Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (315)

Search Parameters:
Keywords = environmental radioactivity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2845 KB  
Article
Poisson Mean Homogeneity: Single-Observation Framework with Applications
by Xiaoping Shi, Augustine Wong and Kai Kaletsch
Symmetry 2025, 17(10), 1702; https://doi.org/10.3390/sym17101702 - 10 Oct 2025
Abstract
Practical problems often drive the development of new statistical methods by presenting real-world challenges. Testing the homogeneity of n independent Poisson means when only one observation per population is available is considered in this paper. This scenario is common in fields where limited [...] Read more.
Practical problems often drive the development of new statistical methods by presenting real-world challenges. Testing the homogeneity of n independent Poisson means when only one observation per population is available is considered in this paper. This scenario is common in fields where limited data from multiple sources must be analyzed to determine whether different groups share the same underlying event rate or mean. These settings often exhibit underlying structural or spatial symmetries that influence statistical behavior. Traditional methods that rely on large sample sizes are not applicable. Hence, it is crucial to develop techniques tailored to the constraints of single observations. Under the null hypothesis, with large n and a fixed common mean λ, the likelihood ratio test statistic (LRTS) is shown to be asymptotically normally distributed, with the mean and variance being approximated by a truncation method and a parametric bootstrap method. Moreover, with fixed n and large λ, under the null hypothesis, the LRTS is shown to be asymptotically distributed as a chi-square with n1 degrees of freedom. The Bartlett correction method is applied to improve the accuracy of the asymptotic distribution of the LRTS. We highlight the practical relevance of the proposed method through applications to wildfire and radioactive event data, where correlated observations and sparse sampling are common. Simulation studies further demonstrate the accuracy and robustness of the test under various scenarios, making it well-suited for modern applications in environmental science and risk assessment. Full article
(This article belongs to the Special Issue Mathematics: Feature Papers 2025)
Show Figures

Figure 1

20 pages, 813 KB  
Article
Fast Trace Detection of Chlorpyrifos Vapors Using a Handheld Ion Mobility Spectrometer Operated near Ambient Temperature
by Victor Bocoș-Bințințan, Ancuța-Maria Dodea, Tomáš Rozsypal, Adrian Pătruț, Gheorghe Roșian, Aurel-Vasile Martiniuc, Alin-Gabriel Moraru, Simina Vasc and Maria-Paula Bocoș-Bințințan
Toxics 2025, 13(10), 843; https://doi.org/10.3390/toxics13100843 - 2 Oct 2025
Viewed by 260
Abstract
Chlorpyrifos CPF (O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate), known also as Chlorpyrifos-ethyl, is one of the most utilized organophosphorus pesticides worldwide. Additionally, CPF could be used as a chemical warfare agent surrogate. Although its acute toxicity is not high, it is responsible for both a large [...] Read more.
Chlorpyrifos CPF (O,O-diethyl O-(3,5,6-trichloro-2-pyridyl) phosphorothioate), known also as Chlorpyrifos-ethyl, is one of the most utilized organophosphorus pesticides worldwide. Additionally, CPF could be used as a chemical warfare agent surrogate. Although its acute toxicity is not high, it is responsible for both a large number of intoxications and chronic, delayed neurological effects. In this work, it is reported for the first time the qualitative and quantitative response produced by CPF vapors, using a pocket-held Time-of-Flight Ion Mobility Spectrometer (ToF IMS) with a non-radioactive ionization source and ammonia doping, model LCD-3.2E (Smiths Detection Ltd.), operated near ambient temperature (below 30 °C). Spectra of CPF in positive ion mode included two distinct product ion peaks; thus, identification of CPF vapors by IMS relies on these peaks—the monomer M·NH4+ with reduced ion mobility K0 = ca. 1.76 cm2 V−1 s−1 and the dimer M2·NH4+ with K0 = ca. 1.47 cm2 V−1 s−1 (where M may be assignable to CPF molecule)—and positive reactant ions (Pos RIP) have K0 = ca. 2.25 cm2 V−1 s−1. Excellent sensitivity, with a limit of detection LOD of 0.72 ppbv (10.5 μg m−3) and a limit of quantification LOQ of 2.41 ppbv (35.1 μg m−3), has been noticed; linear response was up to 100 ppbv, while saturation occurs over ca. 1000 ppbv (14.6 mg m−3). Our results demonstrate that this method provides a robust tool for both off-site and on-site detecting and quantifying CPF vapors at trace levels, which has strong implications for either industrial hygiene or forensic investigations concerning the pesticide Chlorpyrifos, as well as for monitoring of environmental contamination by organophosphorus pesticides. Full article
(This article belongs to the Section Agrochemicals and Food Toxicology)
Show Figures

Graphical abstract

13 pages, 250 KB  
Article
AHP-Based Methodological Proposal for Identifying Suitable Sites for the Italian Near-Surface Repository
by Giambattista Guidi, Anna Carmela Violante and Francesca Romana Macioce
J. Nucl. Eng. 2025, 6(4), 39; https://doi.org/10.3390/jne6040039 - 26 Sep 2025
Viewed by 251
Abstract
The selection of suitable sites for the disposal of radioactive waste constitutes a critical component of nuclear waste management. This study presents an original methodological proposal based on the Analytic Hierarchy Process (AHP), designed to support early-stage site screening for a near-surface repository [...] Read more.
The selection of suitable sites for the disposal of radioactive waste constitutes a critical component of nuclear waste management. This study presents an original methodological proposal based on the Analytic Hierarchy Process (AHP), designed to support early-stage site screening for a near-surface repository in Italy. AHP could be used to identify appropriate locations, focusing on 51 areas that have already undergone a preliminary screening phase. These areas, included in the National Map of Suitable Areas (CNAI), were selected as they fulfill all the technical requirements (geological, geomorphological, and hydraulic stability) necessary to ensure the safety performance of the engineering structures to be implemented through multiple artificial barriers, as specified in Technical Guide N. 29. The proposed methodology is applicable in cases where multiple sites listed in the CNAI have been identified as potential candidates for hosting the repository. A panel of 20 multidisciplinary experts, including engineers, environmental scientists, sociologists, and economists, evaluated two environmental, two economic, and two social criteria not included among the criteria outlined in Technical Guide N. 29. Pairwise comparisons were aggregated using the geometric mean, and consistency ratios (CRs) were calculated to ensure the coherence of expert judgements. Results show that social criteria received the highest overall weight (0.53), in particular the “degree of site acceptability”, followed by environmental (0.28) and economic (0.19) criteria. While the method does not replace detailed site investigations (which will nevertheless be carried out once the site has been chosen), it can facilitate the early identification of promising areas and guide future engagement with local communities. The approach is reproducible, adaptable to additional criteria or national requirements, and may be extended to other countries facing similar nuclear waste management challenges. Full article
Show Figures

Graphical abstract

28 pages, 3424 KB  
Article
Evaluation of Long-Term Environmental Impact and Radiological Risks at a Former Thorium and Rare Earth Site in North-Eastern Kazakhstan
by Zhanat Idrisheva, Iwona Ostolska, Ewa Skwarek, Gulzhan Daumova, Małgorzata Wiśniewska, Togzhan Toktaganov and Yernat Kozhakhmetov
Sustainability 2025, 17(19), 8569; https://doi.org/10.3390/su17198569 - 24 Sep 2025
Viewed by 387
Abstract
Kazakhstan holds the global leadership position in natural uranium mining. Nonetheless, the extraction and processing of radioactive ores has the potential to induce instances of radiological contamination. This study aimed to evaluate the radiological soil contamination at a former monazite, tin, and radioactive [...] Read more.
Kazakhstan holds the global leadership position in natural uranium mining. Nonetheless, the extraction and processing of radioactive ores has the potential to induce instances of radiological contamination. This study aimed to evaluate the radiological soil contamination at a former monazite, tin, and radioactive ore processing facility located in Ust-Kamenogorsk city. Pedestrian gamma–ray measurements revealed dose rates up to 1.00 µSv/h, significantly exceeding the natural background (0.16–0.18 µSv/h). The analysis of the 28 soil profiles demonstrated that deeper soil layers (below 60 cm) were significantly contaminated with radionuclides constituting production waste. Furthermore, the total activity in the superficial soil layer is in the range of 583–5275 Bq/kg (alpha emitters) and 641–1749 Bq/kg (beta radionuclides). The maximum of total radioactivity in the samples collected at the 80–100 cm layer was at the level of 22,482 Bq/kg (α-emitters) and 6845 Bq/kg for gross beta radiation. In consideration of the site’s proximity to public buildings, the calculated radiological hazard indices were calculated, revealing the potential danger for human health. The elevated excess lifetime cancer risk and annual gonadal dose equivalent obtained for the topsoil layer indicate a high level of radiological risk to the local population. The obtained results emphasise the necessity of developing rehabilitation strategies and long-term monitoring of the contaminated site, which is consistent with the global objectives of sustainable development in the field of environmental protection and public health. Full article
Show Figures

Figure 1

17 pages, 8210 KB  
Article
BGO@ZnO Heterostructures for Ultrafast Scintillation Detectors
by Nataliya Babayevska, Mariusz Jancelewicz, Igor Iatsunskyi, Marcin Jarek, Ivan Yakymenko, Aravinthkumar Padmanaban, Oleh Viahin, Giulia Terragni, Carsten Lowis, Etiennette Auffray and Oleg Sidletskiy
Crystals 2025, 15(9), 820; https://doi.org/10.3390/cryst15090820 - 19 Sep 2025
Viewed by 332
Abstract
Developing detectors to enhance the timing resolution of positron emission tomography scanners can help reduce radioactive doses absorbed by patients and improve spatial resolution in medical imaging. Time resolution may be enhanced in heterostructures comprising a heavy scintillator for attenuation of 511 keV [...] Read more.
Developing detectors to enhance the timing resolution of positron emission tomography scanners can help reduce radioactive doses absorbed by patients and improve spatial resolution in medical imaging. Time resolution may be enhanced in heterostructures comprising a heavy scintillator for attenuation of 511 keV γ-quanta, as well as a fast scintillator converting recoiled electrons from the heavy scintillator to prompt light photons. In this study, ZnO films as fast scintillators with different thicknesses were obtained on substrates of a heavy bismuth germanate (Bi4Ge3O12, BGO) scintillator using several film preparation techniques, such as spray-coating, drop-casting, and spin-coating. The design of heterostructures combined the key advantage of a low-cost film preparation technique with environmentally friendly and available precursors. This work proposes synthesis methods of highly nanocrystalline ZnO films on BGO, where a film thickness ranges from 6 to 18 μm. All ZnO studied films exhibit exciton luminescence peaked in UV (353 nm) and defect luminescence in the green (657 nm) range under 325 nm excitation. The best coincidence time resolution of 158 ± 8 ps was obtained with BGO@ZnO heterostructures fabricated by the spray-coating. The proposed approach allowed obtaining BGO@ZnO heterostructures for potential use as ultrafast scintillation detectors. Full article
(This article belongs to the Section Hybrid and Composite Crystalline Materials)
Show Figures

Figure 1

10 pages, 2457 KB  
Communication
Hydrophilic Modification of Gadolinium Oxide by Building Double Molecular Structures
by Qin Li, Jian Chen, Xingwu Zhang, Chenjie Ruan and Weiwei Wu
Nanomaterials 2025, 15(18), 1421; https://doi.org/10.3390/nano15181421 - 16 Sep 2025
Viewed by 341
Abstract
With the rapid growth of nuclear energy, effective shielding of radioactive nuclear by-products is critical for safety and environmental protection. Gadolinium (Gd) is ideal for neutron shielding due to its exceptionally high thermal neutron capture cross-section. Despite significant progress in developing various Gd-based [...] Read more.
With the rapid growth of nuclear energy, effective shielding of radioactive nuclear by-products is critical for safety and environmental protection. Gadolinium (Gd) is ideal for neutron shielding due to its exceptionally high thermal neutron capture cross-section. Despite significant progress in developing various Gd-based shielding materials, poor interfacial compatibility between Gd2O3 and polymer matrices remains a significant limitation. In this study, we addressed this challenge by successfully modifying Gd2O3 nanoparticles (Gd2O3@SIT-M) through the construction of a dual-layer molecular coating using electrostatic interactions. Initially, Gd2O3 was functionalized with the silane coupling agent 3-(trihydroxysilyl) propyl-1-propane-sulfonic acid (SIT), followed by subsequent assembly of polyether amine M2070 onto this modified surface. The combined presence of hydrophilic sulfonic acid groups from SIT and amine-ether groups from M2070 endowed Gd2O3@SIT-M nanoparticles with excellent hydrophilicity, significantly reducing their aqueous contact angle to 14.34°. Consequently, this modification strategy notably enhanced the dispersion stability of Gd2O3 nanoparticles in aqueous solutions and polymer matrices. The developed approach thus provides an effective pathway for fabricating advanced polymer-based neutron shielding materials with improved dispersibility, stability, and overall performance. Full article
Show Figures

Graphical abstract

23 pages, 4281 KB  
Article
Radiological Implications of Industrial Activities on Soil and Water: An Environmental Analytical Chemistry Perspective in Artisanal Gold-Mining Regions of Atiwa West
by Esther Osei Akuo-ko, Francis Otoo, Eric Tetteh Glover, Eunice Amponsem, Lordford Tettey-Larbi, Tuvshinsaikhan Ganbaatar, Anita Csordás, Amin Shahrokhi and Tibor Kovács
Appl. Sci. 2025, 15(18), 9857; https://doi.org/10.3390/app15189857 - 9 Sep 2025
Viewed by 586
Abstract
Artisanal gold mining can enhance natural radioactivity in nearby environmental media. This study assessed health risks and environmental impacts associated with the release of natural radionuclides in Atiwa West, Ghana. Activities of naturally occurring radionuclides were measured in soil samples (Ra-226, Th-232, K-40) [...] Read more.
Artisanal gold mining can enhance natural radioactivity in nearby environmental media. This study assessed health risks and environmental impacts associated with the release of natural radionuclides in Atiwa West, Ghana. Activities of naturally occurring radionuclides were measured in soil samples (Ra-226, Th-232, K-40) and water samples (Ra-226, Ra-228, K-40) by HPGe γ-spectrometry; Ra-226 in vegetation was estimated from soil activities using a transfer factor. The mean activity concentrations in soils were 22.1 ± 2.1 Bq/kg (Ra-226), 27.5 ± 2.3 Bq/kg (Th-232) and 198 ± 22 Bq/kg (K-40). At several water locations, Ra-226 and Ra-228 exceeded the WHO screening levels for drinking water of 1.0 Bq/L and 0.1 Bq/L, respectively. Radiological hazard indices attributable to inhalation and ingestion were evaluated. Overall, soil radiological risks were low; however, approximately 22% of sites recorded values above the global average annual gonadal dose equivalent (AGDE). In some locations, the committed effective dose from drinking water surpassed the WHO screening threshold of 0.1 mSv/y, with the associated excess lifetime cancer risk (ELCR) exceeding 2.9 × 10−4. Overall, the mining-affected waters presented a greater potential radiological impact than the soils, underscoring the need for water quality management and periodic monitoring in artisanal mining areas. Full article
(This article belongs to the Section Chemical and Molecular Sciences)
Show Figures

Figure 1

11 pages, 644 KB  
Article
A Simplified Method for HPGe Detector Efficiency Calibration Using Certified Reference Materials Containing Natural Radionuclides
by Paweł Jodłowski
Appl. Sci. 2025, 15(17), 9774; https://doi.org/10.3390/app15179774 - 5 Sep 2025
Viewed by 1118
Abstract
Multinuclide calibration sources, consisting of mixtures of gamma-emitting radionuclides, are commonly used for detector efficiency calibration in gamma-ray spectrometry. While they enable fast and accurate calibration, they have certain drawbacks, such as high cost and relatively short usable lifespans. This paper presents a [...] Read more.
Multinuclide calibration sources, consisting of mixtures of gamma-emitting radionuclides, are commonly used for detector efficiency calibration in gamma-ray spectrometry. While they enable fast and accurate calibration, they have certain drawbacks, such as high cost and relatively short usable lifespans. This paper presents a simplified and cost-effective method for the efficiency calibration of cylindrical high-purity germanium (HPGe) detectors, which relies on the use of certified reference materials containing natural radionuclides. The method is based on selected gamma lines from natural radionuclides that are practically unaffected by the true coincidence summing (TCS) effect, enabling reasonably accurate calibration for multiple measurement geometries at energies above 200 keV. The main limitation of the method is its applicability only to energies higher than 200 keV; however, this range is sufficient for most routine environmental measurements. Verification measurements conducted for cylindrical geometry showed that detector efficiency values obtained using the proposed method (with IAEA RGK, RGU, and RGTh certified reference materials) differed by less than approximately 4% from those obtained using a commercial multinuclide calibration source. Full article
Show Figures

Figure 1

32 pages, 46726 KB  
Article
Potentially Toxic Elements and Natural Radioactivity in Nasser Lake Sediments: Environmental Risks in a Key Egyptian Freshwater Lake
by Esraa S. El-Shlemy, Ahmed Gad, Mohammed G. El Feky, Abdel-Moneim A. Mahmoud, Omnia El-Sayed and Neveen S. Abed
Toxics 2025, 13(9), 745; https://doi.org/10.3390/toxics13090745 - 31 Aug 2025
Viewed by 1088
Abstract
A necessary evaluation of freshwater ecosystem pollution levels and radiation risks remains crucial for maintaining environmental health, especially within economically developing areas. This study presents a comprehensive evaluation of the mineralogical, geochemical, and radiological characteristics of sediments in Nasser Lake, Egypt, to determine [...] Read more.
A necessary evaluation of freshwater ecosystem pollution levels and radiation risks remains crucial for maintaining environmental health, especially within economically developing areas. This study presents a comprehensive evaluation of the mineralogical, geochemical, and radiological characteristics of sediments in Nasser Lake, Egypt, to determine potential ecological and health risks. Forty sediment samples were collected from multiple locations, including both surface and bottom sediments, for analysis of textural attributes, mineral composition, potentially toxic elements, and natural radionuclides (238U, 232Th, and 40K). Results revealed sand-dominated sediments with low organic matter content. The heavy mineral assemblages derived from Nile River inputs, wind-deposited materials, and eroded igneous and metamorphic rocks. Geochemical analysis showed that arsenic, cadmium, chromium, and lead concentrations exceeded upper continental crust background values, with enrichment factors and geo-accumulation indices indicating significant anthropogenic contributions. The pollution indices revealed heavy contamination levels and extreme ecological risks, which were primarily driven by arsenic and cadmium concentrations. Radiological assessments detected activity concentrations of 238U, 232Th, and 40K below the world average, with hazard indices indicating minimal radiological risk except where localized hotspots were present. The study emphasizes the need for targeted monitoring and sustainable management practices to mitigate pollution and preserve the crucial freshwater environment of Nasser Lake. Full article
Show Figures

Graphical abstract

20 pages, 3712 KB  
Article
Mussels as Bioindicators for the Rapid Detection of Heavy Metal Fluctuations in Marine Coastal Waters: A Case Study of Seasonal Bioaccumulation Monitoring and Assessment of Perna viridis from the Gulf of Tonkin Coastline, Hai Phong, Vietnam
by Hue Nguyen Thanh Kim, Van-Hao Duong, Trung-Tien Chu, Thanh-Xuan Pham-Thi, Xuan-Quang Nguyen, Sang Van Vu, Thin Pham Van, Duc-Thinh Ta, Duc-Thang Duong, Obid Tursunov, Marckasagayam Priyadharshini, Mohamed Saiyad Musthafa, Miklós Hegedűs, Amin Shahrokhi and Tibor Kovács
Water 2025, 17(17), 2552; https://doi.org/10.3390/w17172552 - 28 Aug 2025
Viewed by 1303
Abstract
This study aims to evaluate the feasibility of using the mussel as a bioindicator for the rapid detection of heavy metal (such as Cd, Pb, Hg, Ni, Cr, Cu, As, and Zn) fluctuations in aquatic environments and the sensitivity of the bioaccumulation of [...] Read more.
This study aims to evaluate the feasibility of using the mussel as a bioindicator for the rapid detection of heavy metal (such as Cd, Pb, Hg, Ni, Cr, Cu, As, and Zn) fluctuations in aquatic environments and the sensitivity of the bioaccumulation of heavy metals in muscle tissues over time. The seasonal bioaccumulation patterns of heavy metals within Asian green mussels (Perna viridis), from Vietnamese coastal waters of Hai Phong were investigated using inductively coupled plasma mass spectrometry (ICP-MS). Additionally, the health risks from the consumption of P. viridis by local people were assessed. Mussels of varying sizes were sampled on a monthly basis between March (dry season) and July 2024 (wet season). The results revealed that the hepatopancreas had substantially higher concentrations of metals at all times relative to their corresponding muscle tissues, confirming its appropriateness as a bioindicator organ. The concentrations of heavy metals in mussels were recorded as significantly lower than the guideline levels, except for arsenic (As). Zinc (Zn) showed the highest concentrations, while mercury (Hg) had the lowest concentrations. There were strong seasonal and monthly differences, with peak levels of Pb, Cr, and As during the dry season, and high levels of Cs and Cu during the rainy season. It was found that the condition index, physiological factors, and shell size all had major impacts on the absorption of specific heavy metals. It was indicated that Pb, Cr, As, Cs, and Cu bioaccumulation are both biologically and environmentally responsive and can be used as proxies for environmental contamination, while the accumulation of these metals correlated with biological traits (shell length, weight, and CI), which is useful in modeling efforts. Health risk assessments using target hazard quotients (THQs) and the total hazard index (THI) identified Pb in the hepatopancreas as a primary contributor to the non-carcinogenic risk (THQ > 1), particularly during the dry season. The findings revealed the suitability of P. viridis, particularly hepatopancreatic tissue, as a short-term biomonitoring tool for detecting spikes and rapid fluctuations of certain heavy metals and assessing related human health risks in coastal aquatic systems. Full article
(This article belongs to the Special Issue Water Pollutants and Human Health: Challenges and Perspectives)
Show Figures

Figure 1

18 pages, 5474 KB  
Article
Toxicological Mechanisms of Uranium-Induced Apoptosis in HK-2 Cells: A Proteomics and Metabolomics Study
by Zihuan Wang, Yongxiang Huang, Yue Zhang, Xuejuan Wu, Yuanyuan Yang, Jiayu Song, Kunling Guo, Mingyuan Wang, Junjie Chen and Shirong Qiang
Toxics 2025, 13(8), 699; https://doi.org/10.3390/toxics13080699 - 20 Aug 2025
Viewed by 663
Abstract
The rapid development of the nuclear industry and mining has increased environmental radioactive contamination, posing potentially ecological risks and health threats to humans. Uranium compounds are known to exhibit selective nephrotoxicity, but their toxicological processes and mechanisms still remain poorly understood and controversial. [...] Read more.
The rapid development of the nuclear industry and mining has increased environmental radioactive contamination, posing potentially ecological risks and health threats to humans. Uranium compounds are known to exhibit selective nephrotoxicity, but their toxicological processes and mechanisms still remain poorly understood and controversial. In this study, the uranyl-induced toxicity in human renal tubular epithelial cells (HK-2) were explored using flow cytometry, DAPI staining, and comet assays. Our results demonstrate that uranium exposure primarily triggers apoptosis. Kyoto Encyclopedia of Genes and Genomes pathway enrichment and protein–protein interaction (PPI) analyses revealed significant associations with DNA damage. Moreover, aberrant expression of ABC transporters (e.g., ABCB7) and mitochondrial-related proteins confirms uranium-induced mitochondrial dysfunction. Gene Ontology functional annotation implicated extrinsic apoptotic signaling pathways in uranium-induced cell death. The downregulation of the UBL5 protein also pointed to endoplasmic reticulum stress-mediated apoptosis. In summary, uranium exposure can induce the apoptosis of HK-2 cells through intrinsic pathways by damaging DNA and mitochondria and disrupting protein synthesis, with secondary contributions from endoplasmic reticulum stress and extrinsic apoptotic signaling. Full article
(This article belongs to the Section Metals and Radioactive Substances)
Show Figures

Graphical abstract

15 pages, 2053 KB  
Article
Unveiling Radon Concentration in Geothermal Installation: The Role of Indoor Conditions and Human Activity
by Dimitrios-Aristotelis Koumpakis, Savvas Petridis, Apostolos Tsakirakis, Ioannis Sourgias, Alexandra V. Michailidou and Christos Vlachokostas
Gases 2025, 5(3), 18; https://doi.org/10.3390/gases5030018 - 5 Aug 2025
Viewed by 635
Abstract
The naturally occurring radioactive gas radon presents a major public health danger mainly affecting people who spend time in poorly ventilated buildings. The periodic table includes radon as a noble gas which forms through uranium decay processes in soil, rock, and water. The [...] Read more.
The naturally occurring radioactive gas radon presents a major public health danger mainly affecting people who spend time in poorly ventilated buildings. The periodic table includes radon as a noble gas which forms through uranium decay processes in soil, rock, and water. The accumulation of radon indoors in sealed or poorly ventilated areas leads to dangerous concentrations that elevate human health risks of lung cancer. The research examines environmental variables affecting radon concentration indoors by studying geothermal installations and their drilling activities, which potentially increase radon emissions. The study was conducted in the basement of the plumbing educational building at the Aristotle University of Thessaloniki to assess the potential impact of geothermal activity on indoor radon levels, as the building is equipped with a geothermal heating system. The key findings based on 150 days of continuous data showed that radon levels peak during the cold days, where the concentration had a mean value of 41.5 Bq/m3 and reached a maximum at about 95 Bq/m3. The reason was first and foremost poor ventilation and pressure difference. The lowest concentrations were on days with increased human activity with measures that had a mean value of 14.8 Bq/m3, which is reduced by about 65%. The results that are presented confirm the hypotheses and the study is making clear that ventilation and human activity are crucial in radon mitigation, especially on geothermal and energy efficient structures. Full article
Show Figures

Figure 1

27 pages, 1491 KB  
Article
Spent Nuclear Fuel—Waste to Resource, Part 1: Effects of Post-Reactor Cooling Time and Novel Partitioning Strategies in Advanced Reprocessing on Highly Active Waste Volumes in Gen III(+) UOx Fuel Systems
by Alistair F. Holdsworth, Edmund Ireland and Harry Eccles
J. Nucl. Eng. 2025, 6(3), 29; https://doi.org/10.3390/jne6030029 - 5 Aug 2025
Viewed by 1102
Abstract
Some of nuclear power’s primary detractors are the unique environmental challenges and impacts of radioactive wastes generated during fuel cycle operations. Key benefits of spent fuel reprocessing (SFR) are reductions in primary high active waste (HAW) masses, volumes, and lengths of radiotoxicity at [...] Read more.
Some of nuclear power’s primary detractors are the unique environmental challenges and impacts of radioactive wastes generated during fuel cycle operations. Key benefits of spent fuel reprocessing (SFR) are reductions in primary high active waste (HAW) masses, volumes, and lengths of radiotoxicity at the expense of secondary waste generation and high capital and operational costs. By employing advanced waste management and resource recovery concepts in SFR beyond the existing standard PUREX process, such as minor actinide and fission product partitioning, these challenges could be mitigated, alongside further reductions in HAW volumes, masses, and duration of radiotoxicity. This work assesses various current and proposed SFR and fuel cycle options as base cases, with further options for fission product partitioning of the high heat radionuclides (HHRs), rare earths, and platinum group metals investigated. A focus on primary waste outputs and the additional energy that could be generated by the reprocessing of high-burnup PWR fuel from Gen III(+) reactors using a simple fuel cycle model is used; the effects of 5- and 10-year spent fuel cooling times before reprocessing are explored. We demonstrate that longer cooling times are preferable in all cases except where short-lived isotope recovery may be desired, and that the partitioning of high-heat fission products (Cs and Sr) could allow for the reclassification of traditional raffinates to intermediate level waste. Highly active waste volume reductions approaching 50% vs. PUREX raffinate could be achieved in single-target partitioning of the inactive and low-activity rare earth elements, and the need for geological disposal could potentially be mitigated completely if HHRs are separated and utilised. Full article
Show Figures

Figure 1

20 pages, 1137 KB  
Review
Unveiling the Effects of Natural Disasters and Nuclear Energy on the Secondary Sex Ratio: A Comprehensive Review
by Iasonas Dermitzakis, Paschalis Theotokis, Efthymia Delilampou, Evangelos Axarloglou, Sofia Gargani, Dimosthenis Miliaras, Maria Eleni Manthou and Soultana Meditskou
Life 2025, 15(7), 1127; https://doi.org/10.3390/life15071127 - 17 Jul 2025
Viewed by 812
Abstract
The secondary sex ratio (SSR), defined as the ratio of male to female births in a population, has long been a subject of scientific inquiry due to its potential as a health indicator. The interplay between catastrophic events and the delicate balance of [...] Read more.
The secondary sex ratio (SSR), defined as the ratio of male to female births in a population, has long been a subject of scientific inquiry due to its potential as a health indicator. The interplay between catastrophic events and the delicate balance of male and female births presents a nuanced and compelling study area. Natural disasters, such as earthquakes, hurricanes, floods, and volcanic eruptions, have been known to disrupt ecosystems and human populations, leading to both short-term and long-term consequences. Studies have suggested a potential influence of these disasters on the SSR, with varying degrees of impact observed across different regions and disaster types. Similarly, nuclear accidents, such as the infamous Chernobyl disaster, have sparked interest in their potential effects on human health and development. The release of radioactive materials into the environment can have far-reaching consequences, including impacts on reproductive outcomes. Through a rigorous examination of the existing literature, the present review aims to synthesize current knowledge on the impacts of natural disasters and nuclear accidents on the SSR and unravel the mechanisms that explain SSR fluctuations. By shedding light on the diverse influences shaping the SSR, this narrative review contributes to a deeper appreciation of the intricate interplay between environmental, biological, and societal factors that determines the SSR, calling for targeted strategies to mitigate potential adverse effects on sex ratios in the aftermath of such events. Full article
(This article belongs to the Special Issue From Stem Cells to Embryos, Congenital Anomalies and Epidemiology)
Show Figures

Graphical abstract

23 pages, 6991 KB  
Article
Comparing the Accuracy of Soil Moisture Estimates Derived from Bulk and Energy-Resolved Gamma Radiation Measurements
by Sonia Akter, Johan Alexander Huisman and Heye Reemt Bogena
Sensors 2025, 25(14), 4453; https://doi.org/10.3390/s25144453 - 17 Jul 2025
Viewed by 661
Abstract
Monitoring soil moisture (SM) using permanently installed gamma radiation (GR) detectors is a promising non-invasive method based on the inverse relationship between SM and soil-emitted GR. In a previous study, we successfully estimated SM from environmental gamma radiation (EGR) measured by a low-cost [...] Read more.
Monitoring soil moisture (SM) using permanently installed gamma radiation (GR) detectors is a promising non-invasive method based on the inverse relationship between SM and soil-emitted GR. In a previous study, we successfully estimated SM from environmental gamma radiation (EGR) measured by a low-cost counter-tube detector. Since this detector type provides a bulk GR response across a wide energy range, EGR signals are influenced by several confounding factors, e.g., soil radon emanation, biomass. To what extent these confounding factors deteriorate the accuracy of SM estimates obtained from EGR is not fully understood. Therefore, the aim of this study was to compare the accuracy of SM estimates from EGR with those from reference 40K GR (1460 keV) measurements which are much less influenced by these factors. For this, a Geiger–Mueller counter (G–M), which is commonly used for EGR monitoring, and a gamma spectrometer were installed side by side in an agricultural field equipped with in situ sensors to measure reference SM and a meteorological station. The EGRG–M and spectrometry-based 40K measurements were related to reference SM using a functional relationship derived from theory. We found that daily SM can be predicted with an RMSE of 3.39 vol. % from 40K using the theoretical value of α = 1.11 obtained from the effective ratio of GR mass attenuation coefficients for the water and solid phase. A lower accuracy was achieved for the EGRG–M measurements (RMSE = 6.90 vol. %). Wavelet coherence analysis revealed that the EGRG–M measurements were influenced by radon-induced noise in winter. Additionally, biomass shielding had a stronger impact on EGRG–M than on 40K GR estimates of SM during summer. In summary, our study provides a better understanding on the lower prediction accuracy of EGRG–M and suggests that correcting for biomass can improve SM estimation from the bulk EGR data of operational radioactivity monitoring networks. Full article
(This article belongs to the Special Issue Sensors in Smart Irrigation Systems)
Show Figures

Figure 1

Back to TopTop