Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,742)

Search Parameters:
Keywords = epoxy composite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1449 KB  
Article
Effect of Ply Orientation and Triaxiality on Mesh Regularization for Carbon/Epoxy Composites Through Material Parameter Estimation
by Abinash Patro and Ala Tabiei
Appl. Sci. 2025, 15(21), 11451; https://doi.org/10.3390/app152111451 (registering DOI) - 27 Oct 2025
Abstract
The mesh size significantly affects the accuracy and computational efficiency of finite-element analysis (FEA) simulations. This study investigates mesh regularization to mitigate mesh dependency, align numerical results with experimental data, and optimize the computational time for carbon/epoxy composites. Mesh regularization was implemented using [...] Read more.
The mesh size significantly affects the accuracy and computational efficiency of finite-element analysis (FEA) simulations. This study investigates mesh regularization to mitigate mesh dependency, align numerical results with experimental data, and optimize the computational time for carbon/epoxy composites. Mesh regularization was implemented using the MAT_ADD_GENERALIZED_DAMAGE (MAGD) model in LS-DYNA, which incorporates a scaling factor based on the ply orientation and stress triaxiality to adjust the material failure criterion. To address the limitations of trial-and-error methods for determining scaling factors, four analytical models were developed to predict these factors as functions of element size. These predictions were validated against experimentally derived scaling factors for unidirectional carbon/epoxy composites across three ply orientations (0°, 45°, and 90°) and three stress triaxiality conditions (tension, compression, and shear) using mesh sizes ranging from 0.5 mm to 1.5 mm. The scaling factor effectively reduced the mesh dependency in the tested configurations. A clear relationship between ply orientation and mesh regularization was established; however, no definitive correlation was observed with stress triaxiality. Among the theoretical approaches, the stress degradation model yielded the most consistent predictions, although discrepancies with the experimental results indicate the need for further refinement. This study proposes integrating scaling factors into a material model as a practical approach to mesh regularization for orthotropic materials and evaluates existing theoretical models for predicting these factors. Full article
(This article belongs to the Special Issue Application of Fracture Mechanics in Structures)
Show Figures

Figure 1

23 pages, 14077 KB  
Article
Mitigating Out-of-Plane Fiber Waviness in AFP Laminates with Tow-Gaps via Selective Placement of Thermoplastic Veils
by Ahmadreza Ravangard, Kuthan Celebi, Sergii G. Kravchenko and Oleksandr G. Kravchenko
Fibers 2025, 13(11), 145; https://doi.org/10.3390/fib13110145 - 24 Oct 2025
Viewed by 123
Abstract
Fiber tow-gaps and overlaps formed during the Automated Fiber Placement (AFP) process pose a significant challenge by introducing non-uniform composite morphologies, often characterized by resin-rich regions and fiber waviness. These defects occur as deposited fibers sink into the gap regions during consolidation, with [...] Read more.
Fiber tow-gaps and overlaps formed during the Automated Fiber Placement (AFP) process pose a significant challenge by introducing non-uniform composite morphologies, often characterized by resin-rich regions and fiber waviness. These defects occur as deposited fibers sink into the gap regions during consolidation, with gap geometry determined during path planning. Such morphological inconsistencies can compromise structural reliability by initiating premature failure, particularly through localized out-of-plane waviness and resin accumulation. This study investigates the integration of high melting temperature thermoplastic veils, specifically polyetherimide (PEI), into fiber tow-gaps as a method to prevent ply sinking and reduce fiber waviness on both internal and external surfaces of the laminate. The PEI veils also serve to reinforce resin-rich regions by forming an interpenetrated network of high fracture toughness material within the brittle epoxy matrix. Tensile tests conducted on cross-ply laminates containing staggered gaps demonstrated that the inclusion of PEI veils modified the failure mode. The results suggest that the selective placement of thermoplastic veils within tow-gaps during AFP offers a viable strategy to mitigate manufacturing-induced non-uniform morphologies. Full article
Show Figures

Figure 1

17 pages, 6471 KB  
Article
Bio-Adhesive Lignin-Reinforced Epoxy Acrylate (EA)-Based Composite as a DLP 3D Printing Material
by Jeonghong Ha and Jong Wan Ko
Polymers 2025, 17(21), 2833; https://doi.org/10.3390/polym17212833 - 23 Oct 2025
Viewed by 386
Abstract
Digital light processing (DLP) 3D printing is a powerful additive manufacturing technique but is limited by the relatively low mechanical strength of cured neat resin parts. In this study, a renewable bio-adhesive lignin was introduced as a reinforcing filler into a bisphenol A-type [...] Read more.
Digital light processing (DLP) 3D printing is a powerful additive manufacturing technique but is limited by the relatively low mechanical strength of cured neat resin parts. In this study, a renewable bio-adhesive lignin was introduced as a reinforcing filler into a bisphenol A-type epoxy acrylate (EA) photocurable resin to enhance the mechanical performance of DLP-printed components. Lignin was incorporated at low concentrations (0–0.5 wt%), and three dispersion methods—magnetic stirring, planetary mixing, and ultrasonication—were compared to optimize the filler distribution. Cure depth tests and optical microscopy confirmed that ultrasonication (40 kHz, 5 h) achieved the most homogeneous dispersion, yielding a cure depth nearly matching that of the neat resin. DLP printing of tensile specimens demonstrated that as little as 0.025 wt% lignin increased tensile strength by ~39% (from 44.9 MPa to 62.2 MPa) compared to the neat resin, while maintaining similar elongation at break. Surface hardness also improved by over 40% at this optimal lignin content. However, higher lignin loadings (≥0.05 wt%) led to particle agglomeration, resulting in diminished mechanical gains and impaired printability (e.g., distortion and incomplete curing at 1 wt%). Fractographic analysis of broken specimens revealed that well-dispersed lignin particles act to deflect and hinder crack propagation, thereby enhancing fracture resistance. Overall, this work demonstrates a simple and sustainable approach to reinforce DLP 3D-printed polymers using biopolymer lignin, achieving significant improvements in mechanical properties while highlighting the value of bio-derived additives for advanced photopolymer 3D printing applications. Full article
Show Figures

Figure 1

17 pages, 2204 KB  
Article
Advanced Epoxy Resin/Boron Nitride Composites for High-Performance Electrotechnical Applications and Geological Instrumentation
by Alina Ruxandra Caramitu, Iustina Popescu, Mihai Grigoroscuta, Andrei Kuncser, Paul Constantin Ganea, Andrei Galatanu, Magdalena Galatanu, Gheorghe Aldica, Petre Badica, Mihail Burdusel and Adriana Mariana Borș
Materials 2025, 18(21), 4860; https://doi.org/10.3390/ma18214860 - 23 Oct 2025
Viewed by 160
Abstract
Composites were obtained by using a commercial bicomponent epoxy resin (containing Al2O3 and SiO2) and cubic BN (cBN) (0–50 wt.%). Two preparation methods were used: (a) the cBN powder was first mixed with the resin base and further [...] Read more.
Composites were obtained by using a commercial bicomponent epoxy resin (containing Al2O3 and SiO2) and cubic BN (cBN) (0–50 wt.%). Two preparation methods were used: (a) the cBN powder was first mixed with the resin base and further with the hardener, and (b) the cBN powder was first mixed with hardener and afterwards with the resin base. Both methods show a similar enhancement trend in the thermal conductivity from 0.77 W/mK in the resin without additive to 1 and 1.5 W/mK in the ones filled with 30 and 50 wt.% cBN, respectively. A reasonable decrease in bending strength from 74 for 0 wt.% cBN to 70 or 64 MPa for 30 wt.% cBN added by method (a) or (b), respectively, occurs. The bending strain at breakage decreased from 5.58% to 2.65 or 3.78%. High sensitivity vs. processing was also found for electrical properties measured for frequencies of 1–107 Hz. An increasing amount of cBN decreased the room temperature conductivity, dielectric constant, and dielectric loss tangent and modified the shape of the curves vs. frequency. However, in samples with 30 wt.% or more of cBN, a partial recovery to a high insulating state was observed. Full article
Show Figures

Figure 1

23 pages, 3685 KB  
Article
Ballistic Performance of Raffia Fabric-Reinforced Epoxy Composites as an Intermediate Layer in Multilayered Armor Systems
by Douglas Santos Silva, Raí Felipe Pereira Junio, Leticia dos Santos Aguilera, Sergio Neves Monteiro and Marcelo Henrique Prado da Silva
Polymers 2025, 17(21), 2827; https://doi.org/10.3390/polym17212827 - 23 Oct 2025
Viewed by 257
Abstract
This study investigates the ballistic performance of epoxy matrix composites reinforced with raffia fabric, aiming to evaluate their potential as the second layer in multilayered armor systems (MAS), replacing conventional synthetic aramid (Kevlar™) laminates. Composite plates with different volumetric fractions of raffia fabric [...] Read more.
This study investigates the ballistic performance of epoxy matrix composites reinforced with raffia fabric, aiming to evaluate their potential as the second layer in multilayered armor systems (MAS), replacing conventional synthetic aramid (Kevlar™) laminates. Composite plates with different volumetric fractions of raffia fabric (10, 20, and 30%) were manufactured and integrated with a ceramic front layer (Al2O3/Nb2O5) in MAS structures, which were then subjected to ballistic impact tests using high-energy 7.62 mm caliber ammunition. The backface signature (indentation depth) measured in ballistic clay, used as a human body simulant, showed that only the 10% raffia-reinforced composite (ER10) met the National Institute of Justice (NIJ 0101.06) safety threshold of 44 mm. Higher raffia contents (20% and 30%) led to increased indentation, compromising ballistic integrity. Scanning electron microscopy (SEM) of the fractured surfaces revealed typical energy dissipation mechanisms, such as fiber rupture, fiber pull-out, and interfacial delamination. The results indicate that raffia fabric composites with 10% fiber content can serve as a cost-effective and sustainable alternative to Kevlar™ in personal armor applications, while maintaining compliance with ballistic protection standards. Full article
(This article belongs to the Special Issue Fiber-Reinforced Polymer Composites: Progress and Prospects)
Show Figures

Figure 1

22 pages, 9476 KB  
Article
Application of Kolmogorov–Sinai Metric Entropy to Determine the Exploitation Parameters of Epoxy–Glass Composites with Carbonisate
by Agata Wieczorska and Grzegorz Hajdukiewicz
Materials 2025, 18(21), 4858; https://doi.org/10.3390/ma18214858 - 23 Oct 2025
Viewed by 236
Abstract
This study investigates how the addition of a carbon-based filler obtained through the pyrolysis of medium-density fibreboard (MDF) waste affects the mechanical behaviour of epoxy–glass laminates. Two laminate series with different matrix-to-reinforcement ratios (60/40 and 65/35) were fabricated and modified with carbonised particles [...] Read more.
This study investigates how the addition of a carbon-based filler obtained through the pyrolysis of medium-density fibreboard (MDF) waste affects the mechanical behaviour of epoxy–glass laminates. Two laminate series with different matrix-to-reinforcement ratios (60/40 and 65/35) were fabricated and modified with carbonised particles of up to 500 μm in size, introduced at 5% and 7.5%. The strength of the samples made of the materials mentioned above was assessed in a static three-point bending test by analysing the values of stresses (σfM) and strains (εfM). For an in-depth analysis of the dynamics of the destruction process, the recorded deformation data were subjected to Kolmogorov–Sinai metric entropy (EKS). The test results showed that the addition of carbonisate in series A (60/40) increased the flexural strength by 32.56% for the sample with 5% addition and by 27.08% for the sample with 7.5% addition, compared to the reference material. In series B (65/35), characterised by a higher resin content, the opposite effect was observed—a decrease in strength of 9.89% (for 5% carbonisate) and 15.53% (for 7.5% carbonisate). The use of EKS calculations in combination with phase portrait reconstruction to analyse the results obtained allowed for the precise determination of the limit values of stresses and strains (σfMK_S and εfMK_S) at which irreversible structural changes occur in the material, initiating the destruction process. This method proved to be an effective tool for identifying early signs of composite degradation, which is crucial for assessing its long-term strength and designing safe structures. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

13 pages, 4131 KB  
Article
A Novel Strategy for Introducing Metal-Organic Frameworks into Carbon Fiber to Improve the Interfacial and Mechanical Properties of Carbon Fiber/Epoxy Composites
by Jin Yan, Hongyi Ma, Qiyu Deng, Hongyun Li and Lei Xiong
Materials 2025, 18(21), 4856; https://doi.org/10.3390/ma18214856 - 23 Oct 2025
Viewed by 177
Abstract
The interfacial properties in carbon fiber (CF)-reinforced polymer composites are substantially limited by the chemically inactive and smooth CF surfaces. In this study, zeolitic imidazolate framework 90 (ZIF90) was chemically grafted onto CF surfaces via polyethyleneimine (PEI) as a coupling agent to construct [...] Read more.
The interfacial properties in carbon fiber (CF)-reinforced polymer composites are substantially limited by the chemically inactive and smooth CF surfaces. In this study, zeolitic imidazolate framework 90 (ZIF90) was chemically grafted onto CF surfaces via polyethyleneimine (PEI) as a coupling agent to construct a hierarchical reinforcement interface in CF/epoxy composite. The successful synthesis of CF grafted with PEI and ZIF90 (CF-PEI-ZIF90) was systematically characterized by Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The incorporation of ZIF90 nanocrystals and PEI molecules into CF surfaces effectively improved interfacial adhesion through mechanical interlocking and chemical interactions, thereby optimizing stress transfer efficiency at the fiber–matrix interface and improving the interfacial properties of the composite. Additionally, the resultant CF-PEI-ZIF90/epoxy composite demonstrated significant mechanical enhancement, with the tensile and bending strengths increasing by 33.5% and 21.4%, respectively, compared to unmodified CF/epoxy composites. This work provides a novel strategy for enhancing the interfacial performance of CF composites by leveraging the unique properties of metal-organic frameworks, which is critical for advancing high-performance structural materials in aerospace and automotive applications. Full article
Show Figures

Figure 1

23 pages, 6280 KB  
Article
Comparative Analysis of Thermophysical Properties of Functional Epoxy Matrix Composites Reinforced with Glass or Carbon Fibers in the Context of Heat Transfer Anisotropy
by Andrzej J. Panas, Zbigniew Leciejewski, Judyta Sienkiewicz and Mirosław Nowakowski
Materials 2025, 18(21), 4838; https://doi.org/10.3390/ma18214838 - 22 Oct 2025
Viewed by 227
Abstract
The paper presents comprehensive and complementary studies of the thermophysical properties of functional composite structures. The term functional in this case means the study of the structure while maintaining its post-production imperfections, as opposed to the study of material samples prepared solely for [...] Read more.
The paper presents comprehensive and complementary studies of the thermophysical properties of functional composite structures. The term functional in this case means the study of the structure while maintaining its post-production imperfections, as opposed to the study of material samples prepared solely for this purpose. The paper presents the results of experimental studies, followed by an analysis of thermophysical properties characterizing heat accumulation and anisotropic heat transfer of two types of utility composites. Composites with an epoxy matrix and two types of reinforcement, glass and carbon fibers, were studied. The research program included micro- and macrostructural analysis and comprehensive thermogravimetric, microcalorimetric and thermal diffusivity measurements. In the studies of heat transfer phenomena, the directional dependence of properties was considered. Attention was focused on maintaining high temperature resolution of measurements, and the effect of repeated temperature exposure was also determined. The results of the research are the determined quantitative and qualitative characteristics, including the temperature dependence of a set of thermophysical properties of the tested materials. Key findings include higher thermal stability and a significant thermal anisotropy ratio in the graphite-reinforced polymer composite compared to the glass-reinforced polymer composite, which exhibited a lower onset decomposition temperature. The results offer crucial data for engineering calculations, structural analyses, and defining operational limits. Analysis of the results provides insight into possible design and operational problems of real structures in relation to model data. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

10 pages, 609 KB  
Article
Tensile Strength Characterization of Alkaline-Treated and Untreated Banana Fibres Using Weibull Statistics
by Maryam Sodagar, Nassim Edouard Lagrou and Thomas Gries
Materials 2025, 18(21), 4833; https://doi.org/10.3390/ma18214833 - 22 Oct 2025
Viewed by 147
Abstract
Banana fibres (BFs), derived from the pseudo-stems of Musa acuminata, represent a widely available agricultural residue with strong potential as an eco-friendly reinforcement in composite materials—particularly in bio-based epoxy or thermoplastic systems used in automotive interiors, packaging, and lightweight construction. However, their inherent [...] Read more.
Banana fibres (BFs), derived from the pseudo-stems of Musa acuminata, represent a widely available agricultural residue with strong potential as an eco-friendly reinforcement in composite materials—particularly in bio-based epoxy or thermoplastic systems used in automotive interiors, packaging, and lightweight construction. However, their inherent variability presents challenges for consistent and reliable mechanical characterisation. This study investigates the effect of wood ash treatment, an eco-friendly alternative to conventional alkaline processing, on the tensile strength of single BFs. Fibres were treated in aqueous wood ash solutions at two pH levels (12.4 and 13.5) and soaking durations of 3 h and 24 h, and then tested according to ASTM C1557. At least 50 valid tensile tests per series were performed, and the results were analysed using a two-parameter Weibull distribution to quantify characteristic strength and variability, complemented by reliability analysis to assess survival probability. Untreated fibres exhibited low characteristic strength (396.6 MPa) and a Weibull modulus of 1.79, confirming significant scatter. Treated fibres showed marked improvements: the highest characteristic strength was achieved at pH 13.5 for 3 h (552.8 MPa, m = 3.17), while the greatest uniformity was observed at pH 13.5 for 24 h (m = 4.62). Reliability curves confirmed superior performance of treated fibres, with 75% survival strengths up to 373 MPa compared to 198 MPa for untreated. These findings demonstrate that wood ash treatment enhances both the strength and reliability of BFs for sustainable composite applications. Full article
(This article belongs to the Special Issue Bio-Based Natural Fiber Composite Materials)
Show Figures

Figure 1

15 pages, 3211 KB  
Article
Exploring the Sustainable Development Strategy of Wood Flour-Based Composite Materials in Outdoor Furniture
by Huidi Zhou, Yuqi Gao and Kaili Zhang
Sustainability 2025, 17(20), 9235; https://doi.org/10.3390/su17209235 - 17 Oct 2025
Viewed by 253
Abstract
Wood flour, a landscaping byproduct, poses disposal challenges due to its poor degradability, despite its potential as a sustainable material. This study modified wood powder by synergistically incorporating fly ash and TiO2, followed by curing it with polyamide and epoxy resin [...] Read more.
Wood flour, a landscaping byproduct, poses disposal challenges due to its poor degradability, despite its potential as a sustainable material. This study modified wood powder by synergistically incorporating fly ash and TiO2, followed by curing it with polyamide and epoxy resin to produce high-performance wood powder-based composites suitable for outdoor furniture applications, it can solve the environmental problems caused by fly ash. The research findings indicated that as the TiO2 content increased, the material’s pore size diminished, structural strength improved, and it demonstrated enhanced hydrophobic properties and UV absorption capabilities. The optimal UV absorption performance was observed at a TiO2 content of 1.5%. The combination of TiO2 and fly ash led to the formation of more stable Si-O-Ti and Si-O-Si bonds, which further strengthened the material. Water contact angle and water repellency tests indicated that the 1.5% TiO2 composite showed a 12% increase in compressive strength and a water contact angle of 100.6°, indicating improved hydrophobicity. The addition of TiO2 reduced the number of free-OH groups within the matrix, thereby improving the composite’s hydrophobicity. Outdoor chairs fabricated by mixing 1.5% TiO2-modified wood powder with PET for demolding exhibited excellent structural stability while also being safe and environmentally friendly. This study proposes a feasible preparation strategy for wood powder, enhancing durability through improved mechanical strength, water repellency, and UV shielding. Furthermore, it offers valuable insights into the material modification of wood powder-based materials for the production of outdoor garden furniture. Full article
Show Figures

Figure 1

25 pages, 17554 KB  
Article
Effect of Long-Term Immersion in Low-Salinity Seawater on Epoxy Resin Composites Filled with Marine Secondary Raw Materials
by Greta Vicentini, Carlo Santulli, Sara Mattiello, Roberto Matassa, Danilo Nikolić, Slavica Petovic, Ana Pesic, Radmila Gagic, Alberto Felici and Cristiano Fragassa
J. Mar. Sci. Eng. 2025, 13(10), 1985; https://doi.org/10.3390/jmse13101985 - 16 Oct 2025
Viewed by 283
Abstract
This research explores the potential introduction of marine waste-derived biological fillers within bio-epoxy matrices to mitigate the environmental impact of traditional materials, like fiberglass, in boat construction. However, this raises concerns about biofouling and degradation, issues that have not been extensively investigated in [...] Read more.
This research explores the potential introduction of marine waste-derived biological fillers within bio-epoxy matrices to mitigate the environmental impact of traditional materials, like fiberglass, in boat construction. However, this raises concerns about biofouling and degradation, issues that have not been extensively investigated in composites, especially over a time frame representative of issues that could arise during service. Although protective solutions like biocides and specific coatings exist, degradation remains challenging when attempting to use eco-friendly natural fillers. This study specifically integrates various biological fillers, namely ceramics (mussel, oyster, clam powder) or ligno-cellulosic (i.e., Posidonia oceanica fibers) into epoxy for use in some boat components (bench seats for the bridge deck), aiming to evaluate the biofouling process under extreme (or decommissioning) conditions. In itself, epoxy does represent an ideal enclosing matrix for biomass waste, which ideally needs to be introduced in significant amounts. The development of biofouling in the specific context of Kotor’s Bay, Montenegro, for a duration of six months, and relevant composite degradation were examined. In particular, three situations were reproduced by positioning the samples in a harbor environment: (i) on the bottom of the sea (2 m. depth), (ii) immersed just below the surface (0.5 m. depth), and (iii) on the splashing surface (pier). The concerns identified appear generally limited in the case of the envisaged application, despite some significant wear effect in the case of the samples containing Posidonia. However, this study also offers information and caveats in terms of more ambitious prospective applications (e.g., the boat hull structure). Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 6023 KB  
Article
Electromagnetic Shielding Performance of Ta-Doped NiFe2O4 Composites Reinforced with Chopped Strands for 7–18 GHz Applications
by Mehriban Emek, Ethem İlhan Şahin, Jamal Eldin F. M. Ibrahim and Mesut Kartal
Nanomaterials 2025, 15(20), 1580; https://doi.org/10.3390/nano15201580 - 16 Oct 2025
Viewed by 245
Abstract
This study reports the synthesis, structural characterization, and electromagnetic shielding performance of tantalum (Ta)-doped nickel ferrite (NiFe2O4) composites reinforced with chopped strands. Ta-doped NiFe2O4 powders were prepared via the conventional mixed-oxide route and sintered at 1200 [...] Read more.
This study reports the synthesis, structural characterization, and electromagnetic shielding performance of tantalum (Ta)-doped nickel ferrite (NiFe2O4) composites reinforced with chopped strands. Ta-doped NiFe2O4 powders were prepared via the conventional mixed-oxide route and sintered at 1200 °C for 4 h, resulting in a well-crystallized single-phase spinel structure. Comprehensive structural and chemical analyses were carried out using X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDS), confirming the successful incorporation of Ta into the NiFe2O4 lattice and the uniform microstructural distribution. The ferrite powders were subsequently embedded with chopped strands and epoxy resin through hot pressing to fabricate composites with varying filler contents. The electromagnetic interference (EMI) shielding effectiveness (SE) of the composites was systematically evaluated in the 7–18 GHz frequency range using a network analyzer (NA). The optimized composite, with a thickness of 1.2 mm, demonstrated a maximum SE of 34.74 dB at 17.4 GHz, primarily attributed to interfacial polarization, dipolar relaxation, and multiple scattering effects induced by the chopped strands. The results indicate that the shielding performance of the composites can be precisely tuned by modifying the filler concentration and microstructural characteristics, enabling selective frequency-band applications. Overall, this work highlights the potential of Ta-doped NiFe2O4/chopped strand composites as lightweight, cost-effective, and high-performance candidates for advanced microwave absorption and electromagnetic shielding applications in defense, and next-generation communication technologies. Full article
(This article belongs to the Section Inorganic Materials and Metal-Organic Frameworks)
Show Figures

Graphical abstract

14 pages, 3840 KB  
Article
Building Polyacryronitrile Fiber/Epoxy Resin (PANER) Interleaving Film to Strengthen Flexural and Compressive Performances of Laminated CFRP Composites
by Sidra Ashfaq, Jiaxin He, Yanan Lyu, Fei Cheng, Xiang Yuan, Xueling Liang, Shuying Shi, Evgeny Lomakin, Daria Bondarchuk, Rasuljon Tojiyev, Hao Liu, Xiaozhi Hu and Xi Chen
Nanomaterials 2025, 15(20), 1576; https://doi.org/10.3390/nano15201576 - 16 Oct 2025
Viewed by 288
Abstract
Carbon fiber-reinforced polymer (CFRP) composites have excellent mechanical properties, but their performance is hampered by delamination caused by weak interfacial bonding and resin-rich region (RRR). This research has proposed an interleaving film to improve interlaminar structure and mechanical properties by adding polyacrylonitrile (PAN) [...] Read more.
Carbon fiber-reinforced polymer (CFRP) composites have excellent mechanical properties, but their performance is hampered by delamination caused by weak interfacial bonding and resin-rich region (RRR). This research has proposed an interleaving film to improve interlaminar structure and mechanical properties by adding polyacrylonitrile (PAN) fiber into the epoxy interlayer of the CFRP laminates. The PAN fiber/epoxy resin (PANER) interleaving film could be prepared, which was beneficial to hinder crack initiation paths and improve the load transfer. Flexural and compression performance testing results showed optimum performance was obtained when 2 wt.% PAN fiber was added, and an increment of 28.6% was obtained in the flexural strength and 11.7% increment in compressive strength. The damaged energy absorption was improved up to 21.4% and 11.3% for the flexural and compressive properties, respectively. The overall thickness increments in the interlayer with PANER interleaving film were approximately 4–9 μm. X-Ray micro-computed tomography and scanning electron microscopy observations exhibited the potential of PAN fiber in the reduction of RRR, resulting in modes replacement from delamination-dominant failure to crossing-multi-layer failure. In all, PANER interleaving film at the interlayer has been confirmed to be an effective approach to produce a simple reinforcement technology for FRP laminates. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

16 pages, 14613 KB  
Article
Research on Bio-Inspired Decussated Bamboo-Fiber-Reinforced Epoxy Composites: The Effect of Vertical Fiber Proportion on Tribological Performances
by Heng Xiao, Hao Yi, Zijie Zhou, Ningfeng Wu, Shengwei Liang, Lei Ma and Wen Zhong
Polymers 2025, 17(20), 2765; https://doi.org/10.3390/polym17202765 - 15 Oct 2025
Viewed by 350
Abstract
Bamboo fiber is a prime green fiber due to its renewability, biodegradability, and high specific strength. Bamboo-fiber-reinforced epoxy (BFRE) composites have seen extensive use and shown great promise for natural biofiber-reinforced friction materials. Inspired by the decussated fiber alignment of bovine enamel, this [...] Read more.
Bamboo fiber is a prime green fiber due to its renewability, biodegradability, and high specific strength. Bamboo-fiber-reinforced epoxy (BFRE) composites have seen extensive use and shown great promise for natural biofiber-reinforced friction materials. Inspired by the decussated fiber alignment of bovine enamel, this study investigated how fiber orientation influences the tribological properties of BFRE composites. Specifically, the proportion of fibers oriented vertically to the surface was varied at seven levels: 0%, 25%, 33%, 50%, 67%, 75%, and 100%. The tribological performance was assessed through wear reciprocating testing and microscopic morphological characterization techniques. Results indicate that the bio-inspired fiber decussation can reduce the wear loss of the BFRE composites. Among all bio-inspired BFRE composites, BFRE composites with 67% vertical fibers achieve the best wear resistance. The vertical fibers in the BFRE composites can withstand pressure to provide a “compression–rebound” effect, while the parallel fibers can resist shear stress. The decussated structure inhibits crack initiation and propagation during wear and promotes transfer film formation, reducing wear loss. The findings expand understanding of the correlation between the bovine-tooth-like decussated structure and its tribological mechanisms, thereby offering essential guidance for the biomimetic design of high-performance BFRE composites for friction material application. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

32 pages, 6187 KB  
Article
Sustainable Reprocessing of Thermoset Composite Waste into Thermoplastics: A Polymer Blend Approach for Circular Material Design
by Hasan Kasim, Yu-Chao Shih, Selvum Pillay and Haibin Ning
J. Compos. Sci. 2025, 9(10), 565; https://doi.org/10.3390/jcs9100565 - 14 Oct 2025
Viewed by 365
Abstract
Thermoset composites provide excellent strength but pose major recycling challenges due to their crosslinked structure. In this study, epoxy–polyurethane–glass fiber (EPG) wastes were mechanically recycled into low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polyamide-6 (PA6) matrices to produce second-generation thermoplastic composites (STCs). Fillers [...] Read more.
Thermoset composites provide excellent strength but pose major recycling challenges due to their crosslinked structure. In this study, epoxy–polyurethane–glass fiber (EPG) wastes were mechanically recycled into low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polyamide-6 (PA6) matrices to produce second-generation thermoplastic composites (STCs). Fillers at 10–50 wt% were processed by single-screw extrusion and compression molding, and the resulting composites were comprehensively characterized. For LDPE, the tensile modulus increased by ~286–589% and tensile strength increased by 40–47% at 20–30 wt% loading, though ductility decreased at higher levels. HDPE composites showed a ~347% rise in modulus and ~24% increase in strength, but performance declined with more than 40 wt% filler. PA6 offered the most balanced outcome, retaining ~70% of its neat tensile strength while achieving an ~300% modulus improvement at 40 wt% loading. Thermal stability was strongly enhanced, with char residue at 700 °C rising from 0.4% to 38.7% in PA6 and from ~2.5% to 33–46% in polyolefins. In contrast, crystallinity decreased (e.g., LDPE 62.2% → 23.7%), and impact strength dropped at a loading above 30 wt%. Overall, the results demonstrate that EPG wastes can be reprocessed into functional composites without compatibilizers, with PA6 providing the most robust property retention at high filler contents. Full article
(This article belongs to the Special Issue Advances in Continuous Fiber Reinforced Thermoplastic Composites)
Show Figures

Figure 1

Back to TopTop