Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,353)

Search Parameters:
Keywords = excitation force

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3155 KB  
Article
Forced Vibration Analysis of a Hydroelastic System with an FGM Plate, Viscous Fluid, and Rigid Wall Using a Discrete Analytical Method
by Mohammed M. Alrubaye and Surkay D. Akbarov
Appl. Sci. 2025, 15(19), 10854; https://doi.org/10.3390/app151910854 - 9 Oct 2025
Viewed by 117
Abstract
This study examines the forced vibration behavior of a hydroelastic system composed of a functionally graded material (FGM) plate, a barotropic compressible Newtonian viscous fluid, and an adjacent rigid wall. The fluid occupies the gap between the plate and the wall. A time-harmonic [...] Read more.
This study examines the forced vibration behavior of a hydroelastic system composed of a functionally graded material (FGM) plate, a barotropic compressible Newtonian viscous fluid, and an adjacent rigid wall. The fluid occupies the gap between the plate and the wall. A time-harmonic force, applied in and along the free surface of the FGM plate, excites vibrations within the system. The plate’s motion is modeled using the exact equations of elastodynamics, while the fluid dynamics are described by the linearized Navier–Stokes equations for compressible viscous flow. The governing equations, which feature variable coefficients, are solved using a discrete analytical approach. Boundary conditions enforce impermeability at the rigid wall and continuity of both forces and velocities at the fluid–plate interface. The investigation focuses on the plane strain state of the plate coupled with the corresponding two-dimensional fluid flow. Numerical analyses are conducted to evaluate normal stresses and velocity distributions along the interface. The primary objective is to assess how the graded material properties of the plate influence the frequency-dependent responses of stresses and velocities at the plate–fluid boundary. Full article
Show Figures

Figure 1

33 pages, 2954 KB  
Review
Classification Evolution, Control Strategy Innovation, and Future Challenges of Vehicle Suspension Systems: A Review
by Yixin Mei, Ruochen Wang, Renkai Ding and Yu Jiang
Actuators 2025, 14(10), 485; https://doi.org/10.3390/act14100485 - 6 Oct 2025
Viewed by 481
Abstract
The suspension system can adapt to different road excitations by adjusting its own stiffness or damping, or outputting active driving force, thereby improving the comprehensive dynamic performance of the vehicle, including ride comfort and vehicle handling. As the automotive industry’s requirements for “intelligence, [...] Read more.
The suspension system can adapt to different road excitations by adjusting its own stiffness or damping, or outputting active driving force, thereby improving the comprehensive dynamic performance of the vehicle, including ride comfort and vehicle handling. As the automotive industry’s requirements for “intelligence, comfort, and safety” continue to increase, the intelligence of suspension systems has become a research hotspot for scientific research institutions and enterprises, with broad development prospects. This article reviews the current development status of automotive suspensions and introduces the working principles and research status of different types of suspension systems, such as passive suspensions, semi-active suspensions, active suspensions, and electromagnetic suspensions. In addition, it summarizes the control methods of vehicle intelligent suspensions, including classical control, modern control, and intelligent control, and expounds the advantages and disadvantages of each control strategy. Finally, it summarizes the challenges and development trends faced by suspension systems. This review can provide technical reference for researchers engaged in the study of intelligent suspension under the modern chassis architecture and offer direction guidance for the development of key suspension technologies. Full article
(This article belongs to the Section Actuators for Surface Vehicles)
Show Figures

Figure 1

24 pages, 4745 KB  
Review
Recent Progress on the Characterization of Polymer Crystallization by Atomic Force Microscopy
by Shen Chen, Min Chen and Hanying Li
Polymers 2025, 17(19), 2692; https://doi.org/10.3390/polym17192692 - 5 Oct 2025
Viewed by 614
Abstract
The crystallization behavior of polymers affects the structure of aggregated states, which influences the properties of materials. Atomic force microscopy (AFM) is a helpful characterization tool with high spatial resolution at the nanometer-to-micrometer scale and low-destruction imaging capabilities, making it an important means [...] Read more.
The crystallization behavior of polymers affects the structure of aggregated states, which influences the properties of materials. Atomic force microscopy (AFM) is a helpful characterization tool with high spatial resolution at the nanometer-to-micrometer scale and low-destruction imaging capabilities, making it an important means of studying polymer crystallography. This review is intended for scientists in polymer materials and physics, aiming to inspire how the rich applications of AFM can be harnessed to address fundamental scientific questions in polymer crystallization. This paper reviews recent advances in polymer crystallization characterization based on AFM, focusing on its applications in visualizing hierarchical polymer crystal structures (single crystals, spherulites, dendritic crystals, and shish kebab crystals), investigating crystallization kinetics (in situ monitoring of crystal growth), and analyzing structure–property relationships (structural changes under temperature and stress). Finally, we introduce the application of the latest AFM technology in addressing key issues in polymer crystallization, such as single-molecule force spectroscopy (SMFS) and atomic force microscopy–infrared spectroscopy (AFM-IR). As AFM technology advances toward higher precision, greater efficiency, and increased functionality, it is expected to deliver more exciting developments in the field of polymer crystallization. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Figure 1

23 pages, 4885 KB  
Article
Nonlinear Aero-Thermo-Elastic Analysis of Laminated Composite Beams with Surface-Bonded FGMs Layers Subjected to a Concentrated Harmonic Load
by Mehdi Alimoradzadeh, Francesco Tornabene and Rossana Dimitri
J. Compos. Sci. 2025, 9(10), 539; https://doi.org/10.3390/jcs9100539 - 2 Oct 2025
Viewed by 357
Abstract
In this study, the nonlinear forced vibration response of fiber-reinforced laminated composite beams coated with functionally graded materials (FGMs) is investigated under the combined action of aero-thermoelastic loads and a concentrated harmonic excitation. The mathematical formulation is established using the Euler–Bernoulli beam theory, [...] Read more.
In this study, the nonlinear forced vibration response of fiber-reinforced laminated composite beams coated with functionally graded materials (FGMs) is investigated under the combined action of aero-thermoelastic loads and a concentrated harmonic excitation. The mathematical formulation is established using the Euler–Bernoulli beam theory, where von Kármán geometric nonlinearities are taken into account, along with the modified third-order piston theory to represent aerodynamic effects. By neglecting axial inertia, the resulting set of nonlinear governing equations is simplified into a single equation. This equation is discretized through the Galerkin procedure, yielding a nonlinear ordinary differential equation. An analytical solution is, then, obtained by applying the method of multiple time scales (MTS). Furthermore, a comprehensive parametric analysis is carried out to evaluate how factors such as the power-law index, stacking sequence, temperature field, load amplitude and position, free-stream velocity, and Mach number influence both the lateral dynamic deflection and the frequency response characteristics (FRCs) of the beams, offering useful guidelines for structural design optimization. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Graphical abstract

19 pages, 5560 KB  
Article
Application of a Kdamper with a Magnetorheological Damper for Control of Longitudinal Vibration of Propulsion Shaft System
by Kangwei Zhu, Haiyu Zhang, Weiguo Wu and Hao Liang
Appl. Sci. 2025, 15(19), 10564; https://doi.org/10.3390/app151910564 - 30 Sep 2025
Viewed by 175
Abstract
Ship noise not only has an impact on crew comfort, but also causes damage to the marine environment. Longitudinal vibration of propulsion shaft system is one of the most important causes of ship noise, so in order to indirect control the vibration noise, [...] Read more.
Ship noise not only has an impact on crew comfort, but also causes damage to the marine environment. Longitudinal vibration of propulsion shaft system is one of the most important causes of ship noise, so in order to indirect control the vibration noise, the development of a propulsion shaft system vibration controller is an effective method. In this paper, a Kdamper with a magnetorheological damper (Kdamper-MRD) is proposed to control the longitudinal vibrations transmitted along the propulsion shaft system. The vibration characteristics of the propulsion shaft system are analyzed using the transfer matrix method and the optimal Kdamper-MRD design parameters for controlling the target modes are given. Specific structural design parameters are given as well as material selection. The magnetic field distribution and the magnitude of the output damping force of the MRD are obtained by the simulation method, and the negative stiffness characteristics of the disk spring are also discussed. An on–off current switching control strategy is proposed to further improve the vibration damping performance of the Kdamper-MRD. A comparison with the traditional DVA under simple harmonic excitation and random excitation proves that the Kdamper-MRD has better low-frequency vibration damping performance and is able to attenuate longitudinal vibration of the axle system in the whole frequency domain. Full article
(This article belongs to the Special Issue Vibration Problems in Engineering Science)
Show Figures

Figure 1

14 pages, 2495 KB  
Article
Research on a Feedthrough Suppression Scheme for MEMS Gyroscopes Based on Mixed-Frequency Excitation Signals
by Xuhui Chen, Zhenzhen Pei, Chenchao Zhu, Jiaye Hu, Hongjie Lei, Yidian Wang and Hongsheng Li
Micromachines 2025, 16(10), 1120; https://doi.org/10.3390/mi16101120 - 30 Sep 2025
Viewed by 291
Abstract
Feedthrough interference is inevitably introduced in MEMS gyroscopes due to non-ideal factors such as circuit layout design and fabrication processes, exerting non-negligible impacts on gyroscope performance. This study proposes a feedthrough suppression scheme for MEMS gyroscopes based on mixed-frequency excitation signals. Leveraging the [...] Read more.
Feedthrough interference is inevitably introduced in MEMS gyroscopes due to non-ideal factors such as circuit layout design and fabrication processes, exerting non-negligible impacts on gyroscope performance. This study proposes a feedthrough suppression scheme for MEMS gyroscopes based on mixed-frequency excitation signals. Leveraging the quadratic relationship between excitation voltage and electrostatic force in capacitive resonators, the resonator is excited with a modulated signal at a non-resonant frequency while sensing vibration signals at the resonant frequency. This approach achieves linear excitation without requiring backend demodulation circuits, effectively separating desired signals from feedthrough interference in the frequency domain. A mixed-frequency excitation-based measurement and control system for MEMS gyroscopes is constructed. The influence of mismatch phenomena under non-ideal conditions on the control system is analyzed with corresponding solutions provided. Simulations and experiments validate the scheme’s effectiveness, demonstrating feedthrough suppression through both amplitude-frequency characteristics and scale factor perspectives. Test results confirm the scheme eliminates the zero introduced by feedthrough interference in the gyroscope’s amplitude-frequency response curve and reduces force-to-rebalanced detection scale factor fluctuations caused by frequency split variations by a factor of 21. Under this scheme, the gyroscope achieves zero-bias stability of 0.3118 °/h and angle random walk of 0.2443 °/h/√Hz. Full article
Show Figures

Figure 1

27 pages, 39664 KB  
Article
Research on Suppression of Negative Effects of Vibration in In-Wheel Motor-Driven Electric Vehicles Based on DMPC
by Xiangpeng Meng, Yang Rong, Renkai Ding, Wei Liu, Dong Sun and Ruochen Wang
Processes 2025, 13(10), 3081; https://doi.org/10.3390/pr13103081 - 26 Sep 2025
Viewed by 232
Abstract
In-wheel motor (IWM)-driven electric vehicles (EVs) are susceptible to road excitation, which can induce eccentricity between the stator and rotor of the IWM. This eccentricity leads to unbalanced electromagnetic forces (UEFs) and electromechanical coupling (EMC) effects, severely degrading vehicle dynamic performance. To address [...] Read more.
In-wheel motor (IWM)-driven electric vehicles (EVs) are susceptible to road excitation, which can induce eccentricity between the stator and rotor of the IWM. This eccentricity leads to unbalanced electromagnetic forces (UEFs) and electromechanical coupling (EMC) effects, severely degrading vehicle dynamic performance. To address this issue, this study first established an EMC system model encompassing UEF, IWM drive, and vehicle dynamics. Based on this model, four typical operating conditions—constant speed, acceleration, deceleration, and steering—were designed to thoroughly analyze the influence of EMC effects on vehicle dynamic response characteristics. The analysis results were validated through real-vehicle experiments. The results indicate that the EMC effects caused by motor eccentricity primarily affect the vehicle’s vertical dynamics performance (especially during acceleration and deceleration), leading to increased vertical body acceleration and reduced ride comfort, while having a relatively minor impact on longitudinal and lateral dynamics performance. Additionally, these effects significantly increase the relative eccentricity of the motor under various operating conditions, further degrading motor performance. To mitigate these negative effects, this paper designs an active suspension controller based on distributed model predictive control (DMPC). Simulation and experimental validation demonstrate that the proposed controller effectively improves ride comfort and body posture stability while significantly suppressing the growth of the motor’s relative eccentricity, thereby enhancing motor operational performance. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

21 pages, 20900 KB  
Article
Balancing Accuracy and Efficiency in Wire-Rope Isolator Modeling: A Simplified Beam-Element Framework
by Claudia Marin-Artieda
Vibration 2025, 8(3), 55; https://doi.org/10.3390/vibration8030055 - 22 Sep 2025
Viewed by 301
Abstract
Wire-rope isolators (WRIs) are widely used in vibration and seismic protection due to their multidirectional flexibility and amplitude-dependent hysteretic damping. However, their complex nonlinear behavior, especially under inclined and combined-mode loading, poses challenges for predictive modeling. This study presents a simplified finite-element modeling [...] Read more.
Wire-rope isolators (WRIs) are widely used in vibration and seismic protection due to their multidirectional flexibility and amplitude-dependent hysteretic damping. However, their complex nonlinear behavior, especially under inclined and combined-mode loading, poses challenges for predictive modeling. This study presents a simplified finite-element modeling framework using constant-property Timoshenko beam elements with tuned Rayleigh damping to simulate WRI behavior across various configurations. Benchmark validation against analytical ring deformation confirmed the model’s ability to capture geometric nonlinearities. The framework was extended to five WRI types, with effective cross-sectional properties calibrated against vendor-supplied quasi-static data. Dynamic simulations under sinusoidal excitation demonstrated strong agreement with experimental force-displacement loops in pure modes and showed moderate accuracy (within 29%) in inclined configurations. System-level validation using a rocking-control platform with four inclined WRIs showed that the model reliably predicts global stiffness and energy dissipation under base accelerations. While the model does not capture localized nonlinearities such as pinched hysteresis due to interstrand friction, it offers a computationally efficient tool for engineering design. The proposed method enables rapid evaluation of WRI performance in complex scenarios, supporting broader integration into performance-based seismic mitigation strategies. Full article
(This article belongs to the Special Issue Nonlinear Vibration of Mechanical Systems)
Show Figures

Figure 1

17 pages, 3704 KB  
Article
Study on the Charge Characteristics and Migration Characteristics of Amorphous Alloy Core Debris
by Wenxu Yu and Xiangyu Guan
Materials 2025, 18(18), 4415; https://doi.org/10.3390/ma18184415 - 22 Sep 2025
Viewed by 302
Abstract
Compared with a traditional distribution transformer with silicon steel sheet as the core material, the no-load loss of an amorphous alloy transformer is greatly reduced due to its core using iron-based amorphous metal material, which has been applied in many countries. However, due [...] Read more.
Compared with a traditional distribution transformer with silicon steel sheet as the core material, the no-load loss of an amorphous alloy transformer is greatly reduced due to its core using iron-based amorphous metal material, which has been applied in many countries. However, due to the brittleness of its amorphous strip, an amorphous alloy transformer is prone to debris in the process of production, transportation and work. The charge and migration characteristics of these debris will reduce the insulation strength of the transformer oil and endanger the safe operation of the transformer. In this paper, a charge measurement platform of amorphous alloy debris is set up, and the charging characteristics of amorphous alloy core debris under different flow velocities, particle radius and plate electric field strength are obtained. The results show that with an increase in pipeline flow velocity, the charge-to-mass ratio of the debris increases first and then decreases. With an increase in electric field strength, the charge-to-mass ratio of the debris increases; with an increase in the number of debris, the charge-to-mass ratio of the debris decreases; with an increase in debris size, the charge-to-mass ratio of the debris increases. The debris with different charge-to-mass ratios and types obtained from the above experiments are added to the simulation model of an amorphous alloy transformer. The lattice Boltzmann method (LBM) coupled with the discrete element method (DEM) is used to simulate the migration process of metal particles in an amorphous alloy transformer under the combined action of gravity, buoyancy, electric field force and oil flow resistance under electrothermal excitation boundary. The results show that the trajectory of the debris is related to the initial position, electric field strength and oil flow velocity. The LBM–DEM calculation model and charge measurement platform proposed in this paper can provide a reference for studying the charge mechanism and migration characteristics of amorphous alloy core debris in insulating oil. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

18 pages, 5815 KB  
Article
Research on the Indirect Solution Optimization Regularization Method for Ship Mechanical Excitation Force
by Zhenyu Yao, Rongwu Xu, Jiarui Zhang, Tao Peng and Ruibiao Li
Appl. Sci. 2025, 15(18), 10238; https://doi.org/10.3390/app151810238 - 19 Sep 2025
Viewed by 263
Abstract
Accurate identification of mechanical excitation forces is of great significance for the control of ship radiated noise and structural design. Currently, the identification of excitation forces mostly relies on indirect calculations, which suffer from ill-conditioned problems. Regularization correction is one of the main [...] Read more.
Accurate identification of mechanical excitation forces is of great significance for the control of ship radiated noise and structural design. Currently, the identification of excitation forces mostly relies on indirect calculations, which suffer from ill-conditioned problems. Regularization correction is one of the main means to solve this problem. Although regularization methods have been widely developed, their application in the field of ships is relatively rare. Currently, the commonly used methods are truncation singular values and Givonov regularization methods. This paper starts from the practical application of ships and addresses the problem of poor correction effect of traditional regularization methods. Two optimized regularization methods, quasi-optimal discriminant criterion and B-spline interpolation function method, are proposed. These methods are verified through simulations and experiments. The results of the scaled model experiments show that compared with using the L-curve alone, the Q-O method reduces the regularization error by 29%, while the BL curve improves the robustness by 38% under a 15 dB noise condition. Full article
Show Figures

Figure 1

14 pages, 2817 KB  
Article
Light-Induced Heating of Microsized Nematic Volumes
by Dmitrii Shcherbinin, Denis A. Glukharev, Semyon Rudyi, Anastasiia Piven, Tetiana Orlova, Izabela Śliwa and Alex Zakharov
Crystals 2025, 15(9), 822; https://doi.org/10.3390/cryst15090822 - 19 Sep 2025
Viewed by 321
Abstract
The experimental study has been carried out using advanced computer vision methods in order to visualize the moment of excitation and further propagation of a non stationary isotropic domain in a hybrid aligned nematic (HAN) microsized volume under the effect of a laser [...] Read more.
The experimental study has been carried out using advanced computer vision methods in order to visualize the moment of excitation and further propagation of a non stationary isotropic domain in a hybrid aligned nematic (HAN) microsized volume under the effect of a laser beam focused on a bounding liquid crystal surface. It has been shown that, when the laser power exceeds a certain threshold value, in bulk of the HAN microvolume, an isotropic circular domain is formed. We also observed a structure of alternating concentric rings around the isotropic circular region, which increases with distance from the center of the isotropic domain. The formation of a sequence of rings in a polarizing microscopic image indicates the formation of a complex topology of the director field in the HAN cell under study. The following evolution of the texture can be represented by two modes. Firstly, the “fast” heating mode, which is responsible for the formation and explosive expansion of an isotropic zone in bulk of the HAN microvolume with characteristic time τ1 due to a laser spot heating on the upper indium tin oxide (ITO) layer. Secondly, the “slow” heating mode, when an isotropic zone and concentric rings slowly expand with characteristic time τ2 mainly due to the finite thermoconductivity of ITO layer. When the laser power significantly exceeds the threshold value, damped oscillations of the isotropic domain are observed. We also introduced the metrics that allows quantitatively estimate the behavior of texture observed. The results obtained form an experimental basis for further investigation of thermomechanical force appearing in the LC system with coupled gradients of temperature and director fields. Full article
(This article belongs to the Collection Liquid Crystals and Their Applications)
Show Figures

Figure 1

26 pages, 3081 KB  
Article
Wheel–Rail Vertical Vibration Due to Random Roughness in the Presence of the Rail Dampers with Mixed Damping System
by Traian Mazilu, Dorina Fologea and Marius-Alin Gheți
Appl. Sci. 2025, 15(18), 10027; https://doi.org/10.3390/app151810027 - 13 Sep 2025
Viewed by 395
Abstract
In this paper, the vibration of a wheel running on a light rail equipped with rail dampers that use a mixed damping system (rubber–oil) is investigated under the excitation of random roughness on the rolling surfaces, to demonstrate the influence of such rail [...] Read more.
In this paper, the vibration of a wheel running on a light rail equipped with rail dampers that use a mixed damping system (rubber–oil) is investigated under the excitation of random roughness on the rolling surfaces, to demonstrate the influence of such rail dampers on the dynamic behaviour at the wheel–rail interface. For this purpose, a model is adopted in which a rigid wheel moves at constant speed over a rail modelled as an infinite Timoshenko beam, supported by elastic foundations with an internal degree of freedom that represents the behaviour of the rail pads, sleepers, and ballast. The rail dampers are represented as two-mass oscillators, while the internal friction in the elastic components of the wheel–rail system is modelled using hysteretic damping. To obtain the time series of the rail and wheel displacements, as well as the wheel–rail contact force, the convolution theorem is applied in a heuristic manner, making use of the relationship between Green’s functions in the time and frequency domains through direct and inverse Fourier transforms. The results show that (a) rail dampers primarily affect rail dynamics and the wheel–rail contact force over a relatively wide frequency range, while having little influence on wheel motion; (b) rail dampers are highly effective in reducing rail vibration and the wheel–rail contact force when the rail pads are stiff, but considerably less effective when soft rail pads are used; and (c) they may slightly amplify the contact force at the lower edge of their effective frequency range. Full article
Show Figures

Figure 1

28 pages, 10288 KB  
Article
Prediction of Local Vibration Analysis for Ship Stiffened Panel Structure Using Artificial Neural Network Algorithm
by Mahardika Rizki Pynasti and Chang-Yong Song
Vibration 2025, 8(3), 52; https://doi.org/10.3390/vibration8030052 - 13 Sep 2025
Viewed by 375
Abstract
Ship stiffened panels, typically flat plates reinforced with various types of stiffeners, form a substantial part of a ship’s structure and are susceptible to resonance, especially in areas such as the after peak structure, engine room, and accommodation compartments. These vibrations are primarily [...] Read more.
Ship stiffened panels, typically flat plates reinforced with various types of stiffeners, form a substantial part of a ship’s structure and are susceptible to resonance, especially in areas such as the after peak structure, engine room, and accommodation compartments. These vibrations are primarily excited by main engine and propeller forces. Conventional methods such as finite element analysis (FEA) and plate theory are widely used to estimate vibration frequencies, but they are time-consuming and computationally intensive when applied to numerous stiffened panels. This study proposes a machine learning approach using an artificial neural network (ANN) algorithm to efficiently predict the vibration frequencies of ship stiffened panels. A crude oil tanker is chosen as the case study, and FEA is conducted to generate the vibration frequency and mass data for panels across critical regions. The input layer features for the ANN include panel area, thickness, number and area of stiffeners, fluid density, number of fluid contact sides, and overall structural stiffness. The ANN model predicts two outputs: the fundamental vibration frequency and the mass of the panel structure. To evaluate the model performance, hyperparameters such as the number of hidden neurons are optimized. The results indicate that the ANN achieves accurate predictions while significantly reducing the time and resources required compared with conventional methods. This approach offers a promising tool for accelerating the local vibration analysis process in ship structural design. Full article
(This article belongs to the Special Issue Machine Learning Applications to Vibration Problems)
Show Figures

Figure 1

23 pages, 5971 KB  
Article
Truncated Transfer Matrix-Based Regularization for Impact Force Localization and Reconstruction
by Bing Zhang, Xinqun Zhu and Jianchun Li
Sensors 2025, 25(18), 5712; https://doi.org/10.3390/s25185712 - 12 Sep 2025
Viewed by 433
Abstract
Civil infrastructure, such as bridges and buildings, is susceptible to damage from unforeseen low-speed impacts during service. Impact force identification from dynamic response measurements is essential for structural health monitoring and structural design. Force identification is an ill-posed inverse problem, and the regularization [...] Read more.
Civil infrastructure, such as bridges and buildings, is susceptible to damage from unforeseen low-speed impacts during service. Impact force identification from dynamic response measurements is essential for structural health monitoring and structural design. Force identification is an ill-posed inverse problem, and the regularization technique is widely used to solve this problem using a full transfer matrix. However, existing regularization techniques are not suitable for large-scale practical structures due to the high computational cost for the inverse calculation of a high-dimensional transfer matrix, and impact excitation locations are often unknown in practice. To address these challenges, a novel two-step truncated transfer matrix-based impact force identification method is proposed in this study. In the first step, a sparse regularization-based technique is developed to determine unknown force locations using modal superposition. In the second step, the full transfer matrix is truncated by time windows corresponding to short durations of impact excitations, and a Tikhonov regularization-based technique is adopted to reconstruct the time history of impact forces. The proposed method is verified numerically on a simply supported beam and experimentally on a 10 m steel–concrete composite bridge deck. The results show that the proposed method could determine the impact locations and reconstruct the time history of impact forces accurately. Compared with existing Tikhonov and sparse regularization methods, the proposed method demonstrates superior accuracy and computational efficiency for impact force identification. The robustness of the proposed method to noise level and the number of modes and sensors is investigated. Experimental studies for both single-force and multiple-force localization and identification are conducted. The results indicate that the proposed method is efficient and accurate in identifying impact forces. Full article
Show Figures

Figure 1

25 pages, 9252 KB  
Article
Mechanical Performance and Parameter Sensitivity Analysis of Small-Diameter Lead-Rubber Bearings
by Guorong Cao, Zhaoqun Chang, Guizhi Deng, Wenbo Ma and Boquan Liu
Buildings 2025, 15(18), 3284; https://doi.org/10.3390/buildings15183284 - 11 Sep 2025
Viewed by 391
Abstract
Small-diameter lead-rubber bearings (LRBs) are widely employed in shaking table tests of isolated structures, particularly reinforced concrete base-isolated structures. Accurately determining their mechanical properties and identifying their restoring force model parameters are essential for seismic response analysis and numerical simulation of scaled models. [...] Read more.
Small-diameter lead-rubber bearings (LRBs) are widely employed in shaking table tests of isolated structures, particularly reinforced concrete base-isolated structures. Accurately determining their mechanical properties and identifying their restoring force model parameters are essential for seismic response analysis and numerical simulation of scaled models. In this study, quasi-static tests and shaking table tests were conducted to obtain the compression–shear hysteresis curves of LRBs under various loading amplitudes and frequencies, as well as the hysteresis curves under seismic wave excitation. The variation patterns of mechanical performance indicators were systematically analyzed. A parameter identification method was developed to determine the restoring force model of small-diameter LRBs using a genetic algorithm, and the effects of pre-yield stiffness and yield force of the isolation layer on structural response were investigated based on an equivalent two-degree-of-freedom model. By incorporating appropriately identified restoring force model parameters, a damping modeling method for the reinforced concrete high-rise over-track structures with an inter-story isolation system was proposed. The results indicate that, when the maximum bearing deformation reached 150% shear strain, the post-yield stiffness and horizontal equivalent stiffness under seismic excitation increased by 11.97% and 19.40%, respectively, compared with the compression–shear test results, while the equivalent damping ratio increased by 18.18%. Directly adopting mechanical parameters obtained from quasi-static tests would lead to an overestimation of the isolation layer displacement response. The discrepancies in the mechanical indicators of the small-diameter LRB between the theoretical hysteresis curve, obtained using the identified Bouc–Wen model parameters, and the compression–shear test results are less than 10%. In OpenSees, the seismic response of the scaled model can be accurately simulated by combining a segmented damping model with an isolation-layer hysteresis model in which the pre-yield stiffness is amplified by a factor of 1.15. Full article
(This article belongs to the Special Issue Low Carbon and Green Materials in Construction—3rd Edition)
Show Figures

Figure 1

Back to TopTop