Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (394)

Search Parameters:
Keywords = estuary environment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 25657 KB  
Article
Regional Divergence in Long-Term Trends of the Marine Heatwave over the East China Sea
by Qun Ma, Zhao-Jun Liu, Wenbin Yin, Ming-Xuan Lu and Jun-Bo Ma
Atmosphere 2025, 16(10), 1150; https://doi.org/10.3390/atmos16101150 - 1 Oct 2025
Abstract
Marine heatwaves (MHWs) pose a serious threat to the marine ecosystems and fishery resources in the East China Sea (ECS). Based on National Oceanic and Atmospheric Administration Optimum Interpolation Sea Surface Temperature High Resolution version 2 data, this study investigated the regional divergence [...] Read more.
Marine heatwaves (MHWs) pose a serious threat to the marine ecosystems and fishery resources in the East China Sea (ECS). Based on National Oceanic and Atmospheric Administration Optimum Interpolation Sea Surface Temperature High Resolution version 2 data, this study investigated the regional divergence in long-term trends of MHWs in the ECS from 1982 to 2023. The principal findings were as follows. Concerning MHWs, the coastal waters of China from northern Jiangsu coast to northeast of Taiwan Island experienced a relatively high annual average frequency, the longest duration, largest number of total days, strongest intensity, and the most pronounced seasonal signals. Additionally, the areas along the Kuroshio path showed significant levels of frequency, duration, and total days, but with comparatively weak intensity. In the empirical orthogonal function (EOF) analysis, EOF1 of the total days and cumulative intensity exhibited notable variation along the path of the Kuroshio and its offshoots, and in Chinese coastal areas. EOF2 showed significantly more conspicuous variation in areas extending from the Yangtze River Estuary to the northern Jiangsu coast. Furthermore, the MHW indices generally showed a positive trend in the ECS from 1982 to 2023. Importantly, the regions with high annual average MHW indices were also characterized by a significantly positive increasing trend. Moderate (79.10%) and strong (19.94%) events were most prevalent, whereas severe (0.82%) and extreme (0.14%) events occurred infrequently. The enhanced solar radiation and the reduced latent heat loss were the main contributing factors of MHWs in the ECS. These findings provide valuable insights into the ecological environment and resources of the ECS as a marine pastoral area. Full article
Show Figures

Figure 1

21 pages, 3367 KB  
Article
Factors Affecting Distribution of Pharmaceutically Active Compounds in Bottom Sediments of Odra River Estuary (SW Baltic Sea)
by Joanna Giebułtowicz, Dawid Kucharski, Grzegorz Nałęcz-Jawecki, Artur Skowronek, Agnieszka Strzelecka, Łukasz Maciąg and Przemysław Drzewicz
Molecules 2025, 30(19), 3935; https://doi.org/10.3390/molecules30193935 - 1 Oct 2025
Abstract
The results from previous environmental studies on the physicochemical properties of bottom sediments from the Odra River estuary (SW Baltic Sea) and their contamination by pharmaceutically active compounds (PhACs) were compiled and analyzed by the use of various statistical methods (Principal Component Analysis, [...] Read more.
The results from previous environmental studies on the physicochemical properties of bottom sediments from the Odra River estuary (SW Baltic Sea) and their contamination by pharmaceutically active compounds (PhACs) were compiled and analyzed by the use of various statistical methods (Principal Component Analysis, ANOVA/Kruskal–Wallis, Spearman correlation analysis, Partial Least Squares Discriminant Analysis, and Cluster Analysis). These studies included data on 130 PhACs determined in sediment samples collected from 70 sites across the Odra River estuary as well as the site distance to wastewater treatment plant discharge, PhACs’ physicochemical properties (Kd, Kow, pKa, solubility, metabolism), and sales data. Additionally, total organic carbon, total nitrogen, total phosphorus, acid volatile sulfides, clay mineral content, and trace elements such as As, Ba, Cd, Co, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Sn, and Zn were analyzed. Clay mineral content and TP were identified as the key physicochemical factors influencing the spatial distribution of PhACs in bottom sediments, exerting a greater impact than the distance of sampling sites from WWTP discharge points. The distribution of PhACs in the estuary was also influenced by the Kd and solubility of the compounds. More soluble pharmaceuticals with low adsorption affinity to sediments were detected more frequently and transported to distant locations, whereas less soluble compounds with high adsorption affinity settled down in bottom sediments near contamination sources. Neither the proportion of a drug excreted unchanged, nor its prescription frequency and sales volume, influenced the spatial distribution of PhACs. In general, Kd may be a useful parameter in the planning of environmental monitoring and tracing migration of PhACs in aquatic environments. Full article
(This article belongs to the Section Cross-Field Chemistry)
Show Figures

Graphical abstract

16 pages, 2952 KB  
Review
Sediment–Phosphorus Dynamics in the Yellow River Estuary
by Yuan Gao, Kun Liu, Shengpin Li and Wenpeng Li
Water 2025, 17(19), 2794; https://doi.org/10.3390/w17192794 - 23 Sep 2025
Viewed by 207
Abstract
The Yellow River, with its extremely high sediment loads, and the Yellow River Estuary (YRE) serve as a vital conduit for material exchange between land and marine environments, where sediment–phosphorus interactions profoundly influence nutrient cycling, ecological health and eutrophication potential. This paper reviews [...] Read more.
The Yellow River, with its extremely high sediment loads, and the Yellow River Estuary (YRE) serve as a vital conduit for material exchange between land and marine environments, where sediment–phosphorus interactions profoundly influence nutrient cycling, ecological health and eutrophication potential. This paper reviews the distribution of phosphorus in overlying water and sediment, the characteristics of phosphorus migration and transformation across the sediment–water interface, and the effecting factors of phosphorus migrate, such as sediment properties and environmental factors in the YRE. Inorganic phosphorus was the dominant form in the overlying water and sediment. Suspended sediment acts as a dynamic reservoir for phosphorus transportation in the YRE. The dynamic estuarine environment promotes sediment deposition, which helps reduce phosphorus levels in the water. Upon entering the Bohai Sea, sediment is transformed into the source of phosphorus. The released phosphorus may increase the nutrient load in shallow Bohai Sea waters. Fine particles demonstrate strong adsorption capacity for reactive phosphorus, acting as the primary carriers for phosphorus migration at the sediment–water interface. The grain size of the suspended sediment in the Yellow River exhibited significant sorting characteristics with varying sediment content, consequently affecting the forms of phosphorus. Likewise, the influence of biogeochemical conditions on the transport and transformation of sediment and phosphorus was further analyzed and the partial least squares-path model of related variables on estuarine phosphorus is constructed to interpret the behavior of sediment and phosphorus in the YRE. Finally, the current situation and indeterminacy of water quality models in the estuary were appraised. The priority of analyzing and revealing the environmental behaviors of phosphorus in a sediment-laden river estuary in the future was further proposed against the present deficiencies. This review holds significant practical importance for enhancing the assessment of ecological environment quality and ecological restoration in the YRE. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

36 pages, 9532 KB  
Article
Use of SWOT Data for Hydrodynamic Modelling in a Tropical Microtidal Estuarine System: The Case of Casamance (Senegal)
by Amadou Diouf, Edward Salameh, Issa Sakho, Bamol Ali Sow, Julien Deloffre, Carlos López Solano, Emma Imen Turki and Robert Lafite
Remote Sens. 2025, 17(18), 3252; https://doi.org/10.3390/rs17183252 - 20 Sep 2025
Viewed by 301
Abstract
Since the early 1990s, satellite altimetry has significantly improved our understanding of coastal and estuarine dynamics. The Casamance estuary in Senegal exemplifies a tropical microtidal system with limited instrumentation despite pressing environmental, social, and navigational concerns. This study explores the potential of SWOT [...] Read more.
Since the early 1990s, satellite altimetry has significantly improved our understanding of coastal and estuarine dynamics. The Casamance estuary in Senegal exemplifies a tropical microtidal system with limited instrumentation despite pressing environmental, social, and navigational concerns. This study explores the potential of SWOT satellite data to support the calibration and validation of high-resolution hydrodynamic models. Multi-source dataset of in situ measurements and altimetry observations has been combined with numerical modelling to investigate the hydrodynamics in response to physical drivers. Statistical metrics were used to quantify model performance. Results show that SWOT accurately captures water level variations in the main channel (width 800 m to 5 km), including both tidal and non-tidal contributions, with high correlation (R = 0.90) and low error (RMSE < 0.25 m). Performance decreases in tributaries (R = 0.42, RMSE up to 0.34 m), due to interpolated bathymetry and complex local dynamics. Notably, Delft3D achieves R = 0.877 at Diogué (RMSE = 0.204 m) and R = 0.843 at Carabane (RMSE = 0.225 m). These findings highlight the strategic value of SWOT for improving hydrodynamic modelling in data-scarce estuarine environments. Full article
Show Figures

Graphical abstract

17 pages, 5277 KB  
Article
Habitat Features Influence Aquatic Macroinvertebrates in the Cruces Wetland, a Ramsar Site of Southern Chile
by Pablo Fierro, Ignacio Rodríguez-Jorquera, Carlos Lara, Stefan Woelfl, Jorge Machuca-Sepúlveda, Carlos Vega and Jorge Nimptsch
Land 2025, 14(9), 1890; https://doi.org/10.3390/land14091890 - 16 Sep 2025
Viewed by 277
Abstract
Coastal wetlands are highly threatened by human activities, leading to water quality degradation and biodiversity loss. This study assessed spatial variation in 27 water quality parameters, sediment organic matter, and macroinvertebrate assemblages across 12 sites in the estuarine Cruces River wetland (CRW Ramsar [...] Read more.
Coastal wetlands are highly threatened by human activities, leading to water quality degradation and biodiversity loss. This study assessed spatial variation in 27 water quality parameters, sediment organic matter, and macroinvertebrate assemblages across 12 sites in the estuarine Cruces River wetland (CRW Ramsar site, southern Chile) during summer 2019. Our analysis identified three areas of sampling stations in the wetland, categorized by trophic gradient and salinity: freshwater (n = 5), mixed (n = 3), and estuary (n = 4). Freshwater sites were characterized by low salinity, turbidity, and high nitrate concentrations. Estuarine sites were characterized by higher salinities and turbidity and low nitrates and total organic carbon (TOC) concentrations, and mixed sites had low salinities, high turbidities, high TOC, and low nitrates. Throughout the CRW, the richness and densities of different invertebrates were recorded. Freshwater stations had higher species richness, and estuary stations had higher abundance. Macroinvertebrates found in the lower reaches of the CRW included species characteristic of estuarine environments, whereas the upper stations were dominated by invertebrates inhabiting low-salinity environments. According to the ordination plot of distance-based redundancy analysis (dbRDA) and distance-based linear model (DistLM), our results indicate that macroinvertebrate assemblages differ significantly among areas of the CRW, primarily due to physicochemical variables (i.e., salinity, total carbon, and dissolved phosphorus). Total organic matter content in sediments was higher in freshwater sites and lower in estuarine sites. Our findings will be used to monitor the wetland and implement appropriate management measures for human activities, thereby protecting and conserving the estuarine Cruces River Ramsar wetland. Full article
(This article belongs to the Special Issue Wetland Biodiversity and Habitat Conservation)
Show Figures

Figure 1

25 pages, 3411 KB  
Article
Evaluation of Ship Importance in Offshore Wind Farm Area Based on Fusion Gravity Model in Complex Network
by Jian Liu, Keteng Ke, Shimin Yang, Chuang Yang, Zhongyi Sui, Chunhui Zhou and Lichuan Wu
Sustainability 2025, 17(18), 8252; https://doi.org/10.3390/su17188252 - 14 Sep 2025
Viewed by 273
Abstract
With the rapid expansion of offshore wind farms (OWFs), ensuring maritime safety in adjacent waters has become an increasingly critical challenge. This study proposes an innovative dynamic risk assessment method that integrates a fusion gravity model into a complex network framework to comprehensively [...] Read more.
With the rapid expansion of offshore wind farms (OWFs), ensuring maritime safety in adjacent waters has become an increasingly critical challenge. This study proposes an innovative dynamic risk assessment method that integrates a fusion gravity model into a complex network framework to comprehensively evaluate ship importance in OWF areas. By treating ships and wind farms as network nodes and modeling their interactions using AIS data, the method effectively captures spatiotemporal traffic dynamics and precisely quantifies ship importance. Multiple network indicators, including centrality, clustering coefficient, and vertex strength, are fused to comprehensively assess node criticality. A case study in the Yangtze River Estuary empirically demonstrates that ship importance is not static but dynamically and significantly changes with trajectories, interactions with other vessels, and proximity to OWFs, successfully identifying high-risk ships and sensitive OWF areas. The contribution of this research lies in providing a data-driven, quantifiable, novel framework capable of real-time identification of potential threats in maritime traffic. This approach offers direct and practical insights for traffic control, early warning system development, and optimizing maritime traffic management policies, facilitating a shift from reactive response to proactive prevention. Ultimately, it enhances safety supervision efficiency and decision-making support in complex maritime environments, safeguarding the sustainable development of the offshore wind industry. Full article
Show Figures

Figure 1

17 pages, 22479 KB  
Article
Estuary-Tidal Residual Water Level Forecasting Method Based on Variational Mode Decomposition and Back Propagation Neural Network
by Min Zhai, Qihang Cao, Pengfei Huo, Xintong Du and Mingzhen Xin
J. Mar. Sci. Eng. 2025, 13(9), 1755; https://doi.org/10.3390/jmse13091755 - 11 Sep 2025
Viewed by 311
Abstract
The water level changes in the estuarine area are influenced by various factors with different mechanisms and periodicities, including runoff, astronomical tides and storm surges, resulting in relatively low forecasting accuracy of the residual water level. To improve the forecast accuracy of residual [...] Read more.
The water level changes in the estuarine area are influenced by various factors with different mechanisms and periodicities, including runoff, astronomical tides and storm surges, resulting in relatively low forecasting accuracy of the residual water level. To improve the forecast accuracy of residual water levels, an estuary-tidal residual water level forecasting method based on VMD-BPNN (variational mode decomposition and back propagation neural network) is proposed. By conducting tidal harmonic analysis on the long-term water level data of estuarine areas, astronomic water levels and residual water levels can be obtained. The residual water level is subjected to VMD, obtaining multiple intrinsic mode functions of the residual water level in the time series. Then, the BPNN is used to train each intrinsic mode function, and an accurate forecast of residual water levels in the estuary area is achieved through the forecast and superposition of each intrinsic mode function. Water level data from four typical tidal stations in estuarine areas of the United States and France were used for experimental analysis. The method was verified by using Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and Nash-Sutcliffe Efficiency (NSE) as evaluation indicators, and the results showed that it had a good comprehensive performance, and high stability and accuracy in the forecasting of the residual water level. This study thereby provides a valuable foundation and insightful reference for future research into the complex mechanisms driving water level changes and the development of high-precision tidal forecasting systems in estuarine environments. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

23 pages, 1660 KB  
Article
Soundtalking: Extending Soundscape Practice Through Long-Term Participant-Led Sound Activities in the Dee Estuary
by Neil Spencer Bruce
Sustainability 2025, 17(17), 7904; https://doi.org/10.3390/su17177904 - 2 Sep 2025
Viewed by 558
Abstract
This study explores the practice of “soundtalking”, a novel method of participant-led sound practice, across the Dee Estuary in the UK. Over the course of twelve months, the Our Dee Estuary Project facilitated monthly meetings where participants engaged in sound workshops, in-depth discussions, [...] Read more.
This study explores the practice of “soundtalking”, a novel method of participant-led sound practice, across the Dee Estuary in the UK. Over the course of twelve months, the Our Dee Estuary Project facilitated monthly meetings where participants engaged in sound workshops, in-depth discussions, and sound-making activities, with the aim of fostering a deeper connection with both their local and sonic environments. This longitudinal practice-based research study created an environment of sonic learning and listening development, documenting how participants’ interactions and narratives both shape and are shaped by the estuarial environment, its soundscape, and their sense of place. Participant-led conversations formed the basis of the methodology, providing rich qualitative data on how individuals perceive, interpret, and interact with their surroundings and the impact that the soundscape has on the individual. The regular and unstructured discussions revealed the intrinsic value of soundscapes in participants’ lives, emphasising themes of memory, reflection, place attachment, environmental awareness, and well-being. The collaborative nature of the project allowed for the co-creation of a film and a radio soundscape, both of which serve as significant outputs, encapsulating the auditory and emotional essence of the estuary. The study’s initial findings indicate that “soundtalking” as a practice not only enhances participants’ auditory perception but also fosters a sense of community and belonging. The regularity of monthly meetings facilitated the development of a shared acoustic vocabulary and experience among participants, which in turn enriched their collective and individual experiences of the estuary. Soundtalking is proposed as an additional tool in the study of soundscapes to complement and extend more commonly implemented methods, such as soundwalking and soundsitting. Soundtalking demonstrates the efficacy of longitudinal, participant-led approaches in capturing the dynamic and lived experiences of soundscapes and their associated environments, over methods that only create fleeting short-term engagements with the soundscape. In conclusion, the Our Dee Estuary Project demonstrates the transformative potential of soundtalking in deepening our understanding of human–environment interactions and, in addition, has shown that there are both health and well-being aspects that arise from the practice. Beyond this, the project has output a film and a radio sound piece, which not only document but also celebrate the intricate and evolving relationship between the participants and the estuarine soundscape, offering valuable insights for future soundscape research and community engagement initiatives. Full article
(This article belongs to the Special Issue Urban Noise Control, Public Health and Sustainable Cities)
Show Figures

Figure 1

22 pages, 5087 KB  
Article
A Study on the Associative Regulation Mechanism Based on the Water Environmental Carrying Capacity and Its Impact Indicators in the Songhua River Basin in Harbin City, China
by Zhongbao Yao, Xuebing Wang, Nan Sun, Tianyi Wang and Hao Yan
Sustainability 2025, 17(17), 7636; https://doi.org/10.3390/su17177636 - 24 Aug 2025
Viewed by 663
Abstract
With intensifying watershed pollution pressures and growing ecological vulnerability, scientifically revealing and enhancing the water environmental carrying capacity is crucial for ensuring the long-term health of the basin and the sustainable socioeconomic development of the region. However, the dynamic regulatory mechanisms linking narrow-sense [...] Read more.
With intensifying watershed pollution pressures and growing ecological vulnerability, scientifically revealing and enhancing the water environmental carrying capacity is crucial for ensuring the long-term health of the basin and the sustainable socioeconomic development of the region. However, the dynamic regulatory mechanisms linking narrow-sense and broad-sense water environmental carrying capacity remain poorly understood, limiting the development of integrated management strategies. This study systematically investigated the changing trends of both the narrow-sense and broad-sense water environmental carrying capacity in the Harbin section of the Songhua River basin through model calculations, along with the regulatory mechanisms of its key influence indicators. The results of the study on the carrying capacity of the water environment in the narrow sense show that permanganate, total phosphorus, and ammonia nitrogen exhibited partial carrying capacity across water periods, while dissolved oxygen decreased during flat and dry periods, with only limited capacity remaining at the Ash River estuary and in the Hulan River. The biochemical oxygen demand in the Ash River was consistently overloaded, and total nitrogen showed insufficient capacity except during the abundant water period. Broad-sense analysis indicated that improving urbanization quality, water supply infrastructure, and drinking water safety could effectively reduce future overload risks, with projections suggesting a transition from critical to loadable levels by 2030, though latent threats persist. Correlation analysis between narrow- and broad-sense indicators informed targeted control strategies, including stricter regulation of nitrogen- and phosphorus-rich industrial discharges, restoration of aquatic vegetation, and periodic dredging of riverbed sediments. This work is the first to dynamically integrate pollutant and socio-economic indicators through a hybrid modelling framework, providing a scientific basis and actionable strategies for improving water quality and achieving sustainable management in the Songhua River Basin. Full article
Show Figures

Figure 1

14 pages, 1394 KB  
Article
A Novel Approach for Characterization of Microplastic Pollution in the Chesapeake Bay
by Chunlei Fan, Sulakshana Bhatt, Disha Goswami and Tameka Taylor
Microplastics 2025, 4(3), 53; https://doi.org/10.3390/microplastics4030053 - 22 Aug 2025
Viewed by 724
Abstract
Microplastic pollution in the Chesapeake Bay is of critical concern as estuaries serve as habitats and nurseries for diverse aquatic organisms and offer vital ecological services. However, quantitative analysis of microplastics, especially those smaller than 300 µm, in the natural aquatic environment is [...] Read more.
Microplastic pollution in the Chesapeake Bay is of critical concern as estuaries serve as habitats and nurseries for diverse aquatic organisms and offer vital ecological services. However, quantitative analysis of microplastics, especially those smaller than 300 µm, in the natural aquatic environment is very challenging due to a lack of efficient sampling methods. This study takes a novel approach to quantify the abundance, size distribution, and morphological characteristics of microplastics, as small as 20 µm, in the surface waters of the Chesapeake Bay. Water samples (10 L) were collected monthly from July 2023 to October 2023 at four locations along the Chesapeake Bay. The samples were digested with a 10% potassium hydroxide solution and subjected to density separation using sodium chloride (ρ = 1.2 g/cc). Microplastic particles were examined using a Shimadzu AIM–9000 FTIR microscope for enumeration and chemical identification. Overall, the mean microplastic concentration observed was 766.16 ± 302.59 MP/L, significantly higher than previously estimated in the Chesapeake Bay. Microplastic abundance exhibited a significant (p = 0.02) spatial variation across the four sampling locations. Most abundant were particles less than 100 µm (60.65%), followed by particles between 100 µm and 300 µm (23.19%), and particles exceeding 300 µm (16.16%). Morphological analysis identified fragments as the dominant shape (86.02%), followed by fibers (11.87%), and beads (2.10%). This study underscores the importance of standard and efficient sampling methods in microplastics research. By sampling microplastics as small as 20 µm, this research demonstrated that the abundance of microplastics in the Chesapeake Bay is significantly higher than previously estimated and dominated by smaller–sized particles. These small microplastics are more likely to enter the food web where human exposure may occur. Therefore, microplastic pollution in the Chesapeake Bay ecosystem has the potential to impose environmental and public health risks. Full article
Show Figures

Figure 1

13 pages, 2898 KB  
Article
Vertical Distribution Profiling of E. coli and Salinity in Tokyo Coastal Waters Following Rainfall Events Under Various Tidal Conditions
by Chomphunut Poopipattana, Manish Kumar and Hiroaki Furumai
J. Mar. Sci. Eng. 2025, 13(8), 1581; https://doi.org/10.3390/jmse13081581 - 18 Aug 2025
Viewed by 468
Abstract
Urban estuarine environments face increasing water safety risks due to microbial contamination from combined sewer overflows (CSOs), particularly during heavy rainfall events. In megacities like Tokyo, where waterfronts are widely used for recreation, such contamination poses significant public health risks. The challenge is [...] Read more.
Urban estuarine environments face increasing water safety risks due to microbial contamination from combined sewer overflows (CSOs), particularly during heavy rainfall events. In megacities like Tokyo, where waterfronts are widely used for recreation, such contamination poses significant public health risks. The challenge is compounded by the variability in both intensity and spatial distribution of rainfall across the catchment, combined with complex tidal dynamics making effective water quality management difficult. To address this challenge, we conducted a series of hydrodynamic–microbial fate simulations to examine the spatial and vertical behavior of Escherichia coli (E. coli) under different rainfall–tide conditions. Focusing on the Sumida River estuary, rainfall data from eight drainage areas were classified into six event types using cluster analysis. Two contrasting events were selected for detailed analysis: a light rainfall (G2, 15 mm over 13 h) and an intense event (G6, 272 mm over 34 h). Vertical water quality profiling was performed along an 8.5 km transect from the Kanda–Sumida River confluence to the Tokyo Bay Tunnel, illustrating E. coli and salinity. The results showed that the rainfall intensity and tidal phase at the event onset are critical in shaping both the magnitude and vertical distribution of microbial contamination. The intense event (G6) led to deep microbial intrusion (up to 6–7 m) and major salinity disruption, while the lighter event (G2) showed surface-layer confinement. Salinity gradients were more strongly affected during G6, indicating freshwater intrusion. Tidal phase also influenced transport: the flood-high condition retained E. coli, whereas ebb-low tides facilitated downstream flushing. These findings highlight the influence of rainfall intensity and tidal timing on microbial distribution and support the use of vertical profiling in estuarine water quality management. They also support the development of dynamic, event-based water quality risk assessment tools. With appropriate local calibration, the modeling framework is transferable to other urban estuarine systems to support proactive and adaptive water quality management. Full article
(This article belongs to the Special Issue Coastal Water Quality Observation and Numerical Modeling)
Show Figures

Figure 1

29 pages, 4209 KB  
Article
From River to Sea: Tracking Plastic Waste Transport via the Hau River, Mekong Delta, Vietnam
by Nguyen Truong Thanh, Huynh Vuong Thu Minh, Kim Lavane, Nguyen Vo Chau Ngan, Pham Van Toan, Tran Van Ty, Dinh Van Duy, Vo Thanh Toan and Pankaj Kumar
Water 2025, 17(16), 2438; https://doi.org/10.3390/w17162438 - 18 Aug 2025
Viewed by 1141
Abstract
Plastic pollution in river systems is a growing concern, especially in the Mekong Delta, where complex tidal dynamics facilitate downstream transport of plastic waste into the marine environment. This study assessed the density, composition, and temporal variability of floating plastic waste in the [...] Read more.
Plastic pollution in river systems is a growing concern, especially in the Mekong Delta, where complex tidal dynamics facilitate downstream transport of plastic waste into the marine environment. This study assessed the density, composition, and temporal variability of floating plastic waste in the Hau River, approximately 30 km upstream of the Tran De River estuary. Floating net traps were deployed during both ebb and flood tides to quantify plastic waste with simultaneous meteorological and hydrological monitoring. The findings highlight that key meteorological factors, such as air temperature, humidity, wind speed, and wind direction, were found to indirectly influence plastic transport by altering surface currents and promoting plastic degradation. Meanwhile, hydrological conditions, especially tidal variability, play a direct and dominant role in determining the spatial and temporal distribution of plastic waste. Plastic debris was diverse in terms of items during both tidal phases. Although the number of plastic pieces was higher at ebb tide (134.33 pieces/h), the volume and concentration of plastic were greater at flood tide (1.22 kg/h and 0.73 kg/m3) than at ebb tide (0.81 kg/h and 0.29 kg/m3). Macroplastic debris was almost dominant during both ebb tide (97.29%) and flood tide (93.96%) compared to megaplastic and mesoplastic size. These findings highlight the importance of integrating tidal and climate factors into plastic waste management and support targeted interventions to reduce plastic discharge into coastal ecosystems. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

37 pages, 2122 KB  
Article
Measurement and Spatio-Temporal Evolution Analysis of the Business Environment in the Guangdong–Hong Kong–Macao Greater Bay Area
by Fang Zhao and Qiang Wei
Sustainability 2025, 17(16), 7426; https://doi.org/10.3390/su17167426 - 17 Aug 2025
Viewed by 605
Abstract
Cultivating the best business environment ecosystem is important for advancing market-oriented reforms and achieving sustainable industrial transformation. How to quantify the business environment is also a relatively complex topic. Based on urban ecology theory, this study constructs a comprehensive evaluation framework for assessing [...] Read more.
Cultivating the best business environment ecosystem is important for advancing market-oriented reforms and achieving sustainable industrial transformation. How to quantify the business environment is also a relatively complex topic. Based on urban ecology theory, this study constructs a comprehensive evaluation framework for assessing urban business environment development. Using the entropy weight method and spatial autocorrelation analysis, we examine the time series and spatial evolution of the business environment in the Guangdong–Hong Kong–Macao Greater Bay Area from 2008 to 2021. Meanwhile, we further explore the main factors that influence the development level of the business environment. Finally, some suggestions are put forward to improve the business environment. The results show that (1) the development level of the business environment has gradually improved during the sample period, with stable growth from 2008 to 2015, followed by rapid development after 2015; (2) from different dimensions, there is an imbalance in the business environment development among cities within the Greater Bay Area, with core cities performing better than others; (3) from a spatial perspective, the business environment presents a “core-periphery” pattern, with higher levels clustered around the Pearl River Estuary, indicating strong spatial agglomeration. This research provides theoretical support and policy recommendations for the Three-Year Action Plan for Creating a World-Class Business Environment in the Greater Bay Area. Full article
Show Figures

Figure 1

12 pages, 1043 KB  
Article
Persistent Pharmaceuticals in a South African Urban Estuary and Bioaccumulation in Endobenthic Sandprawns (Kraussillichirus kraussi)
by Olivia Murgatroyd, Leslie Petrik, Cecilia Y. Ojemaye and Deena Pillay
Water 2025, 17(15), 2289; https://doi.org/10.3390/w17152289 - 1 Aug 2025
Viewed by 747
Abstract
Pharmaceuticals are increasingly being detected in coastal ecosystems globally, but contamination and bioaccumulation levels are understudied in temporarily closed estuaries. In these systems, limited freshwater inputs and periodic closure may predispose them to pharmaceutical accumulation. We quantified in situ water column pharmaceutical levels [...] Read more.
Pharmaceuticals are increasingly being detected in coastal ecosystems globally, but contamination and bioaccumulation levels are understudied in temporarily closed estuaries. In these systems, limited freshwater inputs and periodic closure may predispose them to pharmaceutical accumulation. We quantified in situ water column pharmaceutical levels at five sites in a temporarily closed model urban estuary (Zandvlei Estuary) in Cape Town, South Africa, that has been heavily anthropogenically modified. The results indicate an almost 100-fold greater concentration of pharmaceuticals in the estuary relative to False Bay, into which the estuary discharges, with acetaminophen (max: 2.531 µg/L) and sulfamethoxazole (max: 0.138 µg/L) being the primary pollutants. Acetaminophen was potentially bioaccumulative, while nevirapine, carbamazepine and sulfamethoxazole were bioaccumulated (BAF > 5000 L/kg) by sandprawns (Kraussillichirus kraussi), which are key coastal endobenthic ecosystem engineers in southern Africa. The assimilative capacity of temporarily closed estuarine environments may be adversely impacted by wastewater discharges that contain diverse pharmaceuticals, based upon the high bioaccumulation detected in key benthic engineers. Full article
Show Figures

Figure 1

19 pages, 8452 KB  
Article
Mass Movements in Wetlands: An Analysis of a Typical Amazon Delta-Estuary Environment
by Aline M. Meiguins de Lima, Vitor Gabriel Queiroz do Nascimento, Saulo Siqueira Martins, Arthur Cesar Souza de Oliveira and Yuri Antonio da Silva Rocha
GeoHazards 2025, 6(3), 40; https://doi.org/10.3390/geohazards6030040 - 29 Jul 2025
Viewed by 618
Abstract
This study aims to investigate the processes associated with mass movements and their relationship with the behavior of the Amazon River delta-estuary (ADE) wetlands. The methodological approach involves using water spectral indices and ground-penetrating radar (GPR) to diagnose areas of soil water saturation [...] Read more.
This study aims to investigate the processes associated with mass movements and their relationship with the behavior of the Amazon River delta-estuary (ADE) wetlands. The methodological approach involves using water spectral indices and ground-penetrating radar (GPR) to diagnose areas of soil water saturation and characterize regions affected by mass movements in Amazonian cities. It also involves identifying areas of critical saturation content and consequent mass movements. Analysis of risk and land use data revealed that the affected areas coincide with zones of high susceptibility to mass movements induced by water. The results showed the following: the accumulated annual precipitation ranged from 70.07 ± 55.35 mm·month−1 to 413.34 ± 127.51 mm·month−1; the response similarity across different sensors obtained an accuracy greater than 90% for NDWI, MNDWI, and AWEI for the same targets; and a landfill layer with a thickness variation between 1 and 2 m defined the mass movement concentration in Abaetetuba city. The interaction between infiltration, water saturation, and human-induced land alteration suggests that these areas act as wetlands with unstable dynamics. The analysis methodology developed for this study aimed to address this scenario by systematically mapping areas with mass movement potential and high-water saturation. Due to the absence of geological and geotechnical data, remote sensing was employed as an alternative, and in situ ground-penetrating radar (GPR) evaluation was suggested as a means of investigating the causes of a previously observed movement. Full article
Show Figures

Graphical abstract

Back to TopTop