Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,129)

Search Parameters:
Keywords = environmental isolate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
47 pages, 845 KB  
Article
Chain Leader Policy and Corporate Environmental Sustainability: A Multi-Level Analysis of Greenwashing Mitigation Mechanisms
by Ying Ke, Yueqi Wen and Lili Teng
Sustainability 2025, 17(19), 8871; https://doi.org/10.3390/su17198871 (registering DOI) - 4 Oct 2025
Abstract
Corporate greenwashing has emerged as a pervasive and systemic threat to global sustainability efforts, undermining regulatory effectiveness and obstructing progress toward multiple United Nations Sustainable Development Goals. As environmental opportunism increasingly diffuses across interconnected industrial supply networks, it evolves from isolated corporate misconduct [...] Read more.
Corporate greenwashing has emerged as a pervasive and systemic threat to global sustainability efforts, undermining regulatory effectiveness and obstructing progress toward multiple United Nations Sustainable Development Goals. As environmental opportunism increasingly diffuses across interconnected industrial supply networks, it evolves from isolated corporate misconduct into a chain-level governance challenge with significant systemic risks. Traditional governance mechanisms—whether market-based self-regulation or top-down administrative control—have proven insufficient, while the effectiveness of hybrid approaches integrating administrative coordination with market dynamics remains largely unexplored. This study investigates China’s Chain Leader Policy, a novel hybrid governance model that combines formal administrative authority with market coordination mechanisms to systematically address environmental opportunism across industrial supply networks, and its impact on mitigating greenwashing. Employing a multi-period difference-in-differences design on 12,334 firm-year observations of Chinese A-share listed companies from 2011 to 2023, we find that the policy reduces corporate greenwashing by 10.8% through four pathways: stabilizing supply–demand relationships, reducing coordination costs, fostering green collaborative innovation, and enhancing external scrutiny via social networks. Coercive isomorphism strengthens these effects, while mimetic isomorphism weakens them; impacts are more pronounced in state-owned enterprises, firms with stronger green awareness and higher levels of internationalization, and in more concentrated industries. By operationalizing embedded autonomy theory in an environmental governance context, this research extends theoretical understanding of hybrid governance mechanisms, offers robust empirical evidence for designing policies to curb greenwashing, and provides a replicable framework for achieving corporate environmental sustainability worldwide. Full article
24 pages, 5277 KB  
Article
Bacillus subtilis Strain TCX1 Isolated from Ambrosia artemisiifolia: Enhancing Cucumber Growth and Biocontrol Against Cucumber Fusarium Wilt
by Yuzhu Dong, Mengzhuo Zhu, Yingwen Zhao, Enjing Yi, Jing Zhang, Ze Wang, Chenxi Wang, Cuimei Yu and Lianju Ma
Plants 2025, 14(19), 3068; https://doi.org/10.3390/plants14193068 (registering DOI) - 4 Oct 2025
Abstract
Fusarium wilt disease, caused by Fusarium oxysporum f. sp. cucumerinum (FOC), leads to widespread yield losses and quality deterioration in cucumber. Endophytes, as environmentally friendly control agents that enhance pathogen resistance in their host plants, may mitigate these problems. In this [...] Read more.
Fusarium wilt disease, caused by Fusarium oxysporum f. sp. cucumerinum (FOC), leads to widespread yield losses and quality deterioration in cucumber. Endophytes, as environmentally friendly control agents that enhance pathogen resistance in their host plants, may mitigate these problems. In this study, we isolated 14 endophytic bacteria from invasive Ambrosia artemisiifolia and screened the strain Bacillus subtilis TCX1, which exhibited significant antagonistic activity against FOC (inhibitory rate of 86.0%). TCX1 killed Fusarium oxysporum by being highly likely to produce lipopeptide and producing wall hydrolytic enzymes including protease, cellulase, and β-glucanase, thereby inhibiting mycelial growth and spore germination and causing peroxidation of FOC’s cytoplasmic membrane. In addition to its direct effects, TCX1 exerts indirect effects by inducing cucumber resistance to FOC. When cucumber seedlings were inoculated with TCX1, antioxidant enzymes related to disease resistance, including Superoxide dismutase (SOD), Peroxidase (POD), Polyphenol oxidase (PPO) and Phenylalanine ammonialyase (PAL) in cucumber, were significantly increased. The marker genes involved in induced systemic resistance and the salicylic acid signaling pathway, such as npr1, pr1a, pr2, pr9, lox1, and ctr1, were also dramatically upregulated, indicating these pathways played an important role in improving cucumber resistance. Notably, TCX1 can also promote cucumber growth through producing indole-3-acetic acid, solubilizing phosphate, and secreting siderophores. Given that TCX1 has dual functions as both a biological control agent and a biofertilizer, it offers an effective strategy for managing cucumber seedling blight while enhancing plant productivity. Full article
(This article belongs to the Section Plant Protection and Biotic Interactions)
Show Figures

Figure 1

35 pages, 2599 KB  
Article
Integrated Evaluation of C-ITS Services: Synergistic Effects of GLOSA and CACC on Traffic Efficiency and Sustainability
by Manuel Walch and Matthias Neubauer
Sustainability 2025, 17(19), 8855; https://doi.org/10.3390/su17198855 - 3 Oct 2025
Abstract
Cooperative Intelligent Transport Systems (C-ITS) have emerged as a key enabler of more efficient, safer, and environmentally sustainable road traffic by allowing vehicles and infrastructure to exchange information and coordinate behavior. To evaluate their benefits, impact assessment studies are essential. However, most existing [...] Read more.
Cooperative Intelligent Transport Systems (C-ITS) have emerged as a key enabler of more efficient, safer, and environmentally sustainable road traffic by allowing vehicles and infrastructure to exchange information and coordinate behavior. To evaluate their benefits, impact assessment studies are essential. However, most existing studies focus on individual C-ITS services in isolation, overlooking how combined deployments influence outcomes. This study addresses this gap by presenting the first systematic evaluation of individual and joint deployments of Cooperative Adaptive Cruise Control (CACC) and Green Light Optimal Speed Advisory (GLOSA) under diverse conditions. A dual-model simulation framework is applied, combining controlled artificial networks with calibrated real-world corridors in Upper Austria. This allows both statistical testing and validation of plausibility in real-world contexts. Key performance indicators include travel time and CO2 emissions, evaluated across varying lane configurations, numbers of traffic lights, demand levels, and equipment rates. The results demonstrate that C-ITS effectiveness is strongly context-dependent: while CACC generally provides larger efficiency gains, GLOSA yields consistent emission reductions, and the combined deployment offers conditional synergies but may also diminish benefits at high demand. The study contributes a guideline for selecting service configurations based on site conditions, thereby providing practical recommendations for future C-ITS rollouts. Full article
(This article belongs to the Special Issue Sustainable Traffic Flow Management and Smart Transportation)
16 pages, 390 KB  
Article
Distal Upper Limb Injuries in Skiing and Snowboarding: A Two-Season Study from a High-Volume Trauma Center in the Italian Dolomites
by Michele Paolo Festini Capello, Nicola Bizzotto, Fjorela Qordja, Svea Misselwitz, Chiara Sernia, Salvatore Gioitta Iachino, Giuseppe Petralia, Valerie A. A. van Es, Pier Francesco Indelli and Christian Schaller
Medicina 2025, 61(10), 1787; https://doi.org/10.3390/medicina61101787 - 3 Oct 2025
Abstract
Background and Objectives: Distal upper limb injuries are frequent in winter sports, but their functional impact is often underestimated. This study aimed to describe the epidemiology, mechanisms, and risk factors for injuries involving the forearm, wrist, hand, and fingers sustained during two consecutive [...] Read more.
Background and Objectives: Distal upper limb injuries are frequent in winter sports, but their functional impact is often underestimated. This study aimed to describe the epidemiology, mechanisms, and risk factors for injuries involving the forearm, wrist, hand, and fingers sustained during two consecutive winter seasons in the Italian Dolomites. Materials and Methods: All adult and willing patients presenting to the Emergency Department of Brixen Hospital after ski- or snowboard-related accidents between December 2023 and March 2025 completed a standardized 23-item questionnaire on demographics, experience level, environmental factors, equipment, and trauma mechanism. For the aim of this study only distal upper limb injuries were extracted and analyzed. Statistical analyses compared fracture versus non-fracture injuries, “good” versus “bad” fractures (AO classification and surgical complexity), and isolated ulnar collateral ligament (UCL) injuries. Results: A total of 195 patients were analyzed: 96 (49.2%) sustained a fracture and 33 (16.9%) presented with isolated UCL lesions. Fractures occurred more frequently on blue slopes (56.2% vs. 33.3%, p < 0.001), whereas non-fracture injuries predominated on red and off-piste slopes. Age, BMI, and skill level did not differ significantly between groups. Surgically classified complex distal forearm fractures were significantly more frequent in females (p < 0.005) but were not associated with environmental factors. UCL injuries occurred mainly on red slopes (54.5%) and were often related to pole entrapment during falls. None of the injured patients reported the use of protective wrist or thumb supports. Conclusions: Distal upper limb injuries are a common pattern of alpine sports trauma, with wrist fractures and skier’s thumb being predominant lesions. Low-speed falls on easy slopes are associated with wrist fractures, while UCL injuries are linked to intermediate slopes. Preventive strategies should include fall technique education, protective gloves, and improved pole ergonomics. Full article
(This article belongs to the Section Orthopedics)
Show Figures

Figure A1

20 pages, 2427 KB  
Article
Role of Enzymes and Metabolites Produced by Bacillus spp. in the Suppression of Meloidogyne incognita in Tomato
by Mariana Viana Castro, Luanda Medeiros Santana, Everaldo Antônio Lopes, Walter Vieira da Cunha, Vittoria Catara, Giulio Dimaria and Liliane Evangelista Visotto
Horticulturae 2025, 11(10), 1189; https://doi.org/10.3390/horticulturae11101189 - 2 Oct 2025
Abstract
The management of Meloidogyne incognita often depends on chemical nematicides, which pose environmental and health risks. This study investigated the potential of bacterial strains isolated from uncultivated native soil as biocontrol agents and plant growth-promoting rhizobacteria (PGPR) in tomato plants artificially infected with [...] Read more.
The management of Meloidogyne incognita often depends on chemical nematicides, which pose environmental and health risks. This study investigated the potential of bacterial strains isolated from uncultivated native soil as biocontrol agents and plant growth-promoting rhizobacteria (PGPR) in tomato plants artificially infected with this nematode. Fifteen strains were screened in vitro for nematicidal and ovicidal activity, and four promising strains (307, GB16, GB24, and GB29) were selected for greenhouse trials. All strains reduced the nematode reproduction factor and the number of nematodes/g of root. Strains 307 and GB24 showed the highest reductions, 61.39 and 57.24%, respectively. Despite some positive physiological trends, Bacillus spp. did not promote a significant increase in plant growth. Metabolomic analysis revealed that the strains produced a wide range of primary metabolites with potential nematicidal activity. All strains also secreted proteases and chitinases, enzymes linked to nematode cuticle degradation. Preliminary identification based on the 16S rRNA gene and phylogenetic analysis grouped the four strains into the Bacillus subtilis group (strains GB16, GB29 and 307) or Bacillus cereus group (strain GB24); however, genome sequencing will be required in future studies. Overall, strains 307 and GB24 demonstrated strong biocontrol potential, supporting their use as sustainable and complementary alternatives to chemical nematicides. Full article
(This article belongs to the Special Issue Horticultural Plant Disease Management Using Advanced Biotechnology)
Show Figures

Graphical abstract

20 pages, 1151 KB  
Article
Valorization of Amazonian Fruit Biomass for Biosurfactant Production and Nutritional Applications
by Alan Moura Feio, Giulian César da Silva Sá, Alexandre Orsato, Karoline Leite, Lucas Mariano Siqueira Pimentel, Joane de Almeida Alves, Glenda Soares Gomes, Evelly Oliveira Ramos, Cristina M. Quintella, Sinara Pereira Fragoso, José Augusto Pires Bitencourt, Emilly Cruz da Silva and Sidnei Cerqueira dos Santos
Biomass 2025, 5(4), 60; https://doi.org/10.3390/biomass5040060 - 2 Oct 2025
Abstract
Processing economically and socio-culturally significant Amazonian fruits—andiroba (Carapa guianensis Aubl.), açai (Euterpe oleracea Mart.), and babassu (Attalea speciosa Mart. ex Spreng.)—generates substantial biomass waste, posing critical environmental and waste management challenges. This study explored the valorization of these abundant residual [...] Read more.
Processing economically and socio-culturally significant Amazonian fruits—andiroba (Carapa guianensis Aubl.), açai (Euterpe oleracea Mart.), and babassu (Attalea speciosa Mart. ex Spreng.)—generates substantial biomass waste, posing critical environmental and waste management challenges. This study explored the valorization of these abundant residual biomasses as sustainable feedstocks for biosurfactant production by bacterium Pseudomonas aeruginosa P23G-02, while simultaneously profiling their nutritional value and broader implications for a circular bioeconomy. Through liquid fermentation, biosurfactants were produced at an approximate yield of 6 mg/mL. The isolated biosurfactants exhibited favorable properties, including emulsification indices of around 60% and surface tension reduction to below 30 mN/m, with the andiroba-derived biosurfactant identified as a rhamnolipid type. Nutritional profiling of the residues revealed significant energy values, reaching up to 656 kcal/100 g, with açai and babassu residues being carbohydrate-rich (exceeding 80%), and andiroba residues exhibiting a high lipid profile (up to 57%). These distinct compositions critically influenced biosurfactant yield. These findings underscore the viability of Amazonian fruit biomass as valuable resources for developing eco-friendly bioproducts and innovative waste management solutions. While highlighting a promising pathway for circular bioeconomy development, future research should address biosafety and explore alternative microbial hosts for applications in sensitive sectors such as food and nutrition. Full article
Show Figures

Figure 1

13 pages, 1618 KB  
Article
Application Potential of Lysinibacillus sp. UA7 for the Remediation of Cadmium Pollution
by Yue Liang, Peng Zhao, Haoran Shi and Feiyan Xue
BioChem 2025, 5(4), 34; https://doi.org/10.3390/biochem5040034 - 2 Oct 2025
Abstract
Background: Cadmium (Cd) pollution poses a significant environmental challenge. Microbially induced carbonate precipitation (MICP), an advanced bioremediation approach, relies on the co-precipitation of soluble metals with the microbial hydrolysate from urea. This study isolated a urease-producing strain and evaluated its Cd remediation [...] Read more.
Background: Cadmium (Cd) pollution poses a significant environmental challenge. Microbially induced carbonate precipitation (MICP), an advanced bioremediation approach, relies on the co-precipitation of soluble metals with the microbial hydrolysate from urea. This study isolated a urease-producing strain and evaluated its Cd remediation potential. Methods: The isolated strain UA7 was identified through 16S rDNA gene sequencing. Urease production was enhanced by optimizing the culture conditions, including temperature, dissolved oxygen levels—which were affected by the rotational speed and the design of the Erlenmeyer flask, and the concentration of urea added. Its Cd remediation efficacy was assessed both in water and soil. Results: UA7 was identified as Lysinibacillus sp., achieving peak urease activity of 188 U/mL. The immobilization rates of soluble Cd reached as high as 99.61% and 63.37%, respectively, at initial concentrations of 2000 mg/L in water and 50 mg/kg in soil. The mechanism of Cd immobilization by strain UA7 via MICP was confirmed by the microstructure of the immobilized products with attached bacteria, characteristic absorption peaks, and the formed compound Ca0.67Cd0.33CO3, which were analyzed using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The Cd-remediation effect of strain UA7, which reduces lodging in wheat plants, prevents the thinning and yellowing of stems and leaves, and hinders the transition of soluble Cd to the above-ground parts of the plant, was also demonstrated in a pot experiment. Conclusions: Therefore, Lysinibacillus sp. UA7 exhibited high potential for efficiently remediating contaminated Cd. Full article
Show Figures

Graphical abstract

28 pages, 1200 KB  
Article
Regulating Green Finance and Managing Environmental Risks in the Conditions of Global Uncertainty
by Elena G. Popkova, Tatiana N. Litvinova, Elena Petrenko and Aleksei V. Bogoviz
J. Risk Financial Manag. 2025, 18(10), 552; https://doi.org/10.3390/jrfm18100552 - 1 Oct 2025
Abstract
This paper’s goal was to determine the state of green financing and reveal the main aspects of its regulation and influence on environmental risk management in the conditions of the growth of global uncertainty. Based on the sample that contains the top 10 [...] Read more.
This paper’s goal was to determine the state of green financing and reveal the main aspects of its regulation and influence on environmental risk management in the conditions of the growth of global uncertainty. Based on the sample that contains the top 10 countries of the world with a higher level of green economic capabilities in 2024, by the assessment for developed and developing countries in isolation, we performed regression analysis of the following: (1) Dependence of environmental costs of GDP on the volume of green investments; (2) Dependence of the volume of green investments on the application of the measures of state regulation of green finance. As a result, we proved that in developed countries, the growth of the activity of green investing in the economy leads to a reduction in the environmental costs of GDP, and in developing countries, an increase in the environmental costs of GDP. Unlike developed countries, in which green investments are not determined by the influence of the factors of state regulation, the implementation of the measures of state regulation of green finance in developing countries ensures the inflow of green investments into the economy. This paper’s novelty, compared to the existing literature, is that it discloses previously unknown differences in the character of the influence of the factors of state regulation of green finance on green investments in the economy and differences in the consequences of the activity of investing for environmental risks in different categories of countries (in particular, differences between developed and developing countries) and at different phases of the economic cycle (in the conditions of relative stability and in the conditions of global instability). The established regularities of the development of green finance under the influence of state regulation measures in developed and developing countries will raise the precision of forecasting and planning of this development in support of green economic growth and decarbonization. The revealed differences between developed and developing countries will allow forming a strategy of development of green finance in each category of countries, given their specifics, and thus, achieving the growth of these strategies’ effectiveness. The proposed policy implications for the reduction in environmental risks through the improvement of state regulation of green finance in developed and developing countries, given their revealed specifics, have practical significance. Full article
Show Figures

Figure 1

12 pages, 1742 KB  
Article
Climate Change and Severe Drought Impact on Aflatoxins and Fungi in Brazil Nuts: A Molecular Approach
by Ariane Mendonça Kluczkovski, Janaína Santos Barroncas, Hanna Lemos, Heloisa Lira Barros, Leiliane Sodré, Liliana de Oliveira Rocha, Taynara Souza Soto, Maria Luana Vinhote and Augusto Kluczkovski
Int. J. Mol. Sci. 2025, 26(19), 9592; https://doi.org/10.3390/ijms26199592 - 1 Oct 2025
Abstract
The Brazil nut production chain, which is reliant on Amazonian environmental conditions, is significantly affected by climate change, particularly extreme droughts, which decrease production and compromise sanitary quality. This study evaluated the influence of severe drought on aflatoxin concentrations and sequence toxigenic fungi [...] Read more.
The Brazil nut production chain, which is reliant on Amazonian environmental conditions, is significantly affected by climate change, particularly extreme droughts, which decrease production and compromise sanitary quality. This study evaluated the influence of severe drought on aflatoxin concentrations and sequence toxigenic fungi in Brazil nuts harvested during the 2023 off-season. Aflatoxins were quantified using high-performance liquid chromatography, while fungal sequencing involved DNA extraction, PCR, and sequencing analysis. Findings indicated that all Brazil nut samples collected during extreme drought contained detectable aflatoxins, with 10% exceeding the legal threshold of 10 µg/kg. Phylogenetic analysis identified four isolates as Penicillium citrinum. Additional morphological and sequencing analyses identified Aspergillus species from the Circumdati and Flavi sections, although one isolate could not be taxonomically classified. These results demonstrate the aflatoxin production by fungi in Brazil nuts in an unprecedented way under drought conditions. Furthermore, the diversity of fungal species during drought underscores the risk of contamination, emphasizing the necessity for monitoring future harvests to improve management and ensure product safety. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Graphical abstract

18 pages, 1728 KB  
Article
Biocide-Containing Facades Alter Culture-Based Bacterial and Fungal Community Composition and Resistance Patterns to Octylisothiazolinone
by Michał Ciok, Julia Diener, Franziska Otte, Julie Feimer, Moritz Nichterlein, Stefan Kalkhof and Matthias Noll
Microorganisms 2025, 13(10), 2284; https://doi.org/10.3390/microorganisms13102284 - 30 Sep 2025
Abstract
Microbial communities are known to colonize biocide-free (BFFs) and even biocide-containing façades (BCFs) under various environmental conditions, leading to loss of value of façades due to biologically caused aging and discoloration. The first objective of this study was to characterize the bacterial and [...] Read more.
Microbial communities are known to colonize biocide-free (BFFs) and even biocide-containing façades (BCFs) under various environmental conditions, leading to loss of value of façades due to biologically caused aging and discoloration. The first objective of this study was to characterize the bacterial and fungal cultivation-based communities present on BCFs and BFFs after one year of outdoor exposure. The second objective was to assess their tolerance to biocide octylisothiazolinone (OIT), which was only present on the BCFs. Culture-based analysis revealed significant differences in bacterial community composition between the BFFs and BCFs. Fungal isolates also varied, with Penicillium predominantly found on the BCFs and Vishniacozyma and Memnoniella on the BFFs. MIC testing showed that the isolates from the BCFs exhibited slightly higher tolerance to OIT than those from the BFFs, although the differences were not statistically significant. Notably, several bacterial genera identified in both façade types—Clavibacter, Micrococcus, Nocardioides, Rhodococcus, and Streptomyces—as well as the fungal genus Penicillium, have previously been reported to degrade biocides. These findings demonstrate that both BF and BC façades support taxonomically diverse and resilient microbial communities within a relatively short exposure period. While minor shifts in biocide tolerance were observed, the lack of significant differences suggests that microbial adaptation to biocide-containing façades may be more complex and gradual, underscoring the need for time-resolved and functional studies to better understand microbial adaptation to biocide in façades. Full article
(This article belongs to the Section Antimicrobial Agents and Resistance)
Show Figures

Figure 1

14 pages, 2970 KB  
Article
Cost-Effective and High-Throughput LPS Detection via Microdroplet Technology in Biopharmaceuticals
by Adriano Colombelli, Daniela Lospinoso, Valentina Arima, Vita Guarino, Alessandra Zizzari, Monica Bianco, Elisabetta Perrone, Luigi Carbone, Roberto Rella and Maria Grazia Manera
Biosensors 2025, 15(10), 649; https://doi.org/10.3390/bios15100649 - 30 Sep 2025
Abstract
Lipopolysaccharides (LPS) from Gram-negative bacteria represent a significant challenge across various industries due to their prevalence and pathogenicity and the limitations of existing detection methods. Traditional approaches, such as the rabbit pyrogen test (RPT) and the Limulus Amebocyte Lysate (LAL) assay, have served [...] Read more.
Lipopolysaccharides (LPS) from Gram-negative bacteria represent a significant challenge across various industries due to their prevalence and pathogenicity and the limitations of existing detection methods. Traditional approaches, such as the rabbit pyrogen test (RPT) and the Limulus Amebocyte Lysate (LAL) assay, have served as gold standards for endotoxin detection. However, these methods are constrained by high costs, lengthy processing times, environmental concerns, and the need for significant reagent volumes, which limit their scalability and application in resource-limited settings. In this study, we introduce an innovative microfluidic platform that integrates the LAL assay within microdroplets, addressing the critical limitations of traditional techniques. By leveraging the precise fluid control and reaction isolation offered by microdroplet technology, the system reduces reagent consumption, enhances sensitivity, and enables high-throughput analysis. Calibration tests were performed to validate the platform’s ability to detect LPS, using colorimetric measurements. Results demonstrated comparable or improved performance relative to traditional systems, achieving lower detection limits and greater accuracy. This work demonstrates a proof-of-concept miniaturisation of the pharmacopoeial LAL assay. The method yielded low intra-assay variability (σ ≈ 0.002 OD; CV ≈ 0.9% over n = 50 droplets per point) and a LOD estimated from calibration statistics after path-length normalisation. Broader adoption will require additional comparative validation and standardisation. This scalable, cost-effective, and environmentally sustainable approach offers a practical solution for endotoxin detection in clinical diagnostics, biopharmaceutical production, and environmental monitoring. The proposed technology paves the way for advanced LPS detection methods that meet stringent safety standards while improving efficiency, affordability, and adaptability for diverse applications. Full article
(This article belongs to the Special Issue Advanced Microfluidic Devices and MEMS in Biosensing Applications)
Show Figures

Figure 1

19 pages, 2249 KB  
Article
Evaluation of Listeria monocytogenes Dissemination in a Beef Steak Tartare Production Chain
by Simone Stella, Carlo Angelo Sgoifo Rossi, Francesco Pomilio, Gabriella Centorotola, Marina Torresi, Alexandra Chiaverini, Maria Filippa Addis, Cristian Bernardi, Martina Penati, Clara Locatelli, Paolo Moroni, Silvia Grossi, Viviana Fusi, Paolo Urgesi and Erica Tirloni
Foods 2025, 14(19), 3372; https://doi.org/10.3390/foods14193372 - 29 Sep 2025
Abstract
This study evaluated the diffusion of Listeria monocytogenes (LM) in a beef steak tartare production chain, aiming to (1) evaluate Listeria spp. diffusion in finishing farms supplying beef cattle, (2) evaluate LM prevalence in carcasses, and (3) map LM diffusion in the production [...] Read more.
This study evaluated the diffusion of Listeria monocytogenes (LM) in a beef steak tartare production chain, aiming to (1) evaluate Listeria spp. diffusion in finishing farms supplying beef cattle, (2) evaluate LM prevalence in carcasses, and (3) map LM diffusion in the production plant. A detection rate of 6/76 was observed in the farm, while carcasses after skinning and before refrigeration tested positive in 19/30 and 11/30, respectively. During tartare production, 57/154 meat and 35/191 environmental samples tested positive. A total of 114 LM isolates were characterized via a whole-genome sequencing approach. Five clonal complexes (CCs) and seven sequence types (STs) were identified, with CC9-ST580 being the most prevalent. Four clusters were identified from both the slaughtering and production phases. Genes related to resistance to fosfomycin, quinolones, sulfonamides, lincosamide, and tetracycline were detected. Two hypervirulent strains (CC6-ST6 and CC2-ST145), harboring a full-length inlA, several virulence genes, and stress islands, were detected. Stress Survival Islet 1 was found in almost all the isolates. The wide diffusion of LM in steak tartare requires the management of some critical phases of the production chain (mainly slaughtering); genomic methodologies could be useful in describing the circulation and virulence of LM strains. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

18 pages, 730 KB  
Article
Redefining High-Risk and Mobile Population in Pakistan Polio Eradication Program; 2024
by Irshad Ali Sodhar, Jaishri Mehraj, Anum S. Hussaini, Shabbir Ahmed, Ahmed Ali Shaikh, Asif Ali Zardari, Sundeep Sahitia, Shumaila Rasool, Azeem Khowaja and Erin M. Stuckey
Vaccines 2025, 13(10), 1016; https://doi.org/10.3390/vaccines13101016 - 29 Sep 2025
Abstract
Background: This study aimed to analyze the patterns and underlying reasons associated with population movement across Sindh, Pakistan. Methods: Cross-sectional surveys were conducted in response to the detection of WPV1 in various districts in Sindh province, where genetic linkages with poliovirus isolates in [...] Read more.
Background: This study aimed to analyze the patterns and underlying reasons associated with population movement across Sindh, Pakistan. Methods: Cross-sectional surveys were conducted in response to the detection of WPV1 in various districts in Sindh province, where genetic linkages with poliovirus isolates in Karachi had been identified. The surveys targeted union councils (UCs) contributing sewage to the environmental sample collection sites where WPV1 was detected. Results: In the Karachi division a total of 1392 participants were interviewed, and outside Karachi 1471 participants were included. A significantly higher proportion of female participants were interviewed in Karachi (n = 72, 55.0%) compared to other divisions of Sindh (n = 794, 45.0%) (p < 0.001). Linguistic distribution varied significantly between regions, with Pashto speakers predominating in Karachi (n = 336, 86.4%), and Sindhi in other divisions (n = 501, 79.4%) (p < 0.001). OPV coverage exceeded 90% across all districts, and over 85% of children received RI vaccines. Travel patterns also differed significantly; participants from Karachi (n = 686, 44.2%) were less likely to report travel compared to other divisions (n = 865, 55.8%), who frequently traveled for family events, business, or employment (p < 0.001). Conclusions: It is critical to redefine high-risk populations annually based on updated mobility data, social survey analyses, and virus detection via surveillance to better identify and reach unvaccinated children in the Pakistan polio program. In addition, strategically placed PTPs along both formal and informal travel corridors based on an updated risk framework will enhance vaccination, thereby reducing the risk of virus spread. Full article
(This article belongs to the Special Issue Vaccination Uptake and Public Health)
Show Figures

Figure 1

23 pages, 708 KB  
Article
Sustainable Strategies for Raspberry Production: Greenhouse Gas Mitigation Through Biodegradable Substrate Additives in High Tunnels
by Monika Komorowska, Maciej Kuboń, Marcin Niemiec, Justyna Tora, Małgorzata Okręglicka and Arunee Wongkaew
Sustainability 2025, 17(19), 8740; https://doi.org/10.3390/su17198740 - 29 Sep 2025
Abstract
Fruit production is a high environmental impact sector, requiring sustainable strategies that reduce greenhouse gas (GHG) emissions, improve resource efficiency, and maintain fruit quality. This study assessed the environmental performance of innovative substrates with biodegradable additives and organic binders in tunnel-grown raspberry production. [...] Read more.
Fruit production is a high environmental impact sector, requiring sustainable strategies that reduce greenhouse gas (GHG) emissions, improve resource efficiency, and maintain fruit quality. This study assessed the environmental performance of innovative substrates with biodegradable additives and organic binders in tunnel-grown raspberry production. The functional unit was 1 kg of marketable fruit, and the experiment was conducted in Karwia, Poland. GHG emissions were calculated for eight substrate variants following ISO 14040 and 14041 guidelines. The baseline was coconut fiber, while modified variants included the additions of sunflower husk biochar and/or a wood-industry isolate, representing sustainable strategies in soilless cultivation. Emissions ranged from 0.728 to 1.226 kg CO2 eq/kg of raspberries, with the control showing the highest values. All modified substrates (produced based on a mixture of biochar and isolate) reduced emissions, with the most efficient variant achieving nearly a 40% decrease. Water use efficiency was decisive, as consumption declined from 2744 m3/ha (control) to 1838 m3/ha in improved variants. Substrate air–water properties proved critical for both environmental and economic outcomes. The findings confirm that substrate modification constitutes an effective, sustainable strategy for raspberry production under high tunnels, supporting climate-smart horticulture and resource-efficient food systems. Full article
(This article belongs to the Special Issue Sustainable Agricultural and Rural Development)
Show Figures

Figure 1

23 pages, 5554 KB  
Article
Innovative Forecasting: “A Transformer Architecture for Enhanced Bridge Condition Prediction”
by Manuel Fernando Flores Cuenca, Yavuz Yardim and Cengis Hasan
Infrastructures 2025, 10(10), 260; https://doi.org/10.3390/infrastructures10100260 - 29 Sep 2025
Abstract
The preservation of bridge infrastructure has become increasingly critical as aging assets face accelerated deterioration due to climate change, environmental loading, and operational stressors. This issue is particularly pronounced in regions with limited maintenance budgets, where delayed interventions compound structural vulnerabilities. Although traditional [...] Read more.
The preservation of bridge infrastructure has become increasingly critical as aging assets face accelerated deterioration due to climate change, environmental loading, and operational stressors. This issue is particularly pronounced in regions with limited maintenance budgets, where delayed interventions compound structural vulnerabilities. Although traditional bridge inspections generate detailed condition ratings, these are often viewed as isolated snapshots rather than part of a continuous structural health timeline, limiting their predictive value. To overcome this, recent studies have employed various Artificial Intelligence (AI) models. However, these models are often restricted by fixed input sizes and specific report formats, making them less adaptable to the variability of real-world data. Thus, this study introduces a Transformer architecture inspired by Natural Language Processing (NLP), treating condition ratings, and other features as tokens within temporally ordered inspection “sentences” spanning 1993–2024. Due to the self-attention mechanism, the model effectively captures long-range dependencies in patterns, enhancing forecasting accuracy. Empirical results demonstrate 96.88% accuracy for short-term prediction and 86.97% across seven years, surpassing the performance of comparable time-series models such as Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRUs). Ultimately, this approach enables a data-driven paradigm for structural health monitoring, enabling bridges to “speak” through inspection data and empowering engineers to “listen” with enhanced precision. Full article
Show Figures

Figure 1

Back to TopTop