Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,507)

Search Parameters:
Keywords = extended release

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 1343 KB  
Review
Nanoformulated Curcumin for Food Preservation: A Natural Antimicrobial in Active and Smart Packaging Systems
by Edith Dube
Appl. Biosci. 2025, 4(4), 46; https://doi.org/10.3390/applbiosci4040046 (registering DOI) - 13 Oct 2025
Abstract
Food spoilage and contamination remain pressing global challenges, undermining food security and safety while driving economic losses. Conventional preservation strategies, including thermal treatments, refrigeration, and synthetic additives, often compromise nutritional quality and raise sustainability concerns, thereby necessitating natural, effective alternatives. Curcumin, a polyphenolic [...] Read more.
Food spoilage and contamination remain pressing global challenges, undermining food security and safety while driving economic losses. Conventional preservation strategies, including thermal treatments, refrigeration, and synthetic additives, often compromise nutritional quality and raise sustainability concerns, thereby necessitating natural, effective alternatives. Curcumin, a polyphenolic compound derived from Curcuma longa, has demonstrated broad-spectrum antimicrobial, antioxidant, and anti-inflammatory activities, making it a promising candidate for food preservation. However, its poor solubility, instability, and low bioavailability limit direct applications in food systems. Advances in nanotechnology have enabled the development of nanoformulated curcumin, enhancing solubility, stability, controlled release, and functional efficacy. This review examines the antimicrobial mechanisms of curcumin and its nanoformulations, including membrane disruption, oxidative stress via reactive oxygen species, quorum sensing inhibition, and biofilm suppression. Applications in active and smart packaging are highlighted, where curcumin nanoformulation not only extends shelf life but also enables freshness monitoring through pH-responsive color changes. Evidence across meats, seafood, fruits, dairy, and beverages shows improved microbial safety, oxidative stability, and sensory quality. Multifunctional systems, such as hybrid composites and stimuli-responsive carriers, represent next-generation tools for sustainable packaging. However, challenges remain with scale-up, migration safety, cytotoxicity, and potential promotion of antimicrobial resistance gene (ARG) transfer. Future research should focus on safety validation, advanced nanocarriers, ARG-aware strategies, and regulatory frameworks. Overall, nanoformulated curcumin offers a natural, versatile, and eco-friendly approach to food preservation that aligns with clean-label consumer demand. Full article
Show Figures

Figure 1

32 pages, 5297 KB  
Review
Research Progress on the Influence of Cathode Materials on Thermal Runaway Behavior of Lithium-Ion Batteries
by Yanru Yang, Yang Gao, Yu Miao, Yuan Liang and Xiaoqiang Ren
Batteries 2025, 11(10), 373; https://doi.org/10.3390/batteries11100373 (registering DOI) - 12 Oct 2025
Abstract
The structure, chemical composition, thermal stability, and abuse responses of cathode materials are critical to the safety and economy of lithium-ion batteries (LIBs). This review systematically summarizes advances in research on how cathode materials influence LIB thermal runaway (TR) behavior. It analyzes the [...] Read more.
The structure, chemical composition, thermal stability, and abuse responses of cathode materials are critical to the safety and economy of lithium-ion batteries (LIBs). This review systematically summarizes advances in research on how cathode materials influence LIB thermal runaway (TR) behavior. It analyzes the oxygen release from cathodes in TR mechanisms and the hazards of such oxygen generation during TR, expounds on how differences in cathode structure, chemical composition, and thermal stability affect TR behavior, and summarizes the thermal characteristics of LIBs with different cathodes under mechanical, electrical, and thermal abuse. Results indicate that oxygen released from cathode decomposition during TR oxidizes electrolytes, releasing substantial heat and gas and causing more severe TR hazards. Structural instability of cathodes leads to accelerated release of lattice oxygen, speeding up TR initiation. Chemical composition regulates thermal stability, phase transition pathways, and gas generation rates during TR, while elemental ratios affect the ease of TR triggering. Cathodes with poor thermal stability have lower thermal decomposition onset temperatures, making TR more likely to occur and intensifying reaction severity. All three abuse types trigger inherent risks of cathodes, inducing TR and significantly increasing its occurrence probability. Differences in intrinsic properties further extend to the system level, also influencing thermal runaway propagation and fire dynamics at the module level. Future research focusing on the intrinsic properties of cathodes and external abuse is of great significance for addressing LIB TR behavior. Full article
Show Figures

Figure 1

24 pages, 2016 KB  
Article
New-Onset Diabetes After Transplantation in Renal Recipients: A Pilot Comparative Study of Immediate vs. Extended-Release Tacrolimus Formulation
by Ioana Adela Ratiu, Florin Bănică, Corina Moisa, Bianca Pașca, Daniela Gîtea, Iulia Dana Grosu, Gabriel Cristian Bako, Oliviu Voștinaru, Wael Abu Dayyih and Lorena Filip
Pharmaceuticals 2025, 18(10), 1532; https://doi.org/10.3390/ph18101532 - 12 Oct 2025
Abstract
Tacrolimus is frequently used in immunosuppressive therapy in renal transplant patients and is characterized by high toxicity, a low therapeutic index, and great individual variability. For these reasons, correct dosing is important to ensure patient safety by reducing the incidence of adverse effects [...] Read more.
Tacrolimus is frequently used in immunosuppressive therapy in renal transplant patients and is characterized by high toxicity, a low therapeutic index, and great individual variability. For these reasons, correct dosing is important to ensure patient safety by reducing the incidence of adverse effects while maintaining an optimal blood level that prevents graft loss. New-onset diabetes after transplantation (NODAT) affects 15–30% of patients treated with tacrolimus, with potential differences between immediate-release (IR) and extended-release (ER) formulations. Objective: This study seeks to compare the incidence of NODAT between IR tacrolimus and ER tacrolimus formulations in renal transplant patients and correlate it with in vitro release characteristics. Methods: This is a retrospective pilot study including 66 renal transplant patients (33 IR tacrolimus, 33 ER tacrolimus) followed for 5 years. NODAT was defined according to standard criteria. In vitro dissolution testing was performed at pH values of 1.2, 4.5, and 6.8, with sampling at 15, 30, 60, 90, 120, and 360 min. Results: The obtained results do not indicate differences regarding the incidence of diabetes mellitus in patients treated with the two forms of tacrolimus. The determined NODAT incidence was 42.4% (ER tacrolimus) vs. 39.4% (IR tacrolimus), p = 0.802, and ER tacrolimus showed slower release without significant pH-dependent variations. Conclusions: No significant differences in NODAT incidence were identified between formulations. The release–clinical outcome correlation requires validation in larger multicenter studies. These results contribute to the evidence base for tacrolimus formulation selection in renal transplant patients and other associated pathologies. Full article
(This article belongs to the Special Issue New Development in Pharmacotherapy of Kidney Diseases)
Show Figures

Graphical abstract

13 pages, 5169 KB  
Article
The Basic Properties of Tunnel Slags and Their Heavy Metal Leaching Characteristics
by Tianlei Wang, Xiaoxiao Zhang, Yuanbin Wang, Xueping Wang, Lei Zhang, Guanghua Lu and Changsheng Yue
Appl. Sci. 2025, 15(20), 10916; https://doi.org/10.3390/app152010916 - 11 Oct 2025
Viewed by 49
Abstract
This paper investigated the tunnel slags generated from a specific tunnel project to systematically assess their environmental risk through phase composition, chemical composition, acidification potential, and heavy metal speciation. Leaching experiments were conducted under various influencing factors, including particle size, time, liquid-to-solid ratio, [...] Read more.
This paper investigated the tunnel slags generated from a specific tunnel project to systematically assess their environmental risk through phase composition, chemical composition, acidification potential, and heavy metal speciation. Leaching experiments were conducted under various influencing factors, including particle size, time, liquid-to-solid ratio, pH, temperature. The release concentration of heavy metals from the tunnel slag particles follows the following order: Zn > Cu > Cr. This is primarily attributed to the preferential release of Zn under acidic conditions due to its high acid-soluble state, while Cr, which is predominantly present in the residual state, exhibits very low mobility. Furthermore, decreased particle sizes, increased liquid-to-solid ratios, elevated leaching temperatures, extended leaching times, and lower pH values can effectively promote the dissolution of heavy metals from the tunnel slag. The cumulative leaching curves of Cr, Cu, and Zn from the three types of tunnel slags conform to the Elovich equation (R2 > 0.88), indicating that the release process of heavy metals is primarily controlled by diffusion mechanisms. The S- and Fe/Mg-rich characteristics of D3 confers a high acidification risk, accompanied by a rapid and persistent heavy metal release rate. In contrast, D2, which is influenced by the neutralizing effect of carbonate dissolution, releases heavy metals at a steady rate, while D1, which is dominated by inert minerals like quartz and muscovite, exhibits the slowest release rate. It is recommended that waste management engineering prioritize controlling S- and Fe/Mg-rich tunnel slags (D3) and mitigating risks of elements like Zn and Cu under acidic conditions. This study provides a scientific basis and technical support for the environmentally safe disposal and resource utilization of tunnel slag. Full article
Show Figures

Figure 1

36 pages, 4341 KB  
Review
Physiological Barriers to Nucleic Acid Therapeutics and Engineering Strategies for Lipid Nanoparticle Design, Optimization, and Clinical Translation
by Yerim Kim, Jisu Park, Jaewon Choi, Minse Kim, Gyeongsu Seo, Jeongeun Kim, Jeong-Ann Park, Kwang Suk Lim, Suk-Jin Ha and Hyun-Ouk Kim
Pharmaceutics 2025, 17(10), 1309; https://doi.org/10.3390/pharmaceutics17101309 - 8 Oct 2025
Viewed by 452
Abstract
Lipid nanoparticles are a clinically validated platform for delivering nucleic acids, but performance is constrained by multiscale physiological barriers spanning circulation, vascular interfaces, extracellular matrices, cellular uptake, and intracellular trafficking. This review links composition–structure–function relationships for ionizable lipids, helper phospholipids, cholesterol, and PEG-lipids [...] Read more.
Lipid nanoparticles are a clinically validated platform for delivering nucleic acids, but performance is constrained by multiscale physiological barriers spanning circulation, vascular interfaces, extracellular matrices, cellular uptake, and intracellular trafficking. This review links composition–structure–function relationships for ionizable lipids, helper phospholipids, cholesterol, and PEG-lipids to systemic fate, endothelial access, endosomal escape, cytoplasmic stability, and nuclear transport. We outline strategies for tissue and cell targeting, including hepatocyte ligands, immune and tumor selectivity, and selective organ targeting through compositional tuning, together with approaches that modulate escape using pH-responsive chemistries or fusion-active peptides and polymers. We further examine immunomodulatory co-formulation, route and schedule effects on biodistribution and immune programming, and manufacturing and stability levers from microfluidic mixing to lyophilization. Across these themes, we weigh trade-offs between stealth and engagement, potency and tolerability, and potency and manufacturability, noting that only a small fraction of endosomes supports productive release and that protein corona variability and repeat dosing can reshape tropism and clearance. Convergence of standardized assays for true cytosolic delivery, biomarker-guided patient selection, and robust process controls will be required to extend LNP therapeutics beyond the liver while sustaining safety, access, and scale. Full article
Show Figures

Graphical abstract

14 pages, 2513 KB  
Article
Long-Term Chemical Solubility of 2.3Y-TZP Dental Ceramics
by Lidija Ćurković, Sanja Štefančić, Irena Žmak, Vilko Mandić, Ivana Gabelica and Ketij Mehulić
J. Funct. Biomater. 2025, 16(10), 374; https://doi.org/10.3390/jfb16100374 - 8 Oct 2025
Viewed by 236
Abstract
In this study, the chemical solubility (stability) of yttria-partially stabilized zirconia (2.3Y-TZP) dental ceramics, both glazed (Group 2) and non-glazed samples (Group 1), was evaluated using a modified testing protocol based on ISO 6872:2024. Chemical stability was assessed by measuring ion release with [...] Read more.
In this study, the chemical solubility (stability) of yttria-partially stabilized zirconia (2.3Y-TZP) dental ceramics, both glazed (Group 2) and non-glazed samples (Group 1), was evaluated using a modified testing protocol based on ISO 6872:2024. Chemical stability was assessed by measuring ion release with inductively coupled plasma mass spectrometry (ICP-MS) and by analyzing phase composition with X-ray diffraction (XRD). While ISO 6872 prescribes chemical stability testing in a 4 wt.% aqueous acetic acid solution at 80 °C for 16 h, the exposure duration in this study was extended to 768 h (32 days) to allow a more accurate determination of long-term solubility behavior. Additionally, the surface roughness parameters (Ra, Rmax, Rz, Sa, Sq) were analyzed and evaluated before and after solubility testing. Kinetic analysis revealed that degradation followed a near-parabolic rate law, with power-law exponents of n = 2.261 for Group 1 and n = 1.935 for Group 2. The corresponding dissolution rate constants were 3.85 × 10−5 µgn·cm−2n·h−1 for Group 1 and 132.3 µgn·cm−2n·h−1 for Group 2. XRD results indicated that the long exposure to acetic acid induced a partial phase transformation of zirconia from the tetragonal to the monoclinic phase. Under prolonged acetic exposure, the glaze layer on 2.3Y-TZP exhibited significantly higher dissolution, whereas the zirconia (polished, unglazed) showed low ion release. The temporal change in the total amount of dissolved ions was statistically analyzed for Group 1 and Group 2. The samples showed a strong correlation, but ANOVA confirmed significant differences between them. Full article
(This article belongs to the Special Issue Women’s Special Issue Series: Functional Biomaterials (2nd Edition))
Show Figures

Figure 1

18 pages, 4627 KB  
Article
The Potential of Thymus zygis L. (Thyme) Essential Oil Coating in Preventing Vulvovaginal Candidiasis on Intrauterine Device (IUD) Strings
by Gulcan Sahal, Hanife Guler Donmez, Herman J. Woerdenbag, Abbas Taner and Mehmet Sinan Beksac
Pharmaceutics 2025, 17(10), 1304; https://doi.org/10.3390/pharmaceutics17101304 - 7 Oct 2025
Viewed by 325
Abstract
Background/Objectives: Fungal colonization and biofilm formation on intrauterine device (IUD) strings are known to contribute to recurrent infections and decreased contraceptive efficacy. This study aims to develop a novel approach to prevent Candida reservoir and biofilm formation on IUD strings, thereby lowering the [...] Read more.
Background/Objectives: Fungal colonization and biofilm formation on intrauterine device (IUD) strings are known to contribute to recurrent infections and decreased contraceptive efficacy. This study aims to develop a novel approach to prevent Candida reservoir and biofilm formation on IUD strings, thereby lowering the risk of IUD-associated vulvovaginal candidiasis (VVC). Methods: Cervicovaginal samples were collected from human cervix using a sterile cytobrush, avoiding microbial contamination. Cytological examination using the Papanicolaou method was performed to detect the presence of Candida. The antifungal effect of the essential oils (EOs) was determined by broth dilution and disk diffusion methods. Antifungal and biofilm inhibitory effects of Thymus zygis (Tz) EO-coated IUD strings were determined by agar diffusion and crystal violet binding assays, while fungal growth on the coated strings was assessed using Scanning Electron Microscopy (SEM) and Energy-Dispersive X-ray (EDX) analysis. Results: Tz EO exhibited significantly lower minimum inhibitory concentration (MIC ≤ 0.06 µL/mL) and minimum fungicidal concentration (MFC = 0.24 µL/mL) values compared to Melaleuca alternifolia (Ma) EO (MIC > 0.24 µL/mL, MFC = 1.95 µL/mL), along with larger zones of inhibition (ZOI) against both Candida albicans (110.0 ± 6.0 mm vs. 91.3 ± 7.0 mm) and Candida glabrata (84.0 ± 13.1 mm vs. 50.0 ± 9.2 mm), indicating a stronger antifungal potential. On IUD strings coated with 4% (40 μL/g) Tz EO in hypromellose ointment, the biofilm formation of both C. albicans and C. glabrata strains was inhibited by 58.9% and 66.7%, respectively, as confirmed by SEM and EDX. Conclusions: Tz EO-coated IUD strings effectively inhibit Candida growth, suggesting a promising natural strategy to reduce recurrent IUD-associated fungal infections. However, before these results can be translated to clinical practice, additional research is needed. Future investigations may encompass an extended number of Candida isolates, stability and release studies of the EO in relation to the formulation, toxicity to vaginal mucosa, epithelial cells and sperm motility, and the effect on vaginal microbiotia. Full article
Show Figures

Figure 1

27 pages, 6856 KB  
Article
Engineering PVA-CNF-MOF Composite Films for Active Packaging: Enhancing Mechanical Strength, Barrier Performance, and Stability for Fresh Produce Preservation
by Sergio Carrasco, Juan Amaro-Gahete, Eduardo Espinosa, Almudena Benítez, Francisco J. Romero-Salguero and Alejandro Rodríguez
Molecules 2025, 30(19), 3971; https://doi.org/10.3390/molecules30193971 - 3 Oct 2025
Viewed by 330
Abstract
Food waste is a global challenge, with nearly 40% of food discarded annually, leading to economic losses, food insecurity, and environmental harm. Major factors driving spoilage include microbial contamination, enzymatic activity, oxidation, and excessive ethylene production. Active packaging offers a promising solution by [...] Read more.
Food waste is a global challenge, with nearly 40% of food discarded annually, leading to economic losses, food insecurity, and environmental harm. Major factors driving spoilage include microbial contamination, enzymatic activity, oxidation, and excessive ethylene production. Active packaging offers a promising solution by extending shelf life through the selective absorption or release of specific substances. In this study, polyvinyl alcohol (PVA) films incorporating metal-organic frameworks (MOFs) were prepared via solvent casting to enhance their mechanical and barrier properties. Five MOFs (HKUST-1, MIL-88A, BASF-A520, UiO-66, and MOF-801) were embedded in the PVA matrix and analyzed for their physical, mechanical, and optical characteristics. The incorporation of TEMPO-oxidized cellulose nanofibers (CNF) improved MOF dispersion, significantly strengthening film performance. Among the formulations, PVA-CNF-MOF-801 exhibited the best performance, with a 130% increase in tensile strength, a 50% reduction in water vapor permeability, and a 168% improvement in UV protection compared with neat PVA films. Ethylene adsorption tests with climacteric fruits confirmed that CNF-containing films retained ethylene more effectively than those without CNFs, although the differences among the MOFs were minimal. These results highlight the potential of PVA-CNF-MOF composite films as sustainable active packaging materials, providing an effective strategy to reduce food waste and its environmental impact. Full article
(This article belongs to the Special Issue Lignocellulosic Biomass III)
Show Figures

Graphical abstract

16 pages, 1152 KB  
Article
Tacrolimus-Associated Tremor in Renal Transplant Patients: Potential Impact of the Galenic Formulation
by Jordi Rovira, Olga Millán, Pedro Ventura-Aguiar, Mercè Brunet and Fritz Diekmann
Pharmaceuticals 2025, 18(10), 1488; https://doi.org/10.3390/ph18101488 - 3 Oct 2025
Viewed by 368
Abstract
Background/Objectives: Tacrolimus is the most used immunosuppressive agent in solid organ transplantation due to its efficacy in preventing acute rejection, but it has a narrow therapeutic range, and overexposure often leads to toxicities, including neurological side effects like tremors. Tremor affects up to [...] Read more.
Background/Objectives: Tacrolimus is the most used immunosuppressive agent in solid organ transplantation due to its efficacy in preventing acute rejection, but it has a narrow therapeutic range, and overexposure often leads to toxicities, including neurological side effects like tremors. Tremor affects up to 54% of renal transplant patients under tacrolimus. Extended-release tacrolimus (LCPT) has demonstrated efficacy in reducing tremor severity, as evidenced by studies employing quality of life (QoL) questionnaires, the Fahn–Tolosa–Marin (FTM) scale, and Accelerometer devices. The objectives of this study were to evaluate the benefits of the conversion to LCPT formulation in kidney transplant recipients experiencing tremors on prolonged-release tacrolimus (PR-TAC) treatment and to validate the DyCare device, a wearable wireless sensor for tremors. Results: The DyCare device measured tremor frequencies of 8.74 ± 0.11 Hz and 1.36 ± 0.08° and 17.38 ± 1.16°, as root mean square (RMSx100 for accelerometer and Gyroscope, respectively) in PR-TAC patients. After switching ten patients to LCPT, tremor severity significantly decreased, as confirmed by DyCare and the QoL in the Essential Tremor Questionnaire (QUEST). Additionally, LCPT allowed a 34% reduction in tacrolimus dosage while maintaining therapeutic trough concentrations. Immunological and pharmacodynamic biomarkers (p-miR-210-3p, p-IL10, p-IL12p70, p-IFNγ uCXCL10, NFAT-regulated gene expression) confirmed stable immunosuppression post-conversion. Conclusions: The conversion to the LCPT formulation significantly reduced tremors in kidney transplant recipients without altering their immunological status, as confirmed through a panel of immunologic and pharmacodynamic biomarkers. The DyCare device enables a precise quantification of tremors in transplant recipients, allowing physicians to optimize treatment strategies. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Graphical abstract

26 pages, 3750 KB  
Article
Engineering Robust, Porous Guar Gum Hydrogels by One-Step Mild Synthesis: Impact of Porogen Choice on Rheology and Sustained Gastroretentive Amoxicillin Delivery
by Fátima Díaz-Carrasco, M.-Violante De-Paz, Matea Katavić, Estefanía García-Pulido, Álvaro Santos-Medina, Lucía Muíña-Ramil, M.-Gracia García-Martín and Elena Benito
Gels 2025, 11(10), 785; https://doi.org/10.3390/gels11100785 - 1 Oct 2025
Viewed by 311
Abstract
This study introduces a single-step method to synthesize guar gum-based interpenetrating polymer network (IPN) hydrogels, achieving simultaneous Diels–Alder crosslinking and amoxicillin (AMOX) encapsulation under mild conditions. To evaluate the influence of porogen addition on IPN structure, drug loading and release, twenty-one formulations were [...] Read more.
This study introduces a single-step method to synthesize guar gum-based interpenetrating polymer network (IPN) hydrogels, achieving simultaneous Diels–Alder crosslinking and amoxicillin (AMOX) encapsulation under mild conditions. To evaluate the influence of porogen addition on IPN structure, drug loading and release, twenty-one formulations were developed, including AMOX loading (25% or 40% w/w relative to the polymer) and biocompatible porogens incorporation [polyethylene glycol (PEG) or sucrose at 5%, 10%, or 50% w/w]. All crosslinked IPN hydrogels formed robust gels, unlike non-crosslinked controls. Porogen choice strongly influenced hydrogel performance: PEG quadrupled the swelling index while enhancing storage modulus (up to 10,054 Pa) and complex viscosity (up to 1302 Pa·s), whereas high sucrose concentrations produced soft, ductile networks with critical strains above 20% and swelling indices up to 1895%. All hydrogels released AMOX at levels above MIC50 for H. pylori. PEG-based IPN provided superior drug delivery profiles, with extended AMOX release (t50 up to 15.5 h at pH 5.0), while sucrose-rich matrices exhibited faster burst release and disintegration. Single-step (pre-loading) AMOX during synthesis improved release control compared to post-loading. These findings highlight the potential of one-pot IPN synthesis with porogen modulation offering a promising gastroretentive platforms for sustained AMOX delivery against H. pylori. Full article
(This article belongs to the Special Issue Recent Advances in Gels for Pharmaceutical Application)
Show Figures

Graphical abstract

27 pages, 9605 KB  
Article
Compressive-Shear Behavior and Cracking Characteristics of Composite Pavement Asphalt Layers Under Thermo-Mechanical Coupling
by Shiqing Yu, You Huang, Zhaohui Liu and Yuwei Long
Materials 2025, 18(19), 4543; https://doi.org/10.3390/ma18194543 - 30 Sep 2025
Viewed by 347
Abstract
Cracking in asphalt layers of rigid–flexible composite pavements under coupled ambient temperature fields and traffic loading represents a critical failure mode. Traditional models based on uniform temperature assumptions inadequately capture the crack propagation mechanisms. This study developed a thermo-mechanical coupling model that incorporates [...] Read more.
Cracking in asphalt layers of rigid–flexible composite pavements under coupled ambient temperature fields and traffic loading represents a critical failure mode. Traditional models based on uniform temperature assumptions inadequately capture the crack propagation mechanisms. This study developed a thermo-mechanical coupling model that incorporates realistic temperature-modulus gradients to analyze the compressive-shear behavior and simulate crack propagation using the extended finite element method (XFEM) coupled with a modified Paris’ law. Key findings reveal that the asphalt layer exhibits a predominant compressive-shear stress state; increasing the base modulus from 10,000 MPa to 30,000 MPa reduces the maximum shear stress by 22.8% at the tire centerline and 8.6% at the edge; thermal stress predominantly drives crack initiation, whereas vehicle loading governs the propagation path; field validation via cored samples confirms inclined top-down cracking under thermo-mechanical coupling; and the fracture energy release rate (Gf) reaches a minimum of 155 J·m−2 at 14:00, corresponding to a maximum fatigue life of 32,625 cycles, and peaks at 350 J·m−2 at 01:00, resulting in a reduced life of 29,933 cycles—reflecting a 9.0% temperature-induced fatigue life variation. The proposed model, which integrates non-uniform temperature gradients, offers enhanced accuracy in capturing complex boundary conditions and stress states, providing a more reliable tool for durability design and assessment of composite pavements. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

24 pages, 1300 KB  
Article
On the Construction and Analysis of a Fractional-Order Dirac Delta Distribution with Application
by Muhammad Muddassar, Adil Jhangeer, Nasir Siddiqui, Malik Sajjad Mehmood, Liaqat Khan and Tahira Jabeen
Axioms 2025, 14(10), 728; https://doi.org/10.3390/axioms14100728 - 26 Sep 2025
Viewed by 222
Abstract
We introduce the generalized fractional-order Dirac delta distribution δGFODDF, defined by applying the generalized fractional derivative (GFD) operator to the Heaviside function. This construction extends the classical Dirac delta to non-integer orders, allowing modeling of systems with memory and non-local effects. [...] Read more.
We introduce the generalized fractional-order Dirac delta distribution δGFODDF, defined by applying the generalized fractional derivative (GFD) operator to the Heaviside function. This construction extends the classical Dirac delta to non-integer orders, allowing modeling of systems with memory and non-local effects. We establish fundamental properties—including shifting, scaling, evenness, derivative, and convolution—within a rigorous distributional framework and present explicit proofs. Applications are demonstrated by solving linear fractional differential equations and by modeling drug release with fractional kinetics, where the new delta captures impulse responses with long-term memory. Numerical illustrations confirm that δGFODDF reduces to the classical delta when η=1, while providing additional flexibility for 0<η<1. These results show that δGFODDF is a powerful tool for fractional-order analysis in mathematics, physics, and biomedical engineering. Full article
(This article belongs to the Special Issue Special Functions and Related Topics, 2nd Edition)
Show Figures

Figure 1

19 pages, 2845 KB  
Article
Neurotoxic Sleight of Fang: Differential Antivenom Efficacy Against Mamba (Dendroaspis spp.) Venom Spastic-Paralysis Presynaptic/Synaptic vs. Flaccid-Paralysis Postsynaptic Effects
by Lee Jones, Mimi Lay, Lorenzo Seneci, Wayne C. Hodgson, Ivan Koludarov, Tobias Senoner, Raul Soria and Bryan G. Fry
Toxins 2025, 17(10), 481; https://doi.org/10.3390/toxins17100481 - 26 Sep 2025
Viewed by 4598
Abstract
Mamba (Dendroaspis species) snakebites are critical medical emergencies across sub-Saharan Africa. Envenomings can result in the rapid onset of complex neurotoxic symptoms, often leading to high rates of mortality without timely intervention with antivenom. The ancestral state of mambas is the green [...] Read more.
Mamba (Dendroaspis species) snakebites are critical medical emergencies across sub-Saharan Africa. Envenomings can result in the rapid onset of complex neurotoxic symptoms, often leading to high rates of mortality without timely intervention with antivenom. The ancestral state of mambas is the green coloured, forest dwelling type, with the tan/grey coloured, savannah dwelling D. polylepis (Black Mamba) representing a derived state both ecologically and morphologically. However, it has not been tested whether these changes are paralleled by changes in venom biochemistry or if there are differential molecular evolutionary patterns. To fill these knowledge gaps, this study evaluated the neurotoxic effects of all Dendroaspis species venoms using the chick biventer cervicis nerve-muscle preparation, assessed the neutralizing efficacy of three antivenoms commercially available in Africa, and reconstructed the molecular evolutionary history of the toxin types to ascertain whether some were unique to particular species. All Dendroaspis venoms demonstrated potent flaccid-paralysis due to postsynaptic neurotoxicity. The only exception was D. angusticeps venom, which conversely exhibited spastic-paralysis due to presynaptic/synaptic neurotoxicity characterised by potentiation of acetylcholine presynaptic release and sustained synaptic activity of this neurotransmitter. Antivenom efficacy varied significantly. All three antivenoms neutralized to some degree the flaccid-paralysis postsynaptic effects for all species, with D. viridis venom being the best neutralized, and this pattern extended to all the antivenoms. However, neutralisation of flaccid-paralysis postsynaptic effects unmasked spastic-paralysis presynaptic/synaptic neurotoxicity within non-angusticeps venoms. Spastic-paralysis presynaptic effects were poorly neutralized for all species by all antivenoms, consistent with prior clinical reports of poor neutralisation of spastic-paralytic effects. Geographic variation in D. polylepis venom was evident for the relative neutralisation of both spastic-paralysis presynaptic/synaptic and flaccid-paralysis postsynaptic/synaptic neurotoxic pathophysiological effects, with differential neutralization capabilities noted between the Kenyan and South African populations studied. Molecular phylogenetic analyses confirmed spastic-paralysis and flaccid- paralysis toxins to be a trait that emerged in the Dendroaspis last common ancestor, with all species sharing all toxin types. Therefore, differences in venoms’ pathophysiological actions between species are due to differential expression of toxin isoforms rather than the evolution of species-specific novel toxins. Our findings highlight the synergistic nature of flaccid-paralysis postsynaptic and spastic-paralysis presynaptic/synaptic toxins, while contributing significant clinical and evolutionary knowledge of Dendroaspis venoms. These data are crucial for the continued development of more effective therapeutic interventions to improve clinical outcomes and for evidence-based design of clinical management strategies for the envenomed patient. Full article
(This article belongs to the Special Issue Venom Genes and Genomes of Venomous Animals: Evolution and Variation)
Show Figures

Graphical abstract

17 pages, 3942 KB  
Article
Transparent Elastic Wound Dressing Gel Supporting Drug Release: Synergistic Effects of Poly(Vinyl Alcohol)/Chitosan Hybrid Matrix
by Lifei Chen, Ningning Yuan, Zhenjiang Tan, Jianwei Zhang, Lishi Zhang, Wenwei Tang, Cheng Chen and Donghai Lin
Gels 2025, 11(10), 771; https://doi.org/10.3390/gels11100771 - 25 Sep 2025
Viewed by 298
Abstract
Wound infection is one of the most critical factors affecting the healing process. Therefore, the development of wound dressings with excellent antibacterial effects has become a research hotspot in the current academic field. We prepared AgNPs (silver nanoparticles) via a redox method, combined [...] Read more.
Wound infection is one of the most critical factors affecting the healing process. Therefore, the development of wound dressings with excellent antibacterial effects has become a research hotspot in the current academic field. We prepared AgNPs (silver nanoparticles) via a redox method, combined them with Poly(vinyl alcohol)/chitosan (PVA/CS), and dried the mixture into a film to fabricate a silver-loaded hydrogel film dressing with excellent antibacterial properties. Uniaxial tensile tests on the samples revealed that the prepared film dressings exhibited good mechanical properties, preventing fracture caused by external forces. Protein adsorption experiments indicated their favorable protein adsorption performance, which can adsorb microorganisms on the external surface of the dressing. By leveraging the bactericidal mechanism of AgNPs, the dressing achieves efficient antibacterial effects. Additionally, the dressing prepared by this method features good transparency, facilitating routine observation of the wound area without removing the dressing and maintaining a sterile environment for an extended period. Finally, we verified the drug loading and drug release capabilities of the dressing, and found that it has good drug loading capacity and drug release effect. This preliminarily proves its effectiveness and provides more possibilities for subsequent research on composite drugs. This study provides new insights for exploring the clinical application of multifunctional silver-loaded wound dressings. Full article
(This article belongs to the Special Issue Designing Gels for Wound Dressing (2nd Edition))
Show Figures

Figure 1

24 pages, 7439 KB  
Article
Development of Intelligent and Active Gelatin-Based Packaging Film Incorporating Red Onion Anthocyanins and Encapsulated Citronella Oil
by Zhaolan Yan, Kun Wang, Bingbing Xia, Jintao Wu and Hongxu Chen
Foods 2025, 14(19), 3320; https://doi.org/10.3390/foods14193320 - 25 Sep 2025
Viewed by 475
Abstract
With rising living standards, consumer demand for fresher food continues to increase. Consequently, the development of multifunctional packaging materials that enable real-time freshness monitoring, delay spoilage, and ensure environmental sustainability has become a central research focus. The present study developed an antibacterial and [...] Read more.
With rising living standards, consumer demand for fresher food continues to increase. Consequently, the development of multifunctional packaging materials that enable real-time freshness monitoring, delay spoilage, and ensure environmental sustainability has become a central research focus. The present study developed an antibacterial and pH-responsive smart packaging film, formulated from a κ-carrageenan/gelatin (CG) matrix. This film incorporated anthocyanins extracted from red onion skin (ROSA) and citronella essential oil encapsulated in β-cyclodextrin (OBDs) as functional additives, herein referred to as the CGR/OBDs composite film. The composite films exhibited strong pH sensitivity, ammonia responsiveness, color stability, effective barrier properties, and notable antioxidant activity (96.4% ABTS and 79.3% DPPH radical scavenging rates). The sustained release of citronella essential oil over approximately 40 h conferred excellent antibacterial performance, with inhibition rates of 94.8% against Staphylococcus aureus (S. aureus) and 91.6% against Escherichia coli (E. coli). Application in shrimp preservation further demonstrated an extended shelf life and real-time freshness monitoring through distinct colorimetric shifts. The findings highlight the potential of CGR/OBDs films as visual indicators for food freshness in intelligent packaging, offering a promising strategy to enhance food safety and reduce waste. Full article
Show Figures

Graphical abstract

Back to TopTop