Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (7,148)

Search Parameters:
Keywords = external application

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3429 KB  
Article
Thermo-Responsive Wax Millicapsules as Lubricating Agents Carriers
by Tomasz Kubiak and Karol Ciesielski
Lubricants 2025, 13(10), 439; https://doi.org/10.3390/lubricants13100439 (registering DOI) - 5 Oct 2025
Abstract
Encapsulation of lubricating agents has many advantages, as it helps to protect them from external factors, oxidation and degradation, can support their controlled and prolonged release, and also preserves the environment from accidental contamination with these substances. In our experiments various types of [...] Read more.
Encapsulation of lubricating agents has many advantages, as it helps to protect them from external factors, oxidation and degradation, can support their controlled and prolonged release, and also preserves the environment from accidental contamination with these substances. In our experiments various types of thermo-responsive, paraffin wax capsules capable of safely transporting liquid and semi-solid lubricants were designed, fabricated and tested. Lubricating oils were primarily encapsulated inside hemispherical wax shells closed with special caps, but also in wax spherocylinders and two-compartment structures. Greases were protected with wax coatings with the thickness ranging from 0.187 to 0.774 mm. The payload release from our core–shell capsules occurred not only due to the exerted mechanical force but also in a controlled manner upon prolonged contact with a heated surface. The wax shells of the capsules lying on the plate, whose temperature was increased at a rate of 0.025°C/s, began to melt gradually, starting from ≈55.5 °C. This temperature-triggered lubricant liberation can be useful when, for example, a machine element becomes excessively hot due to friction. The wax itself also has lubricating properties, so the crushed or melted coating cannot be treated as waste, but only as an additional factor supporting lubrication. The practical applications of our wax capsules were demonstrated with five examples. Full article
Show Figures

Figure 1

26 pages, 39341 KB  
Article
Recognition of Wood-Boring Insect Creeping Signals Based on Residual Denoising Vision Network
by Henglong Lin, Huajie Xue, Jingru Gong, Cong Huang, Xi Qiao, Liping Yin and Yiqi Huang
Sensors 2025, 25(19), 6176; https://doi.org/10.3390/s25196176 (registering DOI) - 5 Oct 2025
Abstract
Currently, the customs inspection of wood-boring pests in timber still primarily relies on manual visual inspection, which involves observing insect holes on the timber surface and splitting the timber for confirmation. However, this method has significant drawbacks such as long detection time, high [...] Read more.
Currently, the customs inspection of wood-boring pests in timber still primarily relies on manual visual inspection, which involves observing insect holes on the timber surface and splitting the timber for confirmation. However, this method has significant drawbacks such as long detection time, high labor cost, and accuracy relying on human experience, making it difficult to meet the practical needs of efficient and intelligent customs quarantine. To address this issue, this paper develops a rapid identification system based on the peristaltic signals of wood-boring pests through the PyQt framework. The system employs a deep learning model with multi-attention mechanisms, namely the Residual Denoising Vision Network (RDVNet). Firstly, a LabVIEW-based hardware–software system is used to collect pest peristaltic signals in an environment free of vibration interference. Subsequently, the original signals are clipped, converted to audio format, and mixed with external noise. Then signal features are extracted through three cepstral feature extraction methods Mel-Frequency Cepstral Coefficients (MFCC), Power-Normalized Cepstral Coefficients (PNCC), and RelAtive SpecTrAl-Perceptual Linear Prediction (RASTA-PLP) and input into the model. In the experimental stage, this paper compares the denoising module of RDVNet (de-RDVNet) with four classic denoising models under five noise intensity conditions. Finally, it evaluates the performance of RDVNet and four other noise reduction classification models in classification tasks. The results show that PNCC has the most comprehensive feature extraction capability. When PNCC is used as the model input, de-RDVNet achieves an average peak signal-to-noise ratio (PSNR) of 29.8 and a Structural Similarity Index Measure (SSIM) of 0.820 in denoising experiments, both being the best among the comparative models. In classification experiments, RDVNet has an average F1 score of 0.878 and an accuracy of 92.8%, demonstrating the most excellent performance. Overall, the application of this system in customs timber quarantine can effectively improve detection efficiency and reduce labor costs and has significant practical value and promotion prospects. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

18 pages, 4299 KB  
Article
Unique Dielectric Protection for Microwave and Millimeter-Wave Antenna Applications
by Hafiz Usman Tahseen, Luca Francioso, Syed Shah Irfan Hussain and Luca Catarinucci
Telecom 2025, 6(4), 74; https://doi.org/10.3390/telecom6040074 (registering DOI) - 4 Oct 2025
Abstract
Dielectric covers are generally used to provide external protection to antenna systems by providing electromagnetic transparency. They are utilized in ground applications as well as for protecting airborne, Sat Com, terrestrial and underwater antenna installations. This paper presents a unique and universal design [...] Read more.
Dielectric covers are generally used to provide external protection to antenna systems by providing electromagnetic transparency. They are utilized in ground applications as well as for protecting airborne, Sat Com, terrestrial and underwater antenna installations. This paper presents a unique and universal design of dielectric sandwich-layered cover that can effectively protect antennas operating in a large frequency band from 1 GHz to 28 GHz, including millimeter-wave and microwave ranges, with minimum insertion loss for various incident angles. The proposed single dielectric cover may give sufficient protection for an entire tower or chimney housing multiple antennas, ranging from first-generation to fifth-generation microwave base-station antennas, as well as other wireless/broadcast antennas in millimeter or lower frequency ranges. In the first step, optimum dielectric constant and thickness of the dielectric cover are calculated numerically through a MATLAB (R2015a) code. In the second step, a floquet port analysis is performed to observe the insertion loss through the transmission coefficient against various frequency band-spectrums in microwave and millimeter-wave ranges for validation of the proposed synthesis. The ANSYS 18.2 HFSS tool is used for the purpose. In the third step, fabrication of the dielectric-layered structure is completed with the optimum design parameters. In the final step, the dielectric package is tested under various fabricated antennas in different frequency ranges. Full article
Show Figures

Figure 1

22 pages, 1904 KB  
Article
Performance and Uncertainty Analysis of Digital vs. Analog Pressure Scanners Under Static and Dynamic Conditions
by Roxana Nicolae, Constantin-Daniel Oancea, Rares Secareanu and Daniel Lale
Eng 2025, 6(10), 263; https://doi.org/10.3390/eng6100263 (registering DOI) - 4 Oct 2025
Abstract
Dynamic pressure measurement is an important component in the turbo engine testing process. This paper presents a comparative analysis between two types of multichannel electronic pressure measurement systems, commonly known as pressure scanners, used for this purpose: ZOC17/8Px, with analog amplification per channel, [...] Read more.
Dynamic pressure measurement is an important component in the turbo engine testing process. This paper presents a comparative analysis between two types of multichannel electronic pressure measurement systems, commonly known as pressure scanners, used for this purpose: ZOC17/8Px, with analog amplification per channel, and MPS4264, a modern digital system with integrated A/D conversion. The study was conducted in two stages: a metrological verification and validation in static mode, using a high-precision pressure standard, and an experimental stage in dynamic mode, where data was acquired from a turbojet engine test stand, in constant engine speed mode. The signal stability of the pressure scanners was statistically analyzed by determining the coefficient of variation in the signal and the frequency spectrum (FFT) for each channel of the pressure scanners. Furthermore, comprehensive uncertainty budgets were calculated for both systems. The results highlight the superior stability and reduced uncertainty of the MPS4264 pressure scanner, attributing its enhanced performance to digital integration and a higher resilience to external noise. The findings support the adoption of modern digital systems for dynamic applications and provide a robust metrological basis for the optimal selection of measurement systems. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
25 pages, 843 KB  
Article
Supply Chain Risk Management in the Hygiene and Personal Care Products Industry
by Ciro Rodrigues dos Santos, Ualison Rébula de Oliveira and Vicente Aprigliano
Systems 2025, 13(10), 871; https://doi.org/10.3390/systems13100871 (registering DOI) - 4 Oct 2025
Abstract
The Personal Care Products (PCP) industry, encompassing cosmetics, hygiene, and personal care items, serves millions of consumers daily and operates under constant pressure for innovation, agility, and sustainability. Within this context, supply chains are viewed as complex and integrated systems, composed of interrelated [...] Read more.
The Personal Care Products (PCP) industry, encompassing cosmetics, hygiene, and personal care items, serves millions of consumers daily and operates under constant pressure for innovation, agility, and sustainability. Within this context, supply chains are viewed as complex and integrated systems, composed of interrelated elements whose interactions determine overall performance and are influenced by external factors. Disruptions—particularly those involving indirect suppliers—can propagate throughout the network, affecting operations, reputation, and business outcomes. Despite the importance of the topic, empirical studies that systematically identify and prioritize these risks in the PCP sector remain scarce, which motivated the conduct of this study. Thus, the aim of this research is to identify, analyze, and evaluate the main supply risks faced by the PCP industry, considering severity, occurrence, and detection capability. Methodologically, the research employed an exploratory multi-case design, carried out in three steps: a literature review to identify key supply chain risks; structured interviews with industry experts to analyze and evaluate these risks; and the application of Gray Relational Analysis (GRA) to aggregate expert judgments and construct a prioritized risk ranking. This combination of qualitative and quantitative techniques provided a detailed foundation for analyzing and interpreting the main risks in the Brazilian PCP sector. The results indicate that indirect supplier failure is the most critical risk, prioritized by 70% of the companies studied. Other significant risks include the inability to meet changes in demand, import issues, lack of supply chain visibility, natural and social disasters, and sustainability or reputational concerns. Consequently, this study contributes to a systemic understanding of risk management in the PCP industry supply chain, providing managers with a practical mapping of critical points and highlighting concrete opportunities to strengthen integration, anticipate disruptions, and enhance operational resilience and performance across the sector. Full article
(This article belongs to the Special Issue Operation and Supply Chain Risk Management)
Show Figures

Figure 1

46 pages, 3204 KB  
Review
Recent Advances in Sliding Mode Control Techniques for Permanent Magnet Synchronous Motor Drives
by Tran Thanh Tuyen, Jian Yang, Liqing Liao and Nguyen Gia Minh Thao
Electronics 2025, 14(19), 3933; https://doi.org/10.3390/electronics14193933 - 3 Oct 2025
Abstract
As global industry enters the digital era, automation is becoming increasingly pervasive. Due to their superior efficiency and reliability, Permanent Magnet Synchronous Motors (PMSMs) are playing an increasingly prominent role in industrial applications. Sliding Mode Control (SMC) has emerged as a modern control [...] Read more.
As global industry enters the digital era, automation is becoming increasingly pervasive. Due to their superior efficiency and reliability, Permanent Magnet Synchronous Motors (PMSMs) are playing an increasingly prominent role in industrial applications. Sliding Mode Control (SMC) has emerged as a modern control strategy that is widely employed not only in PMSM drive systems, but also across broader power and industrial control domains. This technique effectively mitigates key challenges associated with PMSMs, such as nonlinear behavior and susceptibility to external disturbances, thereby enhancing the precision of speed and torque regulation. This paper provides a thorough review and evaluation of recent advancements in SMC as applied to PMSM control. It outlines the fundamentals of SMC, explores various SMC-based strategies, and introduces integrated approaches that combine SMC with optimization algorithms. Furthermore, it compares these methods, identifying their respective strengths and limitations. This paper concludes by discussing current trends and potential future developments in the application of SMC for PMSM systems. Full article
(This article belongs to the Special Issue Next-Generation Control Systems for Power Electronics in the AI Era)
11 pages, 2360 KB  
Article
Temperature Hysteresis Calibration Method of MEMS Accelerometer
by Hak Ju Kim and Hyoung Kyoon Jung
Sensors 2025, 25(19), 6131; https://doi.org/10.3390/s25196131 - 3 Oct 2025
Abstract
Micro-electromechanical system (MEMS) sensors are widely used in various navigation applications because of their cost-effectiveness, low power consumption, and compact size. However, their performance is often degraded by temperature hysteresis, which arises from internal temperature gradients. This paper presents a calibration method that [...] Read more.
Micro-electromechanical system (MEMS) sensors are widely used in various navigation applications because of their cost-effectiveness, low power consumption, and compact size. However, their performance is often degraded by temperature hysteresis, which arises from internal temperature gradients. This paper presents a calibration method that corrects temperature hysteresis without requiring any additional hardware or modifications to the existing MEMS sensor design. By analyzing the correlation between the external temperature change rate and hysteresis errors, a mathematical calibration model is derived. The method is experimentally validated on MEMS accelerometers, with results showing an up to 63% reduction in hysteresis errors. We further evaluate bias repeatability, scale factor repeatability, nonlinearity, and Allan variance to assess the broader impacts of the calibration. Although minor trade-offs in noise characteristics are observed, the overall hysteresis performance is substantially improved. The proposed approach offers a practical and efficient solution for enhancing MEMS sensor accuracy in dynamic thermal environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

24 pages, 1024 KB  
Review
Artificial Intelligence in Glioma Diagnosis: A Narrative Review of Radiomics and Deep Learning for Tumor Classification and Molecular Profiling Across Positron Emission Tomography and Magnetic Resonance Imaging
by Rafail C. Christodoulou, Rafael Pitsillos, Platon S. Papageorgiou, Vasileia Petrou, Georgios Vamvouras, Ludwing Rivera, Sokratis G. Papageorgiou, Elena E. Solomou and Michalis F. Georgiou
Eng 2025, 6(10), 262; https://doi.org/10.3390/eng6100262 - 3 Oct 2025
Abstract
Background: This narrative review summarizes recent progress in artificial intelligence (AI), especially radiomics and deep learning, for non-invasive diagnosis and molecular profiling of gliomas. Methodology: A thorough literature search was conducted on PubMed, Scopus, and Embase for studies published from January [...] Read more.
Background: This narrative review summarizes recent progress in artificial intelligence (AI), especially radiomics and deep learning, for non-invasive diagnosis and molecular profiling of gliomas. Methodology: A thorough literature search was conducted on PubMed, Scopus, and Embase for studies published from January 2020 to July 2025, focusing on clinical and technical research. In key areas, these studies examine AI models’ predictive capabilities with multi-parametric Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET). Results: The domains identified in the literature include the advancement of radiomic models for tumor grading and biomarker prediction, such as Isocitrate Dehydrogenase (IDH) mutation, O6-methylguanine-dna methyltransferase (MGMT) promoter methylation, and 1p/19q codeletion. The growing use of convolutional neural networks (CNNs) and generative adversarial networks (GANs) in tumor segmentation, classification, and prognosis was also a significant topic discussed in the literature. Deep learning (DL) methods are evaluated against traditional radiomics regarding feature extraction, scalability, and robustness to imaging protocol differences across institutions. Conclusions: This review analyzes emerging efforts to combine clinical, imaging, and histology data within hybrid or transformer-based AI systems to enhance diagnostic accuracy. Significant findings include the application of DL to predict cyclin-dependent kinase inhibitor 2A/B (CDKN2A/B) deletion and chemokine CCL2 expression. These highlight the expanding capabilities of imaging-based genomic inference and the importance of clinical data in multimodal fusion. Challenges such as data harmonization, model interpretability, and external validation still need to be addressed. Full article
Show Figures

Figure 1

13 pages, 265 KB  
Article
Effect of Speed Threshold Approaches for Evaluation of External Load in Male Basketball Players
by Abel Ruiz-Álvarez, Anthony S. Leicht, Alejandro Vaquera and Miguel-Ángel Gómez-Ruano
Sensors 2025, 25(19), 6085; https://doi.org/10.3390/s25196085 - 2 Oct 2025
Abstract
Arbitrary zones are commonly used to describe and monitor external load (EL) during training and competitions. However, in recent years, relative speed zones have gained interest as they allow a more detailed description of the demands of each individual player, with their benefits [...] Read more.
Arbitrary zones are commonly used to describe and monitor external load (EL) during training and competitions. However, in recent years, relative speed zones have gained interest as they allow a more detailed description of the demands of each individual player, with their benefits largely unknown. This study aimed to (i) identify differences in EL methodological approaches using arbitrary and relative running speed zones; (ii) examine the effect of the methodological approaches to identify fast and slow basketball players during competition and training; and (iii) determine the effect of the season stage on the methodological approaches. Twelve players from a Spanish fourth-division basketball team were observed for a full season of matches and training using inertial devices with ultra-wideband indoor tracking technology and micro-sensors. Relative velocity zones were based on the maximum velocity achieved during each match quarter and were retrospectively recalculated into four zones. A linear mixed model (LMM) compared fast and slow players based on speed profiles between arbitrary and relative thresholds and during each competition stage. All players surpassed peak speeds of 24 km·h−1 during the season, exceeding typical values reported in elite basketball (20–24.5 km·h−1). Arbitrary thresholds produced greater distances in high-speed running (Zones 3 and 4) and yielded lower values in low-speed activity (Zone 1), with differences of ~100 m and ~120–250 m, respectively (p < 0.001), particularly for fast-profile players. These discrepancies were consistent across most stages of the season, although relative zones better captured variations in Zone 1 across time. Training sessions also elicited +8.7% to +40.7% greater distances > 18 km·h−1 compared to matches. The speed zone methodology substantially influenced EL estimates and affected how player EL was interpreted across time. Arbitrary and relative approaches offer unique applications, with coaches and sport scientists encouraged to be aware that using a one-size-fits-all approach may lead to misrepresentation of individual player demands, especially when tracking changes in performance or managing fatigue throughout a competitive season. Full article
(This article belongs to the Special Issue Sensor Technologies in Sports and Exercise)
14 pages, 879 KB  
Article
Predicting Factors Associated with Extended Hospital Stay After Postoperative ICU Admission in Hip Fracture Patients Using Statistical and Machine Learning Methods: A Retrospective Single-Center Study
by Volkan Alparslan, Sibel Balcı, Ayetullah Gök, Can Aksu, Burak İnner, Sevim Cesur, Hadi Ufuk Yörükoğlu, Berkay Balcı, Pınar Kartal Köse, Veysel Emre Çelik, Serdar Demiröz and Alparslan Kuş
Healthcare 2025, 13(19), 2507; https://doi.org/10.3390/healthcare13192507 - 2 Oct 2025
Abstract
Background: Hip fractures are common in the elderly and often require ICU admission post-surgery due to high ASA scores and comorbidities. Length of hospital stay after ICU is a crucial indicator affecting patient recovery, complication rates, and healthcare costs. This study aimed to [...] Read more.
Background: Hip fractures are common in the elderly and often require ICU admission post-surgery due to high ASA scores and comorbidities. Length of hospital stay after ICU is a crucial indicator affecting patient recovery, complication rates, and healthcare costs. This study aimed to develop and validate a machine learning-based model to predict the factors associated with extended hospital stay (>7 days from surgery to discharge) in hip fracture patients requiring postoperative ICU care. The findings could help clinicians optimize ICU bed utilization and improve patient management strategies. Methods: In this retrospective single-centre cohort study conducted in a tertiary ICU in Turkey (2017–2024), 366 ICU-admitted hip fracture patients were analysed. Conventional statistical analyses were performed using SPSS 29, including Mann–Whitney U and chi-squared tests. To identify independent predictors associated with extended hospital stay, Least Absolute Shrinkage and Selection Operator (LASSO) regression was applied for variable selection, followed by multivariate binary logistic regression analysis. In addition, machine learning models (binary logistic regression, random forest (RF), extreme gradient boosting (XGBoost) and decision tree (DT)) were trained to predict the likelihood of extended hospital stay, defined as the total number of days from the date of surgery until hospital discharge, including both ICU and subsequent ward stay. Model performance was evaluated using AUROC, F1 score, accuracy, precision, recall, and Brier score. SHAP (SHapley Additive exPlanations) values were used to interpret feature contributions in the XGBoost model. Results: The XGBoost model showed the best performance, except for precision. The XGBoost model gave an AUROC of 0.80, precision of 0.67, recall of 0.92, F1 score of 0.78, accuracy of 0.71 and Brier score of 0.18. According to SHAP analysis, time from fracture to surgery, hypoalbuminaemia and ASA score were the variables that most affected the length of stay of hospitalisation. Conclusions: The developed machine learning model successfully classified hip fracture patients into short and extended hospital stay groups following postoperative intensive care. This classification model has the potential to aid in patient flow management, resource allocation, and clinical decision support. External validation will further strengthen its applicability across different settings. Full article
Show Figures

Figure 1

37 pages, 2156 KB  
Review
Experimental Fish Models in the Post-Genomic Era: Tools for Multidisciplinary Science
by Camila Carlino-Costa and Marco Antonio de Andrade Belo
J 2025, 8(4), 39; https://doi.org/10.3390/j8040039 - 2 Oct 2025
Abstract
Fish have become increasingly prominent as experimental models due to their unique capacity to bridge basic biological research with translational applications across diverse scientific disciplines. Their biological traits, such as external fertilization, high fecundity, rapid embryonic development, and optical transparency, facilitate in vivo [...] Read more.
Fish have become increasingly prominent as experimental models due to their unique capacity to bridge basic biological research with translational applications across diverse scientific disciplines. Their biological traits, such as external fertilization, high fecundity, rapid embryonic development, and optical transparency, facilitate in vivo experimentation and real-time observation, making them ideal for integrative research. Species like zebrafish (Danio rerio) and medaka (Oryzias latipes) have been extensively validated in genetics, toxicology, neuroscience, immunology, and pharmacology, offering robust platforms for modeling human diseases, screening therapeutic compounds, and evaluating environmental risks. This review explores the multidisciplinary utility of fish models, emphasizing their role in connecting molecular mechanisms to clinical and environmental outcomes. We address the main species used, highlight their methodological advantages, and discuss the regulatory and ethical frameworks guiding their use. Additionally, we examine current limitations and future directions, particularly the incorporation of high-throughput omics approaches and real-time imaging technologies. The growing scientific relevance of fish models reinforces their strategic value in advancing cross-disciplinary knowledge and fostering innovation in translational science. Full article
(This article belongs to the Special Issue Feature Papers of J—Multidisciplinary Scientific Journal in 2025)
Show Figures

Figure 1

12 pages, 2720 KB  
Article
Dual-Frequency Soliton Generation of a Fiber Laser with a Dual-Branch Cavity
by Xinbo Mo and Xinhai Zhang
Photonics 2025, 12(10), 981; https://doi.org/10.3390/photonics12100981 - 2 Oct 2025
Abstract
We report the simultaneous generation of conventional solitons (CSs) and dissipative solitons (DSs) in an erbium-doped mode-locked fiber laser with a dual-branch cavity configuration based on the nonlinear polarization rotation (NPR) technique. By incorporating fibers with different dispersion properties in two propagation branches, [...] Read more.
We report the simultaneous generation of conventional solitons (CSs) and dissipative solitons (DSs) in an erbium-doped mode-locked fiber laser with a dual-branch cavity configuration based on the nonlinear polarization rotation (NPR) technique. By incorporating fibers with different dispersion properties in two propagation branches, the laser can establish simultaneous operation in the normal and anomalous dispersion regimes within the respective loops, enabling the generation of two distinct soliton types. The CSs exhibit a 3 dB spectral bandwidth of 9.7750 nm and a pulse duration of 273 fs, while the DSs have a quasi-rectangular spectrum spanning 18.7074 nm and a pulse duration of 2.2 ps, which can be externally compressed to 384 fs. The fundamental repetition rate is approximately 21 MHz, with a repetition rate difference of 216 Hz for the two pulse trains. Stable second-order, third-order, and fourth-order harmonic mode-locking (HML) can be achieved through optimization of pump power and intracavity polarization states. The laser we build in this work has significant potential for applications in high-precision spectroscopy and asynchronous optical sampling. Full article
Show Figures

Figure 1

20 pages, 3124 KB  
Article
Research and Application of Assembled SC Coal Gangue External Wallboard
by Yajie Yan, Jisen Yang, Jinhui Wu, Le Yang, Qiang Zhao and Peipeng Wang
Buildings 2025, 15(19), 3545; https://doi.org/10.3390/buildings15193545 - 2 Oct 2025
Abstract
Given that the stock of coal gangue is increasing annually, and especially considering the problem of resource utilization after the spontaneous combustion of coal gangue accumulations with large thickness, the post-spontaneous combustion of coal gangue (SC coal gangue) from Yangquan, Shanxi, was selected [...] Read more.
Given that the stock of coal gangue is increasing annually, and especially considering the problem of resource utilization after the spontaneous combustion of coal gangue accumulations with large thickness, the post-spontaneous combustion of coal gangue (SC coal gangue) from Yangquan, Shanxi, was selected as a research object. After crushing and screening, SC coal gangue was used as a coarse and fine aggregate, and through concrete mix design and a trial mix of concrete and mix ratio adjustment, concrete of strength grade C20 was obtained. Through experiments, the strength, elastic modulus, frost resistance, carbonation depth and other performance indicators of the concrete were measured. Using the SC coal gangue concrete, a 20 mm thick SC coal gangue panel was designed and manufactured. Through experimental tests, the bearing capacity, hanging force, impact resistance, impermeability and other properties of the board met the requirements of the relevant standards for building wallboard. For the SC coal gangue panel composite rock wool, its heat transfer coefficient decreased by 34.0%, air sound insulation was 45 dB, and the self-weight of the external wallboard was reduced by 37.5%, so the related performance was better than the requirements of the current standard. The research results have been successfully applied to an office building project in Shanxi, China. Using SC coal gangue to make the external wallboard of the building, the reduction and recycling of solid waste are realized. In addition, the production of wall panels has been industrialized, thereby improving the construction efficiency. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 6175 KB  
Article
Integrated Terahertz FMCW Radar and FSK Communication Enabled by High-Speed Wavelength Tunable Lasers
by Ryota Kaide, Shenghong Ye, Yiqing Wang, Yuya Mikami, Yuta Ueda and Kazutoshi Kato
Photonics 2025, 12(10), 977; https://doi.org/10.3390/photonics12100977 - 1 Oct 2025
Abstract
In future 6G systems, integrated sensing and communication (ISAC) in the terahertz (THz) band are emerging as a key technology. Photomixing-based approaches offer advantages for the generation and control of THz waves due to their wide bandwidth and frequency tunability. This paper proposes [...] Read more.
In future 6G systems, integrated sensing and communication (ISAC) in the terahertz (THz) band are emerging as a key technology. Photomixing-based approaches offer advantages for the generation and control of THz waves due to their wide bandwidth and frequency tunability. This paper proposes and experimentally demonstrates a THz-band ISAC system that employs high-speed wavelength tunable lasers. Leveraging the rapid wavelength tunability of the laser, the system simultaneously generates a frequency-modulated continuous-wave (FMCW) radar signal and a frequency-shift keying (FSK) communication signal. Experimental results show successful ranging with a centimeter-level distance measurement error using a 7.9 GHz sweep-bandwidth THz-FMCW signal. The system achieves a short repetition period of 800 ns, significantly enhancing real-time performance in dynamic environments. Moreover, 2FSK communication at 2 Gbit/s was demonstrated without the use of an external modulator, achieving a BER below the HD-FEC threshold. These results confirm that radar and communication functionalities can be integrated into a single transmitter. The proposed system contributes to reducing system complexity and cost and offers a promising solution for 6G applications. Full article
(This article belongs to the Special Issue Recent Advancements in Tunable Laser Technology)
Show Figures

Figure 1

25 pages, 1507 KB  
Review
Biochemical Programming of the Fungal Cell Wall: A Synthetic Biology Blueprint for Advanced Mycelium-Based Materials
by Víctor Coca-Ruiz
BioChem 2025, 5(4), 33; https://doi.org/10.3390/biochem5040033 - 1 Oct 2025
Abstract
The global transition to a circular bioeconomy is accelerating the demand for sustainable, high-performance materials. Filamentous fungi represent a promising solution, as they function as living foundries that transform low-value biomass into advanced, self-assembling materials. While mycelium-based composites have proven potential, progress has [...] Read more.
The global transition to a circular bioeconomy is accelerating the demand for sustainable, high-performance materials. Filamentous fungi represent a promising solution, as they function as living foundries that transform low-value biomass into advanced, self-assembling materials. While mycelium-based composites have proven potential, progress has been predominantly driven by empirical screening of fungal species and substrates. To unlock their full potential, a paradigm shift from empirical screening to rational design is required. This review introduces a conceptual framework centered on the biochemical programming of the fungal cell wall. Viewed through a materials science lens, the cell wall is a dynamic, hierarchical nanocomposite whose properties can be deliberately tuned. We analyze the contributions of its principal components—the chitin–glucan structural scaffold, the glycoprotein functional matrix, and surface-active hydrophobins—to the bulk characteristics of mycelium-derived materials. We then identify biochemical levers for controlling these properties. External factors such as substrate composition and environmental cues (e.g., pH) modulate cell wall architecture through conserved signaling pathways. Complementing these, an internal synthetic biology toolkit enables direct genetic and chemical intervention. Strategies include targeted engineering of biosynthetic and regulatory genes (e.g., CHS, AGS, GCN5), chemical genetics to dynamically adjust synthesis during growth, and modification of surface chemistry for specialized applications like tissue engineering. By integrating fungal cell wall biochemistry, materials science, and synthetic biology, this framework moves the field from incidental discovery toward the intentional creation of smart, functional, and sustainable mycelium-based materials—aligning material innovation with the imperatives of the circular bioeconomy. Full article
Show Figures

Figure 1

Back to TopTop