify potential issues and derive the health status of existing earth dams. This paper outlines a systematic approach for conducting a comprehensive health check of these structures through the implementation of a multi-epoch geotechnical approach based on a variety of standard measured and monitored quantities. The goal is to compare current properties with baseline data obtained during pre-, during-, and post-construction site investigation and laboratory tests. Guidance is provided on how to judge such multi-epoch comparisons, identifying potential outcomes and scenarios. The proposed approach is tested on a well-documented case study in Southern Italy, an area prone to climate change and subjected to very high seismic hazard. The case study demonstrates how the integration of historical and contemporary geotechnical data allows for the identification of critical zones requiring attention, the validation of numerical models, and the proactive formulation of targeted maintenance and rehabilitation strategies. This comprehensive, multi-epoch-based approach provides a robust and reliable assessment of dams’ health, enabling better-informed decision-making workflows and processes for asset management and risk mitigation strategies. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (3rd Edition))
Show Figures

Figure 1

24 pages, 7395 KB  
Systematic Review
Advancements in Artificial Intelligence and Machine Learning for Occupational Risk Prevention: A Systematic Review on Predictive Risk Modeling and Prevention Strategies
by Pablo Armenteros-Cosme, Marcos Arias-González, Sergio Alonso-Rollán, Sergio Márquez-Sánchez and Albano Carrera
Sensors 2025, 25(17), 5419; https://doi.org/10.3390/s25175419 - 2 Sep 2025
Viewed by 47
Abstract
Background: Occupational risk prevention is a critical discipline for ensuring safe working conditions and minimizing accidents and occupational diseases. With the rise of artificial intelligence (AI) and machine learning (ML), these approaches are increasingly utilized for predicting and preventing workplace hazards. This systematic [...] Read more.
Background: Occupational risk prevention is a critical discipline for ensuring safe working conditions and minimizing accidents and occupational diseases. With the rise of artificial intelligence (AI) and machine learning (ML), these approaches are increasingly utilized for predicting and preventing workplace hazards. This systematic review aims to identify, evaluate, and synthesize existing literature on the use of AI algorithms for detecting and predicting hazardous environments and occupational risks in the workplace, focusing on predictive modeling and prevention strategies. Methods: A systematic literature review was conducted following the PRISMA 2020 protocol, with minor adaptations to include conference proceedings and technical reports due to the topic’s emerging and multidisciplinary nature. Searches were performed in IEEE Digital Library, PubMed, Scopus, and Web of Science, with the last search conducted on 1 August 2024. Only peer-reviewed articles published from 2019 onwards and written in English were included. Systematic literature reviews were explicitly excluded. The screening process involved duplicate removal (reducing 209 initial documents to 183 unique ones), a preliminary screening based on titles, abstracts, and keywords (further reducing to 92 articles), and a detailed full-text review. During the full-text review, study quality was assessed using six quality assessment (QA) questions, where articles receiving a total score below 4.5 or 0 in any QA question were excluded. This rigorous process resulted in the selection of 61 relevant articles for quantitative and qualitative analysis. Results: The analysis revealed a growing interest in the field, with a clear upward trend in publications from 2021 to 2023, and a continuation of growth into 2024. The most significant contributions originated from countries such as China, South Korea, and India. Applications primarily focused on high-risk sectors, notably construction, mining, and manufacturing. The most common approach involved the use of visual data captured by cameras, which constituted over 40% of the reviewed studies, processed using deep learning (DL) models, particularly Convolutional Neural Networks (CNNs) and You Only Look Once (YOLO). Conclusions: The study highlights current limitations, including an over-reliance on visual data (especially challenging in low-visibility environments) and a lack of methodological standardization for AI-based risk detection systems. Future research should emphasize the integration of multimodal data (visual, environmental, physiological) and the development of interpretable AI models (XAI) to enhance accuracy, transparency, and trust in hazard detection systems. Addressing long-term societal implications, such as privacy and potential worker displacement, necessitates transparent data policies and robust regulatory frameworks. Full article
Show Figures

Figure 1

18 pages, 4672 KB  
Article
Environmental Hazards and Chemoresistance in OTSCC: Molecular Docking and Prediction of Paclitaxel and Imatinib as BCL2 and EGFR Inhibitors
by Nishant Kumar Singh, Prankur Awasthi, Agrika Gupta, Nidhi Anand, Balendu Shekher Giri and Saba Hasan
Biology 2025, 14(9), 1174; https://doi.org/10.3390/biology14091174 - 2 Sep 2025
Viewed by 65
Abstract
Oral tongue squamous cell carcinoma (OTSCC) is a common type of oral cancer influenced by genetic, epigenetic, and environmental factors like exposure to environmental toxins. These environmental toxins can decrease the effectiveness of established chemotherapy drugs, such as Irinotecan, used in OTSCC treatment. [...] Read more.
Oral tongue squamous cell carcinoma (OTSCC) is a common type of oral cancer influenced by genetic, epigenetic, and environmental factors like exposure to environmental toxins. These environmental toxins can decrease the effectiveness of established chemotherapy drugs, such as Irinotecan, used in OTSCC treatment. Bioinformatics, drug discovery, and machine learning techniques were employed to investigate the impact of Irinotecan on OTSCC patients by identifying targets and signaling pathways, including those that positively influence protein phosphorylation, protein tyrosine kinase activity, the PI3K-Akt (Phosphatidylinositol 3-kinase- Protein Kinase B) signaling system, cancer pathways, focal adhesion, and the HIF-1 (Hypoxia-Inducible Factor 1) signaling pathway. Later, the protein–protein interactions (PPIs) network, along with twelve cytoHubba approaches to finding the most interacting molecule, was employed to find the important proteins BCL2 and EGFR. Drugs related to BCL2 and EGFR were extracted from the DGIdb database for further molecular docking. Molecular docking revealed that Docetaxel, Paclitaxel, Imatinib, Ponatinib, Ibrutinib, Sorafenib, and Etoposide showed more binding affinity than Irinotecan (i.e., −9.8, −9.6). Of these, Paclitaxel (−10.3, −11.4) and Imatinib (−9.9, −10.4) are common in targeting BCL2 and EGFR. Using these identified candidate genes and pathways, we may be able to uncover new therapeutic targets for the treatment of OTSCC. Furthermore, molecular dynamics (MD) simulations were performed for selected ligand–receptor complexes, revealing stable binding interactions and favorable energetic profiles that supported the docking results and strengthened the reliability of the proposed drug repurposing strategy. Full article
(This article belongs to the Special Issue Head and Neck Cancer: Current Advances and Future Perspectives)
Show Figures

Graphical abstract

15 pages, 24353 KB  
Article
Where Can Solar Go? Assessing Land Availability for PV in Italy Under Regulatory Constraints
by Babak Ranjgar, Alessandro Niccolai and Sonia Leva
Solar 2025, 5(3), 40; https://doi.org/10.3390/solar5030040 - 1 Sep 2025
Viewed by 54
Abstract
The expansion of solar photovoltaic (PV) energy is a central pillar of Italy’s climate and energy transition strategy. However, the actual availability of land for PV deployment is heavily influenced by a complex regulatory framework that imposes numerous spatial exclusions. This study presents [...] Read more.
The expansion of solar photovoltaic (PV) energy is a central pillar of Italy’s climate and energy transition strategy. However, the actual availability of land for PV deployment is heavily influenced by a complex regulatory framework that imposes numerous spatial exclusions. This study presents a comprehensive geospatial analysis of exclusion zones for ground-mounted PV installations across Italy, integrating data from national regulations, environmental protection laws, and cultural heritage inventories. Using a vector-based overlay approach, we categorized constraints into six groups: natural assets, landscape protection, cultural heritage, natural hazards, environmental buffers, and infrastructural safety zones. The analysis shows that only approximately 26% of Italy’s land area remains available for PV development. Regional disparities are pronounced, with southern regions such as Sicilia and Puglia offering the highest availability, while northern and central regions face severe limitations due to dense overlays of protected landscapes and heritage sites. These findings offer quantitative support to the often-cited claim that Italy’s strict land-use regulations are a significant barrier to renewable energy development. The study highlights the need for more flexible, spatially informed regulatory frameworks to reconcile conservation priorities with the urgency of decarbonization. Full article
Show Figures

Figure 1

19 pages, 1766 KB  
Article
Canopy Fuel Characteristics and Potential Fire Behavior in Dwarf Pine (Pinus pumila) Forests
by Xinxue He, Xin Zheng, Rong Cui, Chenglin Chi, Qianxue Wang, Shuo Wang, Guoqiang Zhang, Huiying Cai, Yanlong Shan, Mingyu Wang and Jili Zhang
Fire 2025, 8(9), 347; https://doi.org/10.3390/fire8090347 - 1 Sep 2025
Viewed by 184
Abstract
Crown fire hazard assessment and behavior prediction in dwarf pine (Pinus pumila) forests are dictated by the amount of canopy fuel available, topography, and weather. In this study, we collected data on CFL (available canopy fuel load), CBD (canopy bulk density), [...] Read more.
Crown fire hazard assessment and behavior prediction in dwarf pine (Pinus pumila) forests are dictated by the amount of canopy fuel available, topography, and weather. In this study, we collected data on CFL (available canopy fuel load), CBD (canopy bulk density), and CBH (canopy base height) through the destructive sampling of dwarf pine trees in the Greater Khingan Mountains of Northeast China. Allometric equations were developed for estimating the canopy’s available biomass, CFL, and CBD to support the assessment of canopy fuel. Three burning scenarios were designed to investigate the impact of various environmental parameters on fire behavior. Our findings indicated that the average CFL of a dwarf pine was 0.36 kg·m−2, while the average CBD was measured at 0.17 kg·m−3. The vertical variation trends of both CFL and CBD exhibited consistency, with values increasing progressively from the bottom to the top of the tree crown. Fire behavior simulations indicated that the low CBH of dwarf pine trees increased the likelihood of crown fires. Various factors, including wind speed, slope, and CBH, exerted considerable influence on fire behavior, with wind speed emerging as the most critical determinant. Silvicultural treatments, such as thinning and pruning, may effectively reduce fuel loads and elevate the canopy base height, thereby decreasing both the probability and intensity of crown fires. Full article
Show Figures

Figure 1

23 pages, 7456 KB  
Article
Recycling Spent Fluorescent Lamp Glass Waste in Calcium Aluminate Cement: Effects on Hydration and Mechanical Performance
by Lucía Reig, Ángel M. Pitarch, Antonio Gallardo, Lourdes Soriano, María V. Borrachero, Jordi Payá and José M. Monzó
Appl. Sci. 2025, 15(17), 9629; https://doi.org/10.3390/app15179629 - 1 Sep 2025
Viewed by 165
Abstract
Calcium aluminate cement (CAC) offers rapid strength development, chemical durability in harsh environments, and high-temperature resistance, but its long-term performance may be compromised by the conversion of metastable hexagonal hydrates into stable cubic phases. Concurrently, recycling spent fluorescent lamp glass (SFLG) is limited [...] Read more.
Calcium aluminate cement (CAC) offers rapid strength development, chemical durability in harsh environments, and high-temperature resistance, but its long-term performance may be compromised by the conversion of metastable hexagonal hydrates into stable cubic phases. Concurrently, recycling spent fluorescent lamp glass (SFLG) is limited because of its residual mercury content. This study investigates the use of manually (MAN) and mechanically (MEC) processed SFLG as partial CAC replacements (up to 50 wt.%). Both SFLG types had irregular morphologies with mean particle sizes of ~20 µm and mercury concentrations of 3140 ± 61 ppb (MAN) and 2133 ± 119 ppb (MEC). Moreover, the addition of SFLG reduced the initial and final setting times, whilst MEC waste notably extended the plastic state duration from 20 min (reference) to 69 min (50 wt.% MEC). Furthermore, strength development was accelerated, with SFLG/CAC mortars reaching peak strengths at 7–10 days versus 28 days as in the CAC reference. CAC and 15 wt.% SFLG mortars showed strength loss over time by reason of their phase conversion, whereas mortars with 25–50 wt.% SFLG experienced significant long-term strength gains, reaching ~60 MPa (25 wt.%) and ~45 MPa (35 wt.%), respectively, after 365 days, with strength activity indexes (SAI) near 90% and 70%, respectively. These improvements are attributed to the formation of strätlingite (C2ASH8), which stabilized hexagonal CAH10 and mitigated conversion to cubic katoite (C3AH6). Mercury leaching remained below 0.01 mg/kg dry matter for all mixes and curing ages, classifying the mortars as non-hazardous and inert under Spanish Royal Decree 646/2020. The results suggest that SFLG can be safely reused as a sustainable admixture in CAC systems, enhancing long-term mechanical performance while minimizing environmental impact. Full article
(This article belongs to the Special Issue Advances in the Sustainability and Energy Efficiency of Buildings)
Show Figures

Figure 1

18 pages, 1156 KB  
Article
Contact Toxicity, Electrophysiology, Anti-Mating, and Repellent Effects of Piper guineense Against Spodoptera frugiperda (Lepidoptera: Noctuidae)
by Mobolade D. Akinbuluma, Jacques A. Deere, Peter Roessingh and Astrid T. Groot
Insects 2025, 16(9), 908; https://doi.org/10.3390/insects16090908 - 1 Sep 2025
Viewed by 206
Abstract
The fall armyworm, Spodoptera frugiperda, is a long-distance migratory pest, which invaded the African continent in 2016, causing enormous losses to agricultural crops, especially maize. Synthetic insecticides are primarily used for managing S. frugiperda, but they leave residues on human food [...] Read more.
The fall armyworm, Spodoptera frugiperda, is a long-distance migratory pest, which invaded the African continent in 2016, causing enormous losses to agricultural crops, especially maize. Synthetic insecticides are primarily used for managing S. frugiperda, but they leave residues on human food and animal feed and also cause environmental hazards. We evaluated the crude ethanolic extract of Piper guineense fruits for contact toxicity on S. frugiperda larvae and determined the lethal concentration (LC50) of the extract. Additionally, we conducted an electrophysiological (EAG) experiment to determine the responses of adult S. frugiperda males and females to P. guineense and determined whether the extract influenced mating, oviposition, and repellence to the adult female. We found that P. guineense extract caused significantly higher mortality to S. frugiperda larvae than an ethanol control. Electrophysiologically, we observed significantly higher responses to the extract than the control, with some variations in response between the sexes. A wind tunnel experiment revealed that females moved more towards the control than towards the extract. Taken together, our results confirm that P. guineense extract is effective against S. frugiperda larvae and adults. Future research should explore the responses of S. frugiperda to P. guineense extract on a field scale. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Graphical abstract

32 pages, 46726 KB  
Article
Potentially Toxic Elements and Natural Radioactivity in Nasser Lake Sediments: Environmental Risks in a Key Egyptian Freshwater Lake
by Esraa S. El-Shlemy, Ahmed Gad, Mohammed G. El Feky, Abdel-Moneim A. Mahmoud, Omnia El-Sayed and Neveen S. Abed
Toxics 2025, 13(9), 745; https://doi.org/10.3390/toxics13090745 - 31 Aug 2025
Viewed by 194
Abstract
A necessary evaluation of freshwater ecosystem pollution levels and radiation risks remains crucial for maintaining environmental health, especially within economically developing areas. This study presents a comprehensive evaluation of the mineralogical, geochemical, and radiological characteristics of sediments in Nasser Lake, Egypt, to determine [...] Read more.
A necessary evaluation of freshwater ecosystem pollution levels and radiation risks remains crucial for maintaining environmental health, especially within economically developing areas. This study presents a comprehensive evaluation of the mineralogical, geochemical, and radiological characteristics of sediments in Nasser Lake, Egypt, to determine potential ecological and health risks. Forty sediment samples were collected from multiple locations, including both surface and bottom sediments, for analysis of textural attributes, mineral composition, potentially toxic elements, and natural radionuclides (238U, 232Th, and 40K). Results revealed sand-dominated sediments with low organic matter content. The heavy mineral assemblages derived from Nile River inputs, wind-deposited materials, and eroded igneous and metamorphic rocks. Geochemical analysis showed that arsenic, cadmium, chromium, and lead concentrations exceeded upper continental crust background values, with enrichment factors and geo-accumulation indices indicating significant anthropogenic contributions. The pollution indices revealed heavy contamination levels and extreme ecological risks, which were primarily driven by arsenic and cadmium concentrations. Radiological assessments detected activity concentrations of 238U, 232Th, and 40K below the world average, with hazard indices indicating minimal radiological risk except where localized hotspots were present. The study emphasizes the need for targeted monitoring and sustainable management practices to mitigate pollution and preserve the crucial freshwater environment of Nasser Lake. Full article
Show Figures

Figure 1

14 pages, 1741 KB  
Article
Heavy Metal Accumulation in Cattle from Western Pará: Human Health Risk Assessment
by Antonio Humberto Hamad Minervino, Osvaldo Gato Nunes Neto, Fábio Edir Amaral Albuquerque, Kelly Cristiny Gomes da Paixão Albuquerque, Francisco Flávio Vieira de Assis, Rejane Santos Sousa, Raimundo Alves Barrêto Júnior, Marta López-Alonso and Marta Miranda
Toxics 2025, 13(9), 740; https://doi.org/10.3390/toxics13090740 - 31 Aug 2025
Viewed by 241
Abstract
Western Pará, northern Brazil, is a significant region for mineral exploration, leading to the deposition of potentially toxic elements in soils and water basins. This study evaluated concentrations of mercury (Hg), lead (Pb), cadmium (Cd), and arsenic (As) in cattle muscle tissue from [...] Read more.
Western Pará, northern Brazil, is a significant region for mineral exploration, leading to the deposition of potentially toxic elements in soils and water basins. This study evaluated concentrations of mercury (Hg), lead (Pb), cadmium (Cd), and arsenic (As) in cattle muscle tissue from three municipalities: Oriximiná, Itaituba, and Monte Alegre. Metal concentrations were determined using inductively coupled plasma mass spectrometry (ICP-MS). The estimated daily intake (EDI) of toxic metals via beef consumption (71 g/person/day) was below oral reference doses values (RfDo). Target hazard quotient (THQ) and total THQ (TTHQ) values for all metals were below 1, indicating no significant non-carcinogenic health risk. Monte Alegre exhibited the highest THQ for As and Pb, Oriximiná for Cd, and Itaituba for Hg. Although the overall assessment suggests low risk, elevated Hg concentrations were detected in 10% of the samples, with at least one animal from each municipality exceeding the European Union maximum residue limit (0.01 mg/kg). These findings indicate localized contamination and potential mercury bioaccumulation. Given the rising anthropogenic activities (such as mining and deforestation), continued monitoring of heavy metal levels in animal tissues is recommended to ensure long-term food safety and public health. Full article
(This article belongs to the Special Issue Harmful Outcomes of Environmental and Food Pollutants on Human Health)
Show Figures

Graphical abstract

25 pages, 1642 KB  
Article
The Green HACCP Approach: Advancing Food Safety and Sustainability
by Mohamed Zarid
Sustainability 2025, 17(17), 7834; https://doi.org/10.3390/su17177834 - 30 Aug 2025
Viewed by 356
Abstract
Food safety management has evolved with the Hazard Analysis and Critical Control Point (HACCP) system serving as a global benchmark. However, conventional HACCP does not explicitly address environmental sustainability, leading to challenges such as excessive water use, chemical discharge, and energy inefficiency. Green [...] Read more.
Food safety management has evolved with the Hazard Analysis and Critical Control Point (HACCP) system serving as a global benchmark. However, conventional HACCP does not explicitly address environmental sustainability, leading to challenges such as excessive water use, chemical discharge, and energy inefficiency. Green HACCP extends traditional HACCP by integrating Environmental Respect Practices (ERPs) to fill this critical gap between food safety and sustainability. This study is presented as a conceptual paper based on a structured literature review combined with illustrative industry applications. It analyzes the principles, implementation challenges, and economic viability of Green HACCP, contrasting it with conventional systems. Evidence from recent reports and industry examples shows measurable benefits: water consumption reductions of 20–25%, energy savings of 10–15%, and improved compliance readiness through digital monitoring technologies. It explores how digital technologies—IoT for real-time monitoring, AI for predictive optimization, and blockchain for traceability—enhance efficiency and sustainability. By aligning HACCP with sustainability goals and the United Nations Sustainable Development Goals (SDGs), this paper provides academic contributions including a clarified conceptual framework, quantified advantages, and policy recommendations to support the integration of Green HACCP into global food safety systems. Industry applications from dairy, seafood, and bakery sectors illustrate practical benefits, including waste reduction and improved compliance. This study concludes with policy recommendations to integrate Green HACCP into global food safety frameworks, supporting broader sustainability goals. Overall, Green HACCP demonstrates a cost-effective, scalable, and environmentally responsible model for future food production. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Figure 1

22 pages, 3275 KB  
Article
Comparative Life Cycle Assessment for the Fabrication of Polysulfone Membranes Using Slot Die Coating as a Scalable Fabrication Technique
by David Lu, Isaac Oluk, Minwoo Jung, Sophia Tseng, Diana M. Byrne, Tequila A. L. Harris and Isabel C. Escobar
Polymers 2025, 17(17), 2363; https://doi.org/10.3390/polym17172363 - 30 Aug 2025
Viewed by 334
Abstract
Despite the emergence of eco-friendly solvents and scalable methods for polymeric membrane fabrication, studies on the impacts of solvent synthesis and manufacturing scale-up have not been conducted. To this end, a life cycle assessment (LCA) was developed with the goal of determining the [...] Read more.
Despite the emergence of eco-friendly solvents and scalable methods for polymeric membrane fabrication, studies on the impacts of solvent synthesis and manufacturing scale-up have not been conducted. To this end, a life cycle assessment (LCA) was developed with the goal of determining the global environmental and health impacts of producing polysulfone (PSf) membranes with the solvents PolarClean and γ-valerolactone (GVL) via doctor blade extrusion (DBE) and slot die coating (SDC). Along with PolarClean and GVL, dimethylacetamide (DMAc) and N-methyl-2-pyyrolidone (NMP) were included in the LCA as conventional solvents for comparison. The dope solution viscosity had a major influence on the material inventories; to produce a normalized membrane unit on a surface area basis, a larger quantity of PSf-PolarClean-GVL materials was required due to its high viscosity. The life cycle impact assessment found electricity and PolarClean to be major contributing parameters to multiple impact categories during membrane fabrication. The commercial synthesis route of PolarClean selected in this study required hazardous materials derived from petrochemicals, which increased its impact on membrane fabrication. Due to more materials being required to fabricate membranes via SDC to account for tool fluid priming, the PSf-PolarClean-GVL membrane fabricated via SDC exhibited the highest impacts. The amount of electricity and concentration of PolarClean were the most sensitive parameters according to Spearman’s rank coefficient analysis. A scenario analysis in which the regional energy grid was substituted found that using the Swedish grid, which comprises far more renewable technologies than the global and US energy grids, significantly lowered impacts in most categories. Despite the reported eco-friendly benefits of using PolarClean and GVL as alternatives to conventional organic solvents, the results in this study provide a wider perspective of membrane fabrication process impacts, highlighting that upstream impacts can counterbalance the beneficial properties of alternative materials. Full article
(This article belongs to the Special Issue New Studies of Polymer Surfaces and Interfaces: 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop