Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,629)

Search Parameters:
Keywords = essential nutrients

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 7652 KB  
Article
Advancing Scaffold Architecture for Bone Tissue Engineering: A Comparative Study of 3D-Printed β-TCP Constructs in Dynamic Culture with pBMSC
by Yannick M. Sillmann, Ana M. P. Baggio, Pascal Eber, Benjamin R. Freedman, Cynthia Liu, Youssef Jounaidi, Alexander Schramm, Frank Wilde and Fernando P. S. Guastaldi
J. Funct. Biomater. 2025, 16(9), 327; https://doi.org/10.3390/jfb16090327 - 4 Sep 2025
Abstract
Scaffold architecture is a key determinant of cell behavior and tissue regeneration in bone tissue engineering, yet the influence of pore size under dynamic culture conditions remains incompletely understood. This study aimed to evaluate the effects of scaffold pore size on osteogenic differentiation [...] Read more.
Scaffold architecture is a key determinant of cell behavior and tissue regeneration in bone tissue engineering, yet the influence of pore size under dynamic culture conditions remains incompletely understood. This study aimed to evaluate the effects of scaffold pore size on osteogenic differentiation of porcine bone marrow-derived mesenchymal stem cells (pBMSCs) cultured in a rotational oxygen-permeable bioreactor system (ROBS). Three-dimensionally (3D) printed beta-tricalcium phosphate (β-TCP) scaffolds with pore sizes of 500 µm and 1000 µm were seeded with pBMSC and cultured for 7 and 14 days under dynamic perfusion conditions. Gene expression analysis revealed significantly higher levels of osteogenic markers (Runx2, BMP-2, ALP, Osx, Col1A1) in the 1000 µm group, particularly at the early time point, with the later-stage marker Osteocalcin (Ocl) rising faster and higher in the 1000 µm group, after a lower expression at 7 days. ALP activity assays corroborated these findings. Despite having lower mechanical strength, the 1000 µm scaffolds supported a homogeneous cell distribution and high viability across all regions. These results suggest that larger pore sizes enhance early osteogenic commitment by improving nutrient transport and fluid flow in dynamic culture. These findings also support the use of larger-pore scaffolds in bioreactor-based preconditioning strategies and underscore the clinical importance of promoting early osteogenic differentiation to reduce in vitro culture time, an essential consideration for the timely preparation of implantable grafts in bone tissue engineering. Full article
Show Figures

Figure 1

17 pages, 3416 KB  
Article
GRA86 Is a Novel Dense Granule Protein Important for Virulence and Bradyzoite Differentiation in Toxoplasma gondii
by Xiao-Nan Zheng, Jing Li, Xin-Sheng Lu, Hany M. Elsheikha and Xing-Quan Zhu
Animals 2025, 15(17), 2591; https://doi.org/10.3390/ani15172591 - 3 Sep 2025
Abstract
Toxoplasma gondii is a globally prevalent parasite capable of establishing lifelong infections, which can have severe consequences in immunocompromised individuals and developing fetuses. GRAs are essential secretory effectors that facilitate nutrient acquisition, modulate host immune responses, and support intracellular survival. In this study, [...] Read more.
Toxoplasma gondii is a globally prevalent parasite capable of establishing lifelong infections, which can have severe consequences in immunocompromised individuals and developing fetuses. GRAs are essential secretory effectors that facilitate nutrient acquisition, modulate host immune responses, and support intracellular survival. In this study, we characterized four putative GRAs (GRA85–88) that co-localize with GRA12 in both tachyzoite and bradyzoite stages. Using CRISPR-Cas9-mediated homologous recombination, we successfully generated knockout strains in both type I RH and type II Pru backgrounds. Phenotypic analysis revealed that GRA85, GRA87, and GRA88 were not individually required for parasite replication, invasion, or virulence. However, deletion of gra86 (PruΔgra86) resulted in a significant reduction in virulence and fewer brain cysts in chronically infected mice, although in vitro growth remained unaffected. Transcriptomic profiling of PruΔgra86 revealed downregulation of bradyzoite–related genes and upregulation of GRAs involved in host interaction. Additionally, in vitro differentiation assays showed impaired bradyzoite development in the absence of GRA86. These findings from murine models and in vitro phenotypic assays highlight GRA86 as a regulator of chronic infection and stage conversion, positioning it as an important player in T. gondii pathogenesis and a promising target for therapeutic intervention. Full article
(This article belongs to the Special Issue Coccidian Parasites: Epidemiology, Control and Prevention Strategies)
Show Figures

Figure 1

16 pages, 1391 KB  
Article
Differential Nutrient Contents and Free Amino Acid Levels in Asymptomatic and Symptomatic Leaves of Huanglongbing-Affected Grapefruit Trees
by Aditi Satpute, Catherine Simpson and Mamoudou Sétamou
Plants 2025, 14(17), 2756; https://doi.org/10.3390/plants14172756 - 3 Sep 2025
Abstract
Grapefruit (Citrus × paradisi Macfad.) is susceptible to Huanglongbing (HLB) disease, which prominently affects tree health and leads to a substantial loss of productivity. HLB-affected trees exhibit a nutritional imbalance expressed in either deficiencies or toxicities of the essential minerals required for [...] Read more.
Grapefruit (Citrus × paradisi Macfad.) is susceptible to Huanglongbing (HLB) disease, which prominently affects tree health and leads to a substantial loss of productivity. HLB-affected trees exhibit a nutritional imbalance expressed in either deficiencies or toxicities of the essential minerals required for plant growth, as well as changes in the production of plant metabolites. Hence, understanding foliar nutritional and metabolite fluctuations as HLB-elicited symptoms progress can assist growers in improving tree health management strategies. This study evaluated changes in foliar nutrient and phloem sap amino acid concentrations of HLB-affected grapefruit trees showing a mixed canopy of HLB-induced blotchy mottle and asymptomatic mature leaves. The trees used in our experiment were fruit-bearing seven-year-old grapefruit trees (cv ‘Rio Red’ on sour orange rootstock) grown in South Texas. Two types of foliage from HLB-affected trees were studied, (a) HLB-symptomatic and confirmed Candidatus Liberibacter asiaticus (CLas)-positive (IS) and (b) CLas-negative and HLB-asymptomatic (IA) mature leaves, which were compared to asymptomatic and CLas-free mature foliage from healthy trees (HY) in terms of their leaf nutrient and phloem sap amino acid contents. Hierarchical clustering based on leaf nutrient contents showed that 70% of IA samples clustered with HY samples, thus indicating that the levels of some nutrients were statistically similar in these two types of samples. The concentrations of the macronutrients N, Ca, Mg, and S and the micronutrients Mn and B were significantly reduced in HLB-symptomatic (IS) leaves, as compared to their IA and HY counterparts, which did not show statistically significant differences. Conversely, leaf Na concentration was approximately two-fold higher in leaves from HLB-affected trees (IA and IS) independent of symptom expression as compared to leaves from healthy trees. Significantly higher concentrations of glutamine and the S-containing amino acids taurine and cystathionine were observed in the IS leaves relative to the phloem sap of IA leaves from HLB-affected trees. In contrast, the phloem sap of IA (14%) and IS (41%) leaves from HLB-affected trees exhibited lower levels of γ-amino butyric acid (GABA) as compared to HY leaves. The results of this study highlight the changes in leaf nutrient and phloem sap amino acid profiles following CLas infection and HLB symptom development in grapefruit, and we discuss these results considering the strategies that growers can implement to correct the nutritional deficiencies and/or toxicities induced by this disease. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

18 pages, 2832 KB  
Article
Elemental Analysis and Chemometric Assessment of Edible Part and Peel of Mango Fruits (Mangifera indica L.)
by Michaela Zeiner, Ema Mihalić, Iva Juranović Cindrić, Ivan Nemet and Heidelore Fiedler
Foods 2025, 14(17), 3096; https://doi.org/10.3390/foods14173096 - 3 Sep 2025
Abstract
Mango (Mangifera indica L.) is a very popular tropical drupe that can be consumed fresh or dried. It is rich in essential nutrients such as vitamins, dietary fibre, and minerals, as well as biologically active substances, with a positive effect on health. [...] Read more.
Mango (Mangifera indica L.) is a very popular tropical drupe that can be consumed fresh or dried. It is rich in essential nutrients such as vitamins, dietary fibre, and minerals, as well as biologically active substances, with a positive effect on health. However, it can also contain potentially toxic elements, which justifies the need of properly investigating this food product. Commercially available samples of dried mango, as well as the mesocarp and peel of fresh mango, were analysed. Prior to the multi-element analysis by inductively coupled plasma mass spectrometry (ICP-MS), the microwave-assisted sample digestion method using various reagents and reagent mixtures was optimised, showing that a mixture of nitric acid and hydrogen peroxide gave the best recoveries. The results obtained were processed by chemometric methods. The content of elements in the peel was higher than in the mesocarp. The macroelements Ca, K, Mg, and Na were found in the largest proportion, and the micronutrients present in significant quantities were Cu, Zn, and Mn (>3 mg/kg), while toxic elements, which according to the guidelines of The European Food Safety Authority) would represent a danger to human health, were not found in mass fractions above the permissible values. Full article
Show Figures

Figure 1

27 pages, 1382 KB  
Review
From Obscurity to Prominence: IPMK’s Expanding Role in Cellular Signaling, Physiology, and Disease
by Subrata H. Mishra, Sujan Chatterjee, Loretta Viera-Preval and Prasun Guha
Biomolecules 2025, 15(9), 1266; https://doi.org/10.3390/biom15091266 - 1 Sep 2025
Viewed by 107
Abstract
Once a protein of relative obscurity, inositol polyphosphate multikinase (IPMK) emerged as a versatile and indispensable enzyme in cellular biology. With dual inositol and lipid kinase activities, IPMK generates pivotal signaling molecules such as InsP4 (inositol tetraphosphate), InsP5 (inositol pentaphosphate), and PIP3 (phosphoinositide [...] Read more.
Once a protein of relative obscurity, inositol polyphosphate multikinase (IPMK) emerged as a versatile and indispensable enzyme in cellular biology. With dual inositol and lipid kinase activities, IPMK generates pivotal signaling molecules such as InsP4 (inositol tetraphosphate), InsP5 (inositol pentaphosphate), and PIP3 (phosphoinositide 3,4,5-trisphosphate), positioning it as a critical regulator of cellular mechanisms. Initially identified in yeast and later recognized as essential for mammalian embryonic development, IPMK has transitioned from a niche interest to a focal point in studies of nutrient sensing, growth factor signaling, mRNA transport, and transcription regulation. Over two decades, multidisciplinary research has unveiled its far-reaching biological roles and implications in diverse diseases, including neurodegeneration, cancer, and inflammation. This review charts IPMK’s journey from obscurity to prominence, examining its structure–function relationships, cellular roles, and emerging physiological impacts, while highlighting its potential as a therapeutic target in human health and disease. Full article
(This article belongs to the Special Issue Inositol Phosphates in Health and Disease, 2nd Edition)
Show Figures

Figure 1

26 pages, 1699 KB  
Review
Improving Biocontrol Potential of Antagonistic Yeasts Against Fungal Pathogen in Postharvest Fruits and Vegetables Through Application of Organic Enhancing Agents
by Gerefa Sefu Edo, Esa Abiso Godana, Guillaume Legrand Ngolong Ngea, Kaili Wang, Qiya Yang and Hongyin Zhang
Foods 2025, 14(17), 3075; https://doi.org/10.3390/foods14173075 - 31 Aug 2025
Viewed by 620
Abstract
Fruits and vegetables are essential for a healthy diet, providing vital nutrients and contributing to global food security. Fungal pathogens that interact with fruits and vegetables reduce their quality and shelf life and lead to economic losses and risks to human health through [...] Read more.
Fruits and vegetables are essential for a healthy diet, providing vital nutrients and contributing to global food security. Fungal pathogens that interact with fruits and vegetables reduce their quality and shelf life and lead to economic losses and risks to human health through the production of mycotoxins. Chemical fungicides, used to control postharvest pathogens, are posing serious environmental and health risks, driving interest in safer alternative strategies. Biocontrol methods using antagonistic microbes, such as yeasts, are eco-friendly, sustainable, and the most promising, but they often have limited efficacy and specificity in diverse produce. There is growing interest in the innovative enhancement of biocontrol strategies. The present review shows that inducing, enhancing, co-application, encapsulation, and post-application treatments are common enhancement techniques, while environmental, host, and pathogen characteristics, antagonistic microbial traits, and chemical inputs are the major gearing factors for the best application methods. These methods do not involve genetic modification, which is adequate to reduce the proliferation of GMOs (Genetically Modified Organisms) while optimizing antagonistic microbial performance by promoting growth, inducing host resistance, enhancing antifungal properties, improving adhesion, and boosting stress tolerance. Most enhancers fall under groups of nutritional additives, protective carriers, growth stimulants, and encapsulants. Integrating these enhancers and best methods promises reduced postharvest losses, supports sustainable agriculture, and addresses economic losses and food security challenges. This study highlights the role of organic and natural elicitors, their application methods, their mechanisms in improving BCAs (Biological Control Agents), and their overall efficiency. This review concisely compiles recent strategies, calling for further research to revolutionize fungal pathogen management, reduce food waste, and promote responsible farming practices. Full article
(This article belongs to the Special Issue Sustainable Agriculture for Food and Nutrition Security)
Show Figures

Figure 1

34 pages, 2505 KB  
Systematic Review
The Roles of Micronutrition and Nutraceuticals in Enhancing Wound Healing and Tissue Regeneration: A Systematic Review
by Cristina Stanescu, Iulia Chiscop, Daniela Mihalache, Monica Boev, Camelia Tamas and Gabriela Stoleriu
Molecules 2025, 30(17), 3568; https://doi.org/10.3390/molecules30173568 - 31 Aug 2025
Viewed by 166
Abstract
Micronutrients and nutraceuticals play crucial roles in wound healing and tissue regeneration, supporting various physiological processes. This review aims to synthesize and evaluate the functions of various micronutrients and nutraceuticals, emphasizing the synergistic interactions among different nutrients that facilitate wound healing processes. A [...] Read more.
Micronutrients and nutraceuticals play crucial roles in wound healing and tissue regeneration, supporting various physiological processes. This review aims to synthesize and evaluate the functions of various micronutrients and nutraceuticals, emphasizing the synergistic interactions among different nutrients that facilitate wound healing processes. A thorough literature review was performed using electronic databases, including PubMed, Scopus, Web of Science, Embase, Google Scholar, and Cochrane Library, to identify molecular studies, animal models, randomized controlled trials, and observational human studies published up to January 2000. Two independent reviewers screened the articles, extracted data, and evaluated the Risk of Bias using the Risk of Bias 2 (RoB 2) tool for the 190 studies that met the inclusion criteria. Evidence suggests that bioactive compounds found in functional foods and dietary supplements can help prevent chronic conditions and promote wellness beyond basic nutrition. Vitamins A, C, and E, as well as minerals such as zinc, selenium, and iron, are essential for cell proliferation and the formation of new tissues. Additionally, nutraceuticals, including omega-3 fatty acids, glutamine, arginine, and polyphenols, exhibit anti-inflammatory and antioxidant properties, which promote healing and reduce the risk of infection. Probiotics and other bioactive compounds in nutraceuticals contribute to maintaining the balance of microbiota, reducing inflammation, and stimulating cell regeneration. Significant variability was noted in study design, sample size, intervention dosage, and outcome measures. This evidence underscores the necessity for further well-designed clinical trials to determine the optimal dosages and combinations for specific wound types across diverse patient populations. This systematic review was prospectively registered in PROSPERO (ID: 1072091). Full article
(This article belongs to the Section Food Chemistry)
Show Figures

Figure 1

21 pages, 6783 KB  
Article
The Uptake and Translocation of Lead, Chromium, Cadmium, and Zinc by Tomato Plants Grown in Nutrient and Contaminated Nutrient Solutions: Implications for Food Safety
by Radmila Milačič Ščančar, Katarina Kozlica, Stefan Marković, Pia Leban, Janja Vidmar, Ester Heath, Nina Kacjan Maršić, Špela Železnikar and Janez Ščančar
Toxics 2025, 13(9), 738; https://doi.org/10.3390/toxics13090738 - 31 Aug 2025
Viewed by 153
Abstract
The uptake and translocation of Pb, Cr, Cd, and Zn in tomato plants (Solanum lycopersicum L. Rally) were investigated. Tomato seedlings were grown for five weeks in pots containing 40 L of Hoagland nutrient solution (pH 7) or contaminated nutrient solutions at [...] Read more.
The uptake and translocation of Pb, Cr, Cd, and Zn in tomato plants (Solanum lycopersicum L. Rally) were investigated. Tomato seedlings were grown for five weeks in pots containing 40 L of Hoagland nutrient solution (pH 7) or contaminated nutrient solutions at two concentration levels for each element: Cr (100 and 1000 ng/mL), Zn (100 and 1000 ng/mL), Pb (100 and 500 ng/mL), and Cd (50 and 500 ng/mL). The solutions were replenished weekly to maintain a volume of 40 L (pH 7), and 10 mL samples were collected for elemental analysis. After five weeks, the plants were harvested and separated into roots, stems, leaves, and fruits. These samples underwent microwave-assisted digestion, and the element concentrations were determined by inductively coupled plasma mass spectrometry (ICP-MS). The results revealed that the elements were mainly accumulated in the roots, with much lower concentrations determined in the fruits. Pb and Cr accumulated only minimally in fruits, with Pb levels of 0.0009 mg/kg wet weight at LI and 0.003 mg/kg wet weight at LII, and Cr levels of 0.028 mg/kg wet weight at LI and 0.031 mg/kg wet weight at LII. The Pb levels did not exceed the permissible limits set by EC regulations (0.05 mg/kg wet weight). Zn exhibited the highest accumulation in fruits, with 2.17 mg/kg wet weight at LI and 4.8 mg/kg wet weight at LII. By contrast, the Cd concentrations in fruits (0.25 mg/kg wet weight at LI and 1.1 mg/kg wet weight at LII) exceeded the EC regulatory limit of 0.02 mg/kg wet weight. The uptake of other essential elements into the tomato plant remained largely unaffected by the presence of contaminants. These results provide valuable insights into food safety. Laser ablation (LA)-ICP-MS imaging revealed an even distribution of Cd and Zn in the leaves of plants grown in contaminated nutrient solutions. By contrast, Cr and Pb were predominantly localized in the leaf veins and at the leaf apex, suggesting different transport mechanisms for these elements from the roots to the aerial parts of the plant. Full article
Show Figures

Graphical abstract

20 pages, 3090 KB  
Article
Exploring the Effects of Biochar and Compost on Ameliorating Coastal Saline Soil
by Wenzhi Zhou, Shuo Xing, Yaqi Wu, Rongsong Zou, Suyan Li, Xiangyang Sun and Huaxin Zhang
Agronomy 2025, 15(9), 2093; https://doi.org/10.3390/agronomy15092093 - 30 Aug 2025
Viewed by 204
Abstract
In this study, the effects of biochar and compost on the amelioration of coastal saline soil were investigated through indoor leaching experiments and soil culture experiments. The results revealed that the multivoid structure of biochar and compost, when applied to soil, effectively improved [...] Read more.
In this study, the effects of biochar and compost on the amelioration of coastal saline soil were investigated through indoor leaching experiments and soil culture experiments. The results revealed that the multivoid structure of biochar and compost, when applied to soil, effectively improved soil hydraulic conductivity, promoted the leaching of salt ions, and reduced soil electrical conductivity. Owing to the high pH value of biochar and the lower pH value of compost, the combined application of the two has a complementary effect on improving the pH value of coastal saline soils. The calcium (Ca2+) and magnesium (Mg2+) contained in biochar and compost are exchanged with Na+ adsorbed by soil colloids, which reduces the sodium (Na+) adsorption ratio (SAR) value of the soil. Biochar and compost improve the physical properties of the soil, and the organic matter they contain helps soil particles aggregate with each other and form stable clusters, thus promoting the formation of soil agglomerates, which are conducive to the formation of clusters with a diameter of ≤0.25 mm. Biochar and compost are rich in nutrients, and their application significantly increased the contents of available nutrients and organic matter as well as the activities of urease, phosphatase, and dehydrogenase in saline soils. However, too high of an application rate of biochar increases the soil pH value, and excessive application of compost can lead to greater soil conductivity, which inhibits the activities of soil urease, phosphatase and dehydrogenase. Therefore, rational control of application rates is essential for improving coastal saline soils. Future research should further explore the synergistic effects of biochar and compost in improving soil structure, nutrient effectiveness, and microbial activity to promote their effective application in coastal saline–alkaline soil improvement. Full article
Show Figures

Figure 1

31 pages, 1246 KB  
Article
Toward Nutritionally Sound Plant-Based Meat Analogues: Expert Consensus from a Delphi Study
by Nathalia Tarossi Locatelli, Sarah Polezi, Mariana Frazão Batista, Daniel Henrique Bandoni and Veridiana Vera de Rosso
Foods 2025, 14(17), 3068; https://doi.org/10.3390/foods14173068 - 30 Aug 2025
Viewed by 296
Abstract
Plant-based diets are increasingly recognized for their potential health benefits, reduced environmental impact, and alignment with ethical concerns related to animal welfare. Plant-based meat analogues (PBMAs), formulated using alternative vegetable protein sources, can contribute to the nutritional adequacy of such diets while supporting [...] Read more.
Plant-based diets are increasingly recognized for their potential health benefits, reduced environmental impact, and alignment with ethical concerns related to animal welfare. Plant-based meat analogues (PBMAs), formulated using alternative vegetable protein sources, can contribute to the nutritional adequacy of such diets while supporting consumer adherence by replicating the sensory characteristics of conventional meat products. This study aimed to establish evidence-based nutritional recommendations for the formulation of nutritionally balanced PBMAs through expert consensus, using a modified Delphi method. Consensus was achieved for 12 nutritional recommendations across three stakeholder groups: (i) academic researchers; (ii) representatives from scientific societies, non-governmental organizations, civil society, and government agencies; and (iii) industry stakeholders involved in PBMA production. Recommendations focused on limiting nutrients of concern—such as sodium and saturated fats—were unanimously endorsed by all groups. Additionally, consensus was reached on recommendations emphasizing the inclusion of ingredients that ensure an adequate intake of essential nutrients, including proteins, fiber, vitamins, and minerals. Among the six proposed regulatory recommendations, three achieved consensus. The resulting set of nutritional recommendations offers a valuable framework to support the food industry in developing PBMAs that align with consumer expectations for health, nutrition, and sustainability. Moreover, these recommendations can play a pivotal role in assisting regulatory authorities in defining identity and quality standards for PBMAs. Full article
(This article belongs to the Special Issue Plant-Based Alternatives: A Perspective for Future Food)
Show Figures

Figure 1

16 pages, 992 KB  
Article
Differential Expressions of Immunoregulatory microRNAs in Breast Milk of Mothers of Preterm Versus Term Infants: A Preliminary Study
by Claudio Villota Arcos, Emanuel Jeldes Jerez, Jorge Carrasco Contreras, Mauricio Bittner Ortega, Susana Contreras Duarte and Ángel Roco Videla
Medicina 2025, 61(9), 1560; https://doi.org/10.3390/medicina61091560 - 29 Aug 2025
Viewed by 243
Abstract
Background and Objectives: Human breast milk contains essential nutrients for infant growth, as well as bioactive molecules such as exosomes and miRNAs, which play a key role in the maturation of the infant’s immune system. Breast milk from mothers of preterm and [...] Read more.
Background and Objectives: Human breast milk contains essential nutrients for infant growth, as well as bioactive molecules such as exosomes and miRNAs, which play a key role in the maturation of the infant’s immune system. Breast milk from mothers of preterm and term infants shows significant differences in its nutrient contents and bioactive components. This preliminary study aimed to compare the expressions of 13 immunomodulatory microRNAs present in breast milk from the mothers of preterm and term infants. Materials and Methods: Breast milk samples were obtained from 5 breastfeeding mothers of term infants and 5 breastfeeding mothers of preterm infants. Every mother provided morning, noon, and evening milk samples. The total protein, fat, and lactose concentrations were measured. In addition, miRNAs were extracted from the exosomal fraction of each sample. The expression levels of the 13 miRNAs were compared and analyzed at the three time points each day. Results: The preterm infants’ milk had higher average fat and lactose levels. There were no differences in the total protein concentrations. The expressions of miRNAs in the preterm infants’ milk showed significantly higher variations in miR-17-5p, miR-24, miR-29b, miR-30a-5p, and miR-146a. The other miRNAs did not show variations. Interestingly, the highest miRNA expression was only observed in breast milk from the nighttime. The morning and midday samples showed distinct expression patterns. Conclusions: We identified the immunomodulatory microRNA components and their changes in expression levels at different times of the day, as well as those most strongly expressed in breast milk consumed by preterm infants. Full article
(This article belongs to the Section Genetics and Molecular Medicine)
Show Figures

Figure 1

22 pages, 653 KB  
Article
Energy and Nutrient Intake Gaps and Socioeconomic Determinants of Ultra-Processed and Less-Processed Foods Consumed in Ethiopia: Evidence from National Food Consumption Survey
by Kifle Habte Balcha, Stefanie Vandevijvere, Annette van Onselen, Muthulisi Siwela, Masresha Tessema, Nqobile Monate Mkolo, Tibebu Moges, Edith J. M. Feskens, Dejen Tesfaw and Inge D. Brouwer
Nutrients 2025, 17(17), 2818; https://doi.org/10.3390/nu17172818 - 29 Aug 2025
Viewed by 393
Abstract
Introduction: Consumption of ultra-processed food (UPF) is associated with poor diet quality and a risk for non-communicable diseases (NCDs). This study explores the energy contribution of NOVA foods and the nutrient gaps. Methods: The study sourced data from the previous Ethiopian National Food [...] Read more.
Introduction: Consumption of ultra-processed food (UPF) is associated with poor diet quality and a risk for non-communicable diseases (NCDs). This study explores the energy contribution of NOVA foods and the nutrient gaps. Methods: The study sourced data from the previous Ethiopian National Food Consumption Survey (NFCS). It covered 8254 households, 8254 women of reproductive age (15–45 years old), and 7272 children (6–45 months old). Results: The most consumed UPF in children were biscuits, cookies, soft drinks, and semi-solid palm oil; while cow and human milk, whole wheat bread, a range of legumes, tubers, and cereal-based foods were among NOVA1. In both children and women, the largest dietary energy intake was from NOVA1 (74.6% and 79.0%), processed culinary ingredients (18.3% and 14.0%), processed foods (1.9% and 3.5%), and UPF (5.1% and 3.5%), respectively. Higher intake of energy from UPF was found in urban residences, wealthier households, and women with higher education. However, NOVA1 was more dominantly consumed in rural than in urban areas. Micronutrient and macronutrient gaps were observed compared to the recommended nutrient intake (RNI). The intake of fruits and vegetables was also considerably low compared to the WHO recommendation (≥400 g/day for adults, and ≥250 g/day for children). Conclusions: Adequate intake of micronutrients, fruits, and vegetables is essential to meet the RNI and could have reduced existing body micronutrient deficiencies, such as vitamin A, zinc, iodine, calcium, vitamin D, and selenium prevalence. Whether UPF intake in urban areas is associated with insufficient availability and access to NOVA1 foods or just due to the higher provision of UPF and gained popularity needs additional investigation. Further study is recommended to simulate the impact of increased fruits and vegetables and/or reduced intake of selected UPF, salts, and oils on NCD markers or mortality in the country. Full article
(This article belongs to the Section Nutrition and Public Health)
Show Figures

Figure 1

29 pages, 2474 KB  
Review
Harnessing Microalgae and Cyanobacteria for Sustainable Agriculture: Mechanistic Insights and Applications as Biostimulants, Biofertilizers and Biocontrol Agents
by Ana Jurado-Flores, Luis G. Heredia-Martínez, Gloria Torres-Cortes and Encarnación Díaz-Santos
Agriculture 2025, 15(17), 1842; https://doi.org/10.3390/agriculture15171842 - 29 Aug 2025
Viewed by 240
Abstract
The prolonged and intensive use of chemical inputs in agriculture, particularly synthetic fertilizers, has generated a variety of environmental and agronomic challenges. This has intensified the need for alternative, viable, and sustainable solutions. Plant-associated microbes have emerged as promising candidates in this regard. [...] Read more.
The prolonged and intensive use of chemical inputs in agriculture, particularly synthetic fertilizers, has generated a variety of environmental and agronomic challenges. This has intensified the need for alternative, viable, and sustainable solutions. Plant-associated microbes have emerged as promising candidates in this regard. While research has largely focused on bacteria and fungi, comparatively less attention has been paid to other microbial groups such as microalgae and cyanobacteria. These photosynthetic microorganisms offer multiple agronomic benefits, including the ability to capture CO2, assimilate essential micro- and macroelements, and synthesize a wide range of high-value metabolites. Their metabolic versatility enables the production of bioactive molecules with biostimulant and biocontrol properties, as well as biofertilizer potential through their intrinsic nutrient content. Additionally, several cyanobacterial species can fix atmospheric nitrogen, further enhancing their agricultural relevance. This review aims to summarize the potential of these microorganisms and their application in the agriculture sector, focusing primarily on their biofertilization, biostimulation, and biocontrol capabilities and presents a compilation of the products currently available on the market that are derived from these microorganisms. The present work also identifies the gaps in the use of these microorganisms and provides prospects for developing a suitable solution for today′s agriculture. Full article
Show Figures

Figure 1

24 pages, 4182 KB  
Article
Nutrient Balances and Forage Productivity in Permanent Grasslands Under Different Fertilisation Regimes in Western Poland Conditions
by Anna Paszkiewicz-Jasińska, Wojciech Stopa, Jerzy Barszczewski, Dorota Gryszkiewicz-Zalega and Barbara Wróbel
Agronomy 2025, 15(9), 2079; https://doi.org/10.3390/agronomy15092079 - 29 Aug 2025
Viewed by 157
Abstract
Effective nutrient management in grassland ecosystems is essential for maintaining soil nutrient balance and ensuring high forage productivity. A field experiment was conducted between 2022 and 2024 on a permanent dry meadow at the Experimental Station in Poznań-Strzeszyn, western Poland. The trial, established [...] Read more.
Effective nutrient management in grassland ecosystems is essential for maintaining soil nutrient balance and ensuring high forage productivity. A field experiment was conducted between 2022 and 2024 on a permanent dry meadow at the Experimental Station in Poznań-Strzeszyn, western Poland. The trial, established in autumn 2021, was carried out under production conditions on large plots (140 m2 each). Plots were assigned to different fertilisation regimes, varying in both type and dosage. The treatments included an unfertilised control, three levels of annual mineral NPK fertilisation (NPK1, NPK2, NPK3), three levels of annually applied farmyard manure (FYM1, FYM2, FYM3), and three levels of mineral and organic fertilisers applied every two years (NPK1/FYM1, NPK2/FYM2, NPK3/FYM3). Throughout the study, botanical composition, annual dry matter yield (DMY), nitrogen (N), phosphorus (P), and potassium (K) content in the plant biomass were assessed. A simplified nutrient balance was calculated based on nutrient input from fertilisers and nutrient output with harvested yield. The average N balance across three years ranged from −12.17 kg N ha−1 in control to +20.6 kg N ha−1 in FYM3. For phosphorus, average balances ranged from −7.2 kg P ha−1 in the control to +9.8 kg P ha−1 in FYM3. In contrast, potassium balances were mostly negative: from −51.7 kg K ha−1 in FYM1 to −7.4 kg K ha−1 in NPK1. The most balanced nutrient budgets were observed under alternate NPK/FYM fertilisation, with moderate surpluses of N and P and a smaller K deficit compared to FYM applied alone. In contrast, inorganic and organic fertilisation applied separately resulted in greater nutrient surpluses or a pronounced potassium deficit. This study emphasises the importance of balanced nutrient management in permanent meadows, showing that moderate fertilisation strategies, such as alternating FYM and mineral NPK, can maintain productivity, and reduce environmental impacts. These findings provide a practical basis for developing sustainable grassland management practices under variable climatic conditions. Full article
(This article belongs to the Special Issue Multifunctionality of Grassland Soils: Opportunities and Challenges)
Show Figures

Figure 1

21 pages, 2431 KB  
Article
Rapid Spectroscopic Analysis for Food and Feed Quality Control: Prediction of Protein and Nutrient Content in Barley Forage Using LIBS and Chemometrics
by Jinan Sabsabi, Andressa Adame, Francis Vanier, Nii Patterson, Allan Feurtado, Aïssa Harhira, Mohamad Sabsabi and François Vidal
Analytica 2025, 6(3), 29; https://doi.org/10.3390/analytica6030029 - 28 Aug 2025
Viewed by 275
Abstract
Rapid and accurate assessment of nutritional quality, particularly crude protein content and essential nutrient concentrations, remains a major challenge in the food and feed industries. In this study, laser-induced breakdown spectroscopy (LIBS) was combined with advanced chemometric modeling to predict the levels of [...] Read more.
Rapid and accurate assessment of nutritional quality, particularly crude protein content and essential nutrient concentrations, remains a major challenge in the food and feed industries. In this study, laser-induced breakdown spectroscopy (LIBS) was combined with advanced chemometric modeling to predict the levels of crude protein and key macro- and micronutrients (Ca, Mg, K, Na, Fe, Mn, P, Zn) in 61 barley forage samples composed of whole aerial plant parts ground prior to analysis. LIBS offers a compelling alternative to traditional analytical methods by enabling real-time analysis with minimal sample preparation. To minimize interference from atmospheric nitrogen, nitrogen spectral lines were excluded from the protein calibration model in favor of spectral lines from elements biochemically associated with proteins. We compared the performance of Partial Least Squares (PLSR) regression and Extreme Learning Machine (ELM) using fivefold cross-validation. ELM outperformed PLS in terms of prediction, achieving a coefficient of determination (R2) close to 1 and a ratio of performance to deviation (RPD) exceeding 2.5 for proteins and several nutrients. These results underscore the potential of LIBS-ELM integration as a robust, non-destructive, and in situ tool for rapid forage quality assessment, particularly in complex and heterogeneous plant matrices. Full article
(This article belongs to the Section Spectroscopy)
Show Figures

Figure 1

Back to TopTop