Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = eskers

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 12659 KB  
Article
Characterization of Groundwater Geochemistry in an Esker Aquifer in Western Finland Based on Three Years of Monitoring Data
by Samrit Luoma, Jarkko Okkonen, Kirsti Korkka-Niemi, Nina Hendriksson and Miikka Paalijärvi
Water 2024, 16(22), 3301; https://doi.org/10.3390/w16223301 - 17 Nov 2024
Cited by 1 | Viewed by 1681
Abstract
This study investigated the hydrogeochemistry of a shallow Quaternary sedimentary aquifer in an esker deposition in western Finland, where distinct spatial and temporal variability in groundwater hydrogeochemistry has been observed. Field investigation and hydrogeochemical data were obtained from autumn 2010 to autumn 2013. [...] Read more.
This study investigated the hydrogeochemistry of a shallow Quaternary sedimentary aquifer in an esker deposition in western Finland, where distinct spatial and temporal variability in groundwater hydrogeochemistry has been observed. Field investigation and hydrogeochemical data were obtained from autumn 2010 to autumn 2013. The data were analyzed using the multivariate statistical methods principal component analysis (PCA) and hierarchical cluster analysis (HCA), in conjunction with groundwater classification based on the main ionic composition. The stable isotope ratios of δ18O and δD were used to determine the origin of the groundwater and its connection to surface water bodies. The groundwater geochemistry is characterized by distinct redox zones caused by the influence of organic matter, pyrite oxidation, and preferential flow pathways due to different hydrogeological conditions. The groundwater is of the Ca-HCO3 type and locally of the Ca-HCO3-SO4 type, with low TDS, alkalinity, and pH, but elevated Fe and Mn concentrations, KMnO4 consumption, and, occasionally, Ni concentrations. The decomposition of organic matter adds CO2 to the groundwater, and in this study, the dissolution of CO2 was found to increase the pH and enhance the buffering capacity of the groundwater. The mobility of redox-sensitive elements and trace metals is controlled by pH and redox conditions, which are affected by the pumping rate, precipitation, and temperature. With the expected future increases in precipitation and temperature, the buffering capacity of the aquifer system will enhance the balance between alkalinity from bioactivity and acidity from recharge and pyrite oxidation. Full article
Show Figures

Figure 1

21 pages, 8074 KB  
Article
Groundwater Storage Variations across Climate Zones from Southern Poland to Arctic Sweden: Comparing GRACE-GLDAS Models with Well Data
by Zofia Rzepecka, Monika Birylo, Jerker Jarsjö, Feifei Cao and Jan Pietroń
Remote Sens. 2024, 16(12), 2104; https://doi.org/10.3390/rs16122104 - 11 Jun 2024
Cited by 5 | Viewed by 2083
Abstract
The aim of this paper is to assess the correlation of groundwater level changes (or groundwater level anomalies (GWLA)) obtained from direct measurements in wells with groundwater storage anomalies (GWSA) calculated using Gravity Recovery and Climate Experiment (GRACE) products and Global Land Data [...] Read more.
The aim of this paper is to assess the correlation of groundwater level changes (or groundwater level anomalies (GWLA)) obtained from direct measurements in wells with groundwater storage anomalies (GWSA) calculated using Gravity Recovery and Climate Experiment (GRACE) products and Global Land Data Assimilation Systems (GLDAS) models across different climate zones, from temperate Poland to Arctic Sweden. We recognize that such validation studies are needed to increase the understanding of the spatio-temporal limits of remote sensing model applicability, not least in data-scarce sub-Arctic and Arctic environments where processes are complex due to the impacts of snow and (perma) frost. Results for temperate climates in Poland and southern Sweden show that, whereas one of the models (JPL_NOAH_GWSA) failed due to water balance term overestimation, the other model (CSR_CLM_GWSA) produced excellent results of monthly groundwater dynamics when compared with the observations in 387 groundwater wells in the region during 2003–2022 (cross-correlation coefficient of 0.8). However, for the sub-Arctic and Arctic northern Sweden, the model suitable for other regions failed to reproduce typical northern groundwater regimes (of the region’s 85 wells), where winter levels decrease due to the blocking effect of ground frost on groundwater recharge. This suggests, more generally, that conventional methods for deriving GWSA and its seasonality ceases to be reliable in the presence of considerably infiltration-blocking ground frost and permafrost (whereas snow storage modules perform well), which hence need further attention in future research. Regarding long-term groundwater level trends, remote sensing results for southern Sweden show increasing levels, in contrast with observed unchanged to decreasing (~10 mm/a) levels, which may not necessarily be due to errors in the remote sensing model but may rather emphasize impacts of anthropogenic pressures, which are higher near the observation wells that are often located in eskers used for water supply. For sub-Arctic and Arctic Sweden, the (relatively uncertain) trend of the remote sensing results nevertheless agrees reasonably well with the groundwater well observations that show increasing groundwater levels of up to ~14 mm/a, which, e.g., is consistent with reported trends of large Siberian river basins. Full article
(This article belongs to the Special Issue GRACE Data Assimilation for Understanding the Earth System)
Show Figures

Figure 1

31 pages, 7423 KB  
Article
Bathymetry and Geomorphology of Shelikof Strait and the Western Gulf of Alaska
by Mark Zimmermann, Megan M. Prescott and Peter J. Haeussler
Geosciences 2019, 9(10), 409; https://doi.org/10.3390/geosciences9100409 - 21 Sep 2019
Cited by 15 | Viewed by 10632
Abstract
We defined the bathymetry of Shelikof Strait and the western Gulf of Alaska (WGOA) from the edges of the land masses down to about 7000 m deep in the Aleutian Trench. This map was produced by combining soundings from historical National Ocean Service [...] Read more.
We defined the bathymetry of Shelikof Strait and the western Gulf of Alaska (WGOA) from the edges of the land masses down to about 7000 m deep in the Aleutian Trench. This map was produced by combining soundings from historical National Ocean Service (NOS) smooth sheets (2.7 million soundings); shallow multibeam and LIDAR (light detection and ranging) data sets from the NOS and others (subsampled to 2.6 million soundings); and deep multibeam (subsampled to 3.3 million soundings), single-beam, and underway files from fisheries research cruises (9.1 million soundings). These legacy smooth sheet data, some over a century old, were the best descriptor of much of the shallower and inshore areas, but they are superseded by the newer multibeam and LIDAR, where available. Much of the offshore area is only mapped by non-hydrographic single-beam and underway files. We combined these disparate data sets by proofing them against their source files, where possible, in an attempt to preserve seafloor features for research purposes. We also attempted to minimize bathymetric data errors so that they would not create artificial seafloor features that might impact such analyses. The main result of the bathymetry compilation is that we observe abundant features related to glaciation of the shelf of Alaska during the Last Glacial Maximum including abundant end moraines, some medial moraines, glacial lineations, eskers, iceberg ploughmarks, and two types of pockmarks. We developed an integrated onshore–offshore geomorphic map of the region that includes glacial flow directions, moraines, and iceberg ploughmarks to better define the form and flow of former ice masses. Full article
(This article belongs to the Special Issue Geological Seafloor Mapping)
Show Figures

Graphical abstract

35 pages, 58464 KB  
Article
The Glacial Geomorphology of the Ice Cap Piedmont Lobe Landsystem of East Mýrdalsjökull, Iceland
by David J. A. Evans, Marek Ewertowski, Chris Orton and David J. Graham
Geosciences 2018, 8(6), 194; https://doi.org/10.3390/geosciences8060194 - 30 May 2018
Cited by 20 | Viewed by 6736
Abstract
A surficial geology and geomorphology map of the forelands of the Sandfellsjökull and Oldufellsjökull piedmont lobes of the east Mýrdalsjökull ice cap is used to characterise the historical and modern landscape imprint in a glacial landsystems context. This serves as a modern analogue [...] Read more.
A surficial geology and geomorphology map of the forelands of the Sandfellsjökull and Oldufellsjökull piedmont lobes of the east Mýrdalsjökull ice cap is used to characterise the historical and modern landscape imprint in a glacial landsystems context. This serves as a modern analogue for palaeoglaciological reconstructions of ice cap systems that operated outlet lobes of contrasting dynamics, but the subtle variability in process-form regimes is encoded in the geomorphology. The landsystems of the two piedmont lobes reflect significantly different process-form regimes, and hence contrasting historical glacier dynamics, despite the fact that they are nourished by the same ice cap. The Sandfellsjökull landsystem displays the diagnostic criteria for active temperate glacier operation, including arcuate assemblages of inset minor push moraines and associated flutings, kame terrace and ice-dammed lake deposits, linear sandar directed by overridden moraine arcs, and since 1945, features, such as ice-cored, pitted, and glacially pushed outwash fans that are linked to englacial esker networks representative of recession into an overdeepening. Moraine plan forms have also changed from weakly crenulated and discontinuous curvilinear ridges to sawtooth features and crevasse-squeeze ridges and till eskers in response to changing proglacial drainage conditions. The Oldufellsjökull landsystem displays subtle signatures of jökulhlaup-driven surges, including sparse and widely spaced moraine clusters that are separated by exceptionally long flutings. The subtlety of the surge imprint at Oldufellsjökull was recognised only by comparison with nearby Sandfellsjökull, suggesting that palaeo-surging has likely been under-estimated in the ancient landform record. Hence, the simple imprint of sparse and widely spaced moraine clusters that are separated by exceptionally long flutings should be included as possible surge-diagnostic criteria. Full article
(This article belongs to the Special Issue Glacial and Geomorphological Cartography)
Show Figures

Figure 1

19 pages, 9251 KB  
Article
Assessment of Convolution Neural Networks for Surficial Geology Mapping in the South Rae Geological Region, Northwest Territories, Canada
by Rasim Latifovic, Darren Pouliot and Janet Campbell
Remote Sens. 2018, 10(2), 307; https://doi.org/10.3390/rs10020307 - 16 Feb 2018
Cited by 50 | Viewed by 8233
Abstract
Mapping of surficial geology is an important requirement for broadening the geoscience database of northern Canada. Surficial geology maps are an integral data source for mineral and energy exploration. Moreover, they provide information such as the location of gravels and sands, which are [...] Read more.
Mapping of surficial geology is an important requirement for broadening the geoscience database of northern Canada. Surficial geology maps are an integral data source for mineral and energy exploration. Moreover, they provide information such as the location of gravels and sands, which are important for infrastructure development. Currently, surficial geology maps are produced through expert interpretation of aerial photography and field data. However, interpretation is known to be subjective, labour-intensive and difficult to repeat. The expert knowledge required for interpretation can be challenging to maintain and transfer. In this research, we seek to assess the potential of deep neural networks to aid surficial geology mapping by providing an objective surficial materials initial layer that experts can modify to speed map development and improve consistency between mapped areas. Such an approach may also harness expert knowledge in a way that is transferable to unmapped areas. For this purpose, we assess the ability of convolution neural networks (CNN) to predict surficial geology classes under two sampling scenarios. In the first scenario, a CNN uses samples collected over the area to be mapped. In the second, a CNN trained over one area is then applied to locations where the available samples were not used in training the network. The latter case is important, as a collection of in situ training data can be costly. The evaluation of the CNN was carried out using aerial photos, Landsat reflectance, and high-resolution digital elevation data over five areas within the South Rae geological region of Northwest Territories, Canada. The results are encouraging, with the CNN generating average accuracy of 76% when locally trained. For independent test areas (i.e., trained over one area and applied over other), accuracy dropped to 59–70% depending on the classes selected for mapping. In the South Rae region, significant confusion was found between till veneer and till blanket as well as glaciofluvial subclasses (esker, terraced, and hummocky ice-contact). Merging these classes respectively increased accuracy for independent test area to 68% on average. Relative to the more widely used Random Forest machine learning algorithm, this represents an improvement in accuracy of 4%. Furthermore, the CNN produced better results for less frequent classes with distinct spatial structure. Full article
(This article belongs to the Section Remote Sensing in Geology, Geomorphology and Hydrology)
Show Figures

Graphical abstract

16 pages, 5205 KB  
Article
Raw Water Quality and Pretreatment in Managed Aquifer Recharge for Drinking Water Production in Finland
by Petri Jokela, Tapani Eskola, Timo Heinonen, Unto Tanttu, Jukka Tyrväinen and Aki Artimo
Water 2017, 9(2), 138; https://doi.org/10.3390/w9020138 - 20 Feb 2017
Cited by 26 | Viewed by 12514
Abstract
The main objective of managed aquifer recharge (MAR) in Finland is the removal of natural organic matter (NOM) from surface waters. A typical MAR procedure consists of the infiltration of surface water into a Quaternary glaciofluvial esker with subsequent withdrawal of the MAR [...] Read more.
The main objective of managed aquifer recharge (MAR) in Finland is the removal of natural organic matter (NOM) from surface waters. A typical MAR procedure consists of the infiltration of surface water into a Quaternary glaciofluvial esker with subsequent withdrawal of the MAR treated water from wells a few hundred meters downstream. The infiltrated water should have a residence time of at least approximately one month before withdrawal to provide sufficient time for the subsurface processes needed to break down or remove humic substances. Most of the Finnish MAR plants do not have pretreatment and raw water is infiltrated directly into the soil. The objectives of this paper are to present MAR experiences and to discuss the need for and choice of pretreatment. Data from basin, sprinkling, and well infiltration processes are presented. Total organic carbon (TOC) concentrations of the raw waters presented here varied from 6.5 to 11 mg/L and after MAR the TOC concentrations of the abstracted waters were approximately 2 mg/L. The overall reduction of organic matter in the treatment (with or without pretreatment) was 70%-85%. Mechanical pretreatment can be used for clogging prevention. Turbidity of the Finnish lakes used as raw water does not necessitate pretreatment in basin and sprinkling infiltration, however, pretreatment in well infiltration needs to be judged separately. River waters may have high turbidity requiring pretreatment. Biodegradation of NOM in the saturated groundwater zone consumes dissolved oxygen. Thus, a high NOM concentration may create conditions for dissolution of iron and manganese from the soil. These conditions may be avoided by the addition of chemical pretreatment. Raw waters with TOC content up to at least approximately 8 mg/L were infiltrated without any considerations of chemical pretreatment, which should be evaluated based on local conditions. Full article
(This article belongs to the Special Issue Water Quality Considerations for Managed Aquifer Recharge Systems)
Show Figures

Figure 1

Back to TopTop