Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (783)

Search Parameters:
Keywords = external stimulations

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3742 KB  
Article
Ovary Activation Dynamics in the Bean Weevil Zabrotes subfasciatus (Bruchinae): The Essential Roles of Seeds and Males
by Sílvia de Oliveira Miranda, Bruno de Oliveira Cruz, Juliana Ramos Martins, Talita Sarah Mazzoni, Waner de Oliveira Miranda, Lívia Maria Rosatto Moda, Ester Siqueira Caixeta, Isabel Ribeiro do Valle Teixeira and Angel Roberto Barchuk
Insects 2025, 16(9), 894; https://doi.org/10.3390/insects16090894 - 27 Aug 2025
Abstract
Phytophagous beetles, particularly those within the superfamilies Chrysomeloidea and Curculionoidea, constitute one of the most diverse and ecologically significant groups of insect herbivores. Within this group, the subfamily Bruchinae is especially notable for its close association with leguminous plant seeds. As most Bruchinae [...] Read more.
Phytophagous beetles, particularly those within the superfamilies Chrysomeloidea and Curculionoidea, constitute one of the most diverse and ecologically significant groups of insect herbivores. Within this group, the subfamily Bruchinae is especially notable for its close association with leguminous plant seeds. As most Bruchinae species do not feed during the adult stage, the timing and regulation of vitellogenesis remain unclear. Previous studies suggest that vitellogenesis may be triggered by volatile organic compounds emitted by host seeds, which promote juvenile hormone (JH) synthesis. This increase in JH is hypothesized to stimulate vitellogenesis, enhance female attractiveness, and ultimately facilitate fertilization and oviposition. To explore this hypothesis, we investigated the external cues regulating reproductive physiology in the capital breeder Zabrotes subfasciatus. Specifically, we examined the effects of host seeds and male presence on oviposition dynamics, fecundity, ovary activation, and the expression of vitellogenic genes (vg and vgR) throughout adult life. Our results show that females initiate vitellogenesis during the final phases of adult development, enabling oviposition to begin as early as the first day after emergence. Oviposition remains at basal levels throughout adult life unless both host seeds and males are present (p < 0.0001). This oviposition pattern is consistent with ovary activation dynamics, which reveal that vitellogenesis peaks early in the oviposition period and is prolonged by the presence of seeds and males (p < 0.05). Notably, vg and vgR gene expression respond differentially to these cues (p < 0.05). We integrate our findings with previous literature to propose a working model for the regulation of oviposition in the Bruchinae beetle Z. subfasciatus. Full article
(This article belongs to the Special Issue Advances in Chemical Ecology of Plant–Insect Interactions)
Show Figures

Graphical abstract

14 pages, 997 KB  
Article
Differential Performance of Children and Adults in a Vision-Deprived Maze Spatial Navigation Task and Exploration of the Impact of tDCS over the Right Posterior Parietal Cortex on Performance in Adults
by G. Nathzidy Rivera-Urbina, Noah M. Kemp, Michael A. Nitsche and Andrés Molero-Chamizo
Life 2025, 15(8), 1323; https://doi.org/10.3390/life15081323 - 20 Aug 2025
Viewed by 553
Abstract
Spatial navigation involves the use of external (allocentric) and internal (egocentric) processing. These processes interact differentially depending on age. In order to explore the effectiveness of these interactions in different age groups (study 1), we compared the performance of children and adults in [...] Read more.
Spatial navigation involves the use of external (allocentric) and internal (egocentric) processing. These processes interact differentially depending on age. In order to explore the effectiveness of these interactions in different age groups (study 1), we compared the performance of children and adults in a two-session spatial maze task. This task was performed under deprived vision, thus preventing visual cues critical for allocentric processing. Number of correct performances and performance time were recorded as outcome measures. We recruited thirty healthy participants for the children (mean age 10.97 ± 0.55) and the adult (mean age 21.16 ± 1.76) groups, respectively. The results revealed a significantly higher number of correct actions and shorter performance times during maze solving in children compared to adults. These differences between children and adults might be due to developmental and cortical reorganization factors influencing egocentric processing. Assuming that activation of the posterior parietal cortex (PPC) facilitates egocentric spatial processing, we applied excitatory anodal tDCS over the right PPC in a second study with a different healthy adult group (N = 30, mean age 21.23 ± 2.01). Using the same spatial navigation task as in study 1, we evaluated possible performance improvements in adults associated with this neuromodulation method. Compared to a sham stimulation group, anodal tDCS over the right PPC did not significantly improve spatial task performance. Full article
(This article belongs to the Section Physiology and Pathology)
Show Figures

Figure 1

17 pages, 840 KB  
Case Report
Integration of External Vagus Nerve Stimulation in the Physiotherapeutic Management of Chronic Cervicogenic Headache: A Case Report
by Rob Sillevis, Nicola Khalaf, Valerie Weiss and Eleuterio A. Sanchez Romero
Healthcare 2025, 13(16), 2030; https://doi.org/10.3390/healthcare13162030 - 17 Aug 2025
Viewed by 449
Abstract
Background: Cervicogenic headache (CGH) is a prevalent secondary headache disorder associated with upper cervical spine dysfunction, often involving nociceptive convergence at the trigeminocervical complex. While manual therapy and exercise have demonstrated benefit, autonomic dysregulation may contribute to persistent symptoms. This case report explores [...] Read more.
Background: Cervicogenic headache (CGH) is a prevalent secondary headache disorder associated with upper cervical spine dysfunction, often involving nociceptive convergence at the trigeminocervical complex. While manual therapy and exercise have demonstrated benefit, autonomic dysregulation may contribute to persistent symptoms. This case report explores the integration of external vagus nerve stimulation (eVNS) into a multimodal physical therapy approach targeting both mechanical and neurophysiological contributors to CGH. Case Description: A 63-year-old female presented with chronic CGH characterized by right-sided suboccipital and supraorbital pain, impaired sleep, and postural dysfunction. Examination revealed a right rotational atlas positional fault, restricted left atlantoaxial (AA) mobility, suboccipital hypertonicity, and reduced deep neck flexor endurance. Initial treatment emphasized manual therapy to restore AA mobility and atlas symmetry, combined with postural correction and neuromuscular training. Intervention: After initial symptom improvement plateaued, eVNS targeting the auricular branch of the vagus nerve was introduced to modulate autonomic tone. The patient used a handheld eVNS device nightly over three weeks. Outcomes: Substantial improvements were observed in the Neck Disability Index (↓77%), Headache Disability Inventory (↓72%), and pain scores (↓100%). Cervical mobility, atlas symmetry, and deep neck flexor endurance improved markedly. The patient reported reduced anxiety, improved sleep, and sustained headache relief at one-month follow-up. Conclusions: This case highlights the potential synergistic benefits of integrating eVNS within a physiotherapy-led CGH management plan. Further research is warranted to explore its role in targeting autonomic imbalance and enhancing conservative treatment outcomes. Full article
Show Figures

Figure 1

30 pages, 8331 KB  
Article
Fracture Complexity and Mineral Damage in Shale Hydraulic Fracturing Based on Microscale Fractal Analysis
by Xin Liu, Jiaqi Zhang, Tianjiao Li, Zhengzhao Liang, Siwei Meng, Licai Zheng and Na Wu
Fractal Fract. 2025, 9(8), 535; https://doi.org/10.3390/fractalfract9080535 - 15 Aug 2025
Viewed by 312
Abstract
The geological structural complexity and microscale heterogeneity of shale reservoirs, characterized by the brittleness index and natural fracture density, exert a decisive effect on hydraulic fracturing’s effectiveness. However, the mechanisms underlying the true microscale heterogeneity of shale structures, which is neglected in conventional [...] Read more.
The geological structural complexity and microscale heterogeneity of shale reservoirs, characterized by the brittleness index and natural fracture density, exert a decisive effect on hydraulic fracturing’s effectiveness. However, the mechanisms underlying the true microscale heterogeneity of shale structures, which is neglected in conventional models and influences fracture evolution, remain unclear. Here, high-resolution scanning electron microscopy (SEM) was employed to obtain realistic distributions of mineral components and natural fractures, and hydraulic–mechanical coupled simulation models were developed within the Realistic Failure Process Analysis (RFPA) simulator using digital rock techniques. The analysis examined how the brittleness index and natural fracture density affect the fracture morphology’s complexity, mineral failure behavior, and flow conductivity. Numerical simulations show that the main fractures preferentially propagate toward areas with high local brittleness and dense natural fractures. Both the fracture’s fractal dimension and the stimulated reservoir volume increased with the brittleness index. A moderate natural fracture density promotes the fracture network’s complexity, whereas excessive densities may suppress the main fracture’s propagation. Microscopically, organic matter and silicate minerals are more prone to damage, predominantly tensile failures under external loading. These findings highlight the dominant role of microscale heterogeneity in shale fracturing and provide theoretical support for fracture control and stimulation optimization in complex reservoirs. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

46 pages, 1676 KB  
Review
Neural–Computer Interfaces: Theory, Practice, Perspectives
by Ignat Dubynin, Maxim Zemlyanskov, Irina Shalayeva, Oleg Gorskii, Vladimir Grinevich and Pavel Musienko
Appl. Sci. 2025, 15(16), 8900; https://doi.org/10.3390/app15168900 - 12 Aug 2025
Viewed by 744
Abstract
This review outlines the technological principles of neural–computer interface (NCI) construction, classifying them according to: (1) the degree of intervention (invasive, semi-invasive, and non-invasive); (2) the direction of signal communication, including BCI (brain–computer interface) for converting neural activity into commands for external devices, [...] Read more.
This review outlines the technological principles of neural–computer interface (NCI) construction, classifying them according to: (1) the degree of intervention (invasive, semi-invasive, and non-invasive); (2) the direction of signal communication, including BCI (brain–computer interface) for converting neural activity into commands for external devices, CBI (computer–brain interface) for translating artificial signals into stimuli for the CNS, and BBI (brain–brain interface) for direct brain-to-brain interaction systems that account for agency; and (3) the mode of user interaction with technology (active, reactive, passive). For each NCI type, we detail the fundamental data processing principles, covering signal registration, digitization, preprocessing, classification, encoding, command execution, and stimulation, alongside engineering implementations ranging from EEG/MEG to intracortical implants and from transcranial magnetic stimulation (TMS) to intracortical microstimulation (ICMS). We also review mathematical modeling methods for NCIs, focusing on optimizing the extraction of informative features from neural signals—decoding for BCI and encoding for CBI—followed by a discussion of quasi-real-time operation and the use of DSP and neuromorphic chips. Quantitative metrics and rehabilitation measures for evaluating NCI system effectiveness are considered. Finally, we highlight promising future research directions, such as the development of electrochemical interfaces, biomimetic hierarchical systems, and energy-efficient technologies capable of expanding brain functionality. Full article
(This article belongs to the Special Issue Brain-Computer Interfaces: Development, Applications, and Challenges)
Show Figures

Figure 1

14 pages, 1127 KB  
Article
A Quantitative Structure–Activity Relationship Study of the Anabolic Activity of Ecdysteroids
by Durbek Usmanov, Ugiloy Yusupova, Vladimir Syrov, Gerardo M. Casanola-Martin and Bakhtiyor Rasulev
Computation 2025, 13(8), 195; https://doi.org/10.3390/computation13080195 - 10 Aug 2025
Viewed by 411
Abstract
Phytoecdysteroids represent a class of naturally occurring substances known for their diverse biological functions, particularly their strong ability to stimulate protein anabolism. In this study, a computational machine learning-driven quantitative structure–activity relationship (QSAR) approach was applied to analyze the anabolic potential of 23 [...] Read more.
Phytoecdysteroids represent a class of naturally occurring substances known for their diverse biological functions, particularly their strong ability to stimulate protein anabolism. In this study, a computational machine learning-driven quantitative structure–activity relationship (QSAR) approach was applied to analyze the anabolic potential of 23 ecdysteroid compounds. The ML-based QSAR modeling was conducted using a combined approach that integrates Genetic Algorithm-based feature selection with Multiple Linear Regression Analysis (GA-MLRA). Additionally, structure optimization by semi-empirical quantum-chemical method was employed to determine the most stable molecular conformations and to calculate an additional set of structural and electronic descriptors. The most effective QSAR models for describing the anabolic activity of the investigated ecdysteroids were developed and validated. The proposed best model demonstrates both strong statistical relevance and high predictive performance. The predictive performance of the resulting models was confirmed by an external test set based on R2test values, which were within the range of 0.89 to 0.97. Full article
(This article belongs to the Special Issue Feature Papers in Computational Chemistry)
Show Figures

Figure 1

14 pages, 2143 KB  
Article
Effects of NMES-Guided Scapular Retraction Exercise Program in Amateur Female Handball Players with Scapular Dyskinesis Without Shoulder Pain: A Randomized Controlled Clinical Trial
by Luis Espejo-Antúnez, Javier Gutiérrez-Coronado, Carlos Fernández-Morales, Manuel Albornoz-Cabello, Luis Fernando Prato and María de los Ángeles Cardero-Durán
J. Clin. Med. 2025, 14(15), 5567; https://doi.org/10.3390/jcm14155567 - 7 Aug 2025
Viewed by 463
Abstract
Objective: This study aimed to evaluate the effect of simultaneously combining therapeutic scapular retraction exercise with and without Neuromuscular Electrical Stimulation (NMES) in amateur female handball players with scapular dyskinesis. Methods: In a randomized, single-blind, controlled trial, the sample (n = 34) was [...] Read more.
Objective: This study aimed to evaluate the effect of simultaneously combining therapeutic scapular retraction exercise with and without Neuromuscular Electrical Stimulation (NMES) in amateur female handball players with scapular dyskinesis. Methods: In a randomized, single-blind, controlled trial, the sample (n = 34) was randomized into two groups (Group 1 (n = 17) and Group 2 (n = 17)). The intervention consisted of applying a supervised scapular retraction exercise (SRE) program alone or combined with NMES for 4 weeks (2 ss/week). Scapular Static Positioning Assessment parameters (upper and lower horizontal distance of the scapula from the spine (mm)), internal rotation range of motion (degrees), and external rotation strength (newtons and BW%) were measured. Results: A significant interaction was found to favor the group that received the supervised SRE program + NMES (Group 1) in upper horizontal distance (F1,30 = 30.93 [p < 0.000]; d = 0.65); lower horizontal distance (F1,30 = 12.79 [p = 0.001]; d = 0.72); ER Strength (N) (F1,30 = 19.58 [p < 0.000] d = 0.71); and ER Strength (BW%) (F1,30 = 16.84 [p < 0.000]) d = 0.69), which was statistically significant (p ≤ 0.001 for p < 0.05). In the analysis for treatment benefit, the number needed to treat (NNT) was 2 for upper scapular positioning and 4 for external rotation strength. Conclusions: NMES improves the Scapular Static Positioning and ER Strength when combined with an SRE program in amateur female handball players diagnosed with scapular dyskinesis, with clinically relevant effects. These findings, while promising, are based on a small sample and should be confirmed in larger studies. Full article
Show Figures

Figure 1

23 pages, 658 KB  
Article
Green Innovation Quality in Center Cities and Economic Growth in Peripheral Cities: Evidence from the Yangtze River Delta Urban Agglomeration
by Sijie Duan, Hao Chen and Jie Han
Systems 2025, 13(8), 642; https://doi.org/10.3390/systems13080642 - 1 Aug 2025
Viewed by 399
Abstract
Improving the green innovation quality (GIQ) of center cities is crucial to achieve sustainable urban agglomeration development. Utilizing data on green patent citations and economic indicators across cities in the Yangtze River Delta urban agglomeration (YRD) from 2003 to 2022, this research examines [...] Read more.
Improving the green innovation quality (GIQ) of center cities is crucial to achieve sustainable urban agglomeration development. Utilizing data on green patent citations and economic indicators across cities in the Yangtze River Delta urban agglomeration (YRD) from 2003 to 2022, this research examines the influence of center cities’ GIQ on the economic performance of peripheral municipalities. The results show the following: (1) Center cities’ GIQ exerts a significant suppressive effect on peripheral cities’ economic growth overall. Heterogeneity analysis uncovers a distance-dependent duality. GIQ stimulates growth in proximate cities (within 300 km) but suppresses it beyond this threshold. This spatial siphoning effect is notably amplified in national-level center cities. (2) Mechanisms suggest that GIQ accelerates the outflow of skilled labor in peripheral cities through factor agglomeration and industry transfer mechanisms. Concurrently, it impedes the gradient diffusion of urban services, collectively hindering peripheral development. (3) Increased government green attention (GGA) and industry–university–research cooperation (IURC) in centers can mitigate these negative impacts. This paper contributes to the theoretical discourse on center cities’ spatial externalities within agglomerations and offers empirical support and policy insights for the exertion of spillover effects of high-quality green innovation from center cities and the sustainable development of urban agglomeration. Full article
(This article belongs to the Section Systems Practice in Social Science)
Show Figures

Figure 1

24 pages, 624 KB  
Review
Integrating Artificial Intelligence into Perinatal Care Pathways: A Scoping Review of Reviews of Applications, Outcomes, and Equity
by Rabie Adel El Arab, Omayma Abdulaziz Al Moosa, Zahraa Albahrani, Israa Alkhalil, Joel Somerville and Fuad Abuadas
Nurs. Rep. 2025, 15(8), 281; https://doi.org/10.3390/nursrep15080281 - 31 Jul 2025
Viewed by 552
Abstract
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping [...] Read more.
Background: Artificial intelligence (AI) and machine learning (ML) have been reshaping maternal, fetal, neonatal, and reproductive healthcare by enhancing risk prediction, diagnostic accuracy, and operational efficiency across the perinatal continuum. However, no comprehensive synthesis has yet been published. Objective: To conduct a scoping review of reviews of AI/ML applications spanning reproductive, prenatal, postpartum, neonatal, and early child-development care. Methods: We searched PubMed, Embase, the Cochrane Library, Web of Science, and Scopus through April 2025. Two reviewers independently screened records, extracted data, and assessed methodological quality using AMSTAR 2 for systematic reviews, ROBIS for bias assessment, SANRA for narrative reviews, and JBI guidance for scoping reviews. Results: Thirty-nine reviews met our inclusion criteria. In preconception and fertility treatment, convolutional neural network-based platforms can identify viable embryos and key sperm parameters with over 90 percent accuracy, and machine-learning models can personalize follicle-stimulating hormone regimens to boost mature oocyte yield while reducing overall medication use. Digital sexual-health chatbots have enhanced patient education, pre-exposure prophylaxis adherence, and safer sexual behaviors, although data-privacy safeguards and bias mitigation remain priorities. During pregnancy, advanced deep-learning models can segment fetal anatomy on ultrasound images with more than 90 percent overlap compared to expert annotations and can detect anomalies with sensitivity exceeding 93 percent. Predictive biometric tools can estimate gestational age within one week with accuracy and fetal weight within approximately 190 g. In the postpartum period, AI-driven decision-support systems and conversational agents can facilitate early screening for depression and can guide follow-up care. Wearable sensors enable remote monitoring of maternal blood pressure and heart rate to support timely clinical intervention. Within neonatal care, the Heart Rate Observation (HeRO) system has reduced mortality among very low-birth-weight infants by roughly 20 percent, and additional AI models can predict neonatal sepsis, retinopathy of prematurity, and necrotizing enterocolitis with area-under-the-curve values above 0.80. From an operational standpoint, automated ultrasound workflows deliver biometric measurements at about 14 milliseconds per frame, and dynamic scheduling in IVF laboratories lowers staff workload and per-cycle costs. Home-monitoring platforms for pregnant women are associated with 7–11 percent reductions in maternal mortality and preeclampsia incidence. Despite these advances, most evidence derives from retrospective, single-center studies with limited external validation. Low-resource settings, especially in Sub-Saharan Africa, remain under-represented, and few AI solutions are fully embedded in electronic health records. Conclusions: AI holds transformative promise for perinatal care but will require prospective multicenter validation, equity-centered design, robust governance, transparent fairness audits, and seamless electronic health record integration to translate these innovations into routine practice and improve maternal and neonatal outcomes. Full article
Show Figures

Figure 1

22 pages, 1589 KB  
Article
Musical Distractions: Music-Based Rhythmic Auditory Stimulation Fails to Improve Gait in Huntington’s Disease
by Sidney T. Baudendistel, Lauren E. Tueth, Allison M. Haussler and Gammon M. Earhart
Brain Sci. 2025, 15(8), 820; https://doi.org/10.3390/brainsci15080820 - 31 Jul 2025
Viewed by 807
Abstract
Background/Objectives: Huntington’s disease (HD) is a neurodegenerative disorder involving the basal ganglia and is characterized by psychiatric, cognitive, and movement dysfunction, including gait and balance impairment. Given the limited efficacy of pharmacological treatments for HD motor symptoms, nonpharmacological approaches like rhythmic auditory stimulation [...] Read more.
Background/Objectives: Huntington’s disease (HD) is a neurodegenerative disorder involving the basal ganglia and is characterized by psychiatric, cognitive, and movement dysfunction, including gait and balance impairment. Given the limited efficacy of pharmacological treatments for HD motor symptoms, nonpharmacological approaches like rhythmic auditory stimulation are being explored. This study aims to describe walking performance in people with HD during rhythmic auditory stimulation using external musical cues and internal singing cues. Methods: Individuals in the manifest stage of HD performed walking in four conditions: (1) comfortable pace, (2) cognitive dual task, (3) musical cue (music was played aloud), and (4) singing cue (participants sang aloud). Sensors measured cadence, velocity, stride length, and variability. Relationships between change in cadence and motor and cognitive measures were explored. Results: While no direct measurements of synchronization were performed, limiting our interpretation, neither the external musical cue nor the singing cue significantly improved walking performance. Both cues increased variability, similar to what was observed during the dual task. Greater subjective balance confidence and better cognitive performance were associated with positive cadence change during cueing. Conclusions: Musical cues may be too cognitively demanding for individuals with Huntington’s disease as they worsen gait variability without increasing gait speed, cadence, or stride length. Although global cognition and perceived balance confidence were related to the ability to increase cadence, very few people were able to increase their cadence during either cue. Therefore, the results do not support the use of musical cues to improve gait for individuals with Huntington’s disease. Full article
(This article belongs to the Special Issue Focusing on the Rhythmic Interventions in Movement Disorders)
Show Figures

Figure 1

13 pages, 436 KB  
Opinion
It Is Time to Consider the Lost Battle of Microdamaged Piezo2 in the Context of E. coli and Early-Onset Colorectal Cancer
by Balázs Sonkodi
Int. J. Mol. Sci. 2025, 26(15), 7160; https://doi.org/10.3390/ijms26157160 - 24 Jul 2025
Viewed by 525
Abstract
The recent identification of early-onset mutational signatures with geographic variations by Diaz-Gay et al. is a significant finding, since early-onset colorectal cancer has emerged as an alarming public health challenge in the past two decades, and the pathomechanism remains unclear. Environmental risk factors, [...] Read more.
The recent identification of early-onset mutational signatures with geographic variations by Diaz-Gay et al. is a significant finding, since early-onset colorectal cancer has emerged as an alarming public health challenge in the past two decades, and the pathomechanism remains unclear. Environmental risk factors, including lifestyle and diet, are highly suspected. The identification of colibactin from Escherichia coli as a potential pathogenic source is a major step forward in addressing this public health challenge. Therefore, the following opinion manuscript aims to outline the likely onset of the pathomechanism and the critical role of acquired Piezo2 channelopathy in early-onset colorectal cancer, which skews proton availability and proton motive force regulation toward E. coli within the microbiota–host symbiotic relationship. In addition, the colibactin produced by the pks island of E. coli induces host DNA damage, which likely interacts at the level of Wnt signaling with Piezo2 channelopathy-induced pathological remodeling. This transcriptional dysregulation eventually leads to tumorigenesis of colorectal cancer. Mechanotransduction converts external physical cues to inner chemical and biological ones. Correspondingly, the proposed quantum mechanical free-energy-stimulated ultrafast proton-coupled tunneling, initiated by Piezo2, seems to be the principal and essential underlying novel oscillatory signaling that could be lost in colorectal cancer onset. Hence, Piezo2 channelopathy not only contributes to cancer initiation and impaired circadian regulation, including the proposed hippocampal ultradian clock, but also to proliferation and metastasis. Full article
(This article belongs to the Special Issue Advanced Research of Gut Microbiota and Toxins)
Show Figures

Figure 1

19 pages, 3813 KB  
Article
Dual Policy–Market Orchestration: New R&D Institutions Bridging Innovation and Entrepreneurship
by Yinhai Fang and Xinping Qiu
Adm. Sci. 2025, 15(8), 289; https://doi.org/10.3390/admsci15080289 - 24 Jul 2025
Viewed by 563
Abstract
This study investigates how new R&D institutions mediate policy–market disjunctures to foster integrated innovation and entrepreneurship ecosystems. Employing a longitudinal case analysis (2013–2023) of the Jiangsu Industrial Technology Research Institute (JITRI), we delineate a three-phase evolutionary process: (1) an initial government-dominated phase, stimulating [...] Read more.
This study investigates how new R&D institutions mediate policy–market disjunctures to foster integrated innovation and entrepreneurship ecosystems. Employing a longitudinal case analysis (2013–2023) of the Jiangsu Industrial Technology Research Institute (JITRI), we delineate a three-phase evolutionary process: (1) an initial government-dominated phase, stimulating foundational capability development through contract R&D; (2) a subsequent marketization phase, enabling systemic resource integration via co-creation centers and global networks; and (3) a culminating synergy phase, where policy–market alignment facilitates ecosystem optimization through crowdsourced R&D and cross-domain collaboration. Three core mechanisms underpin this adaptation: policy–market coupling (providing external momentum), endogenous capability development (absorption to innovation), and dynamic resource orchestration (acquisition to optimization). JITRI’s hybrid governance model demonstrates that stage-contingent interventions—specifically, policy anchoring in early stages followed by market-responsive resource allocation—effectively transmute inherent tensions into productive synergies. These findings yield implementable frameworks for structuring innovative ecosystems and underscore the necessity for comparative studies to establish broader theoretical generalizability. Full article
(This article belongs to the Section International Entrepreneurship)
Show Figures

Figure 1

11 pages, 676 KB  
Perspective
Tailoring In-Flight Food Consumption to Alleviate Fear of Flying Through Sensory Stimulation
by Francesco Sansone, Francesca Gorini, Alessandro Tonacci and Francesca Venturi
Appl. Sci. 2025, 15(14), 8057; https://doi.org/10.3390/app15148057 - 19 Jul 2025
Viewed by 435
Abstract
Nowadays, society is becoming increasingly committed to traveling by plane for work, tourism, and leisure in general. However, either due to internal, specific factors or to external determinants, like terrorism and climate changes, a growing number of travelers have experienced the so-called fear [...] Read more.
Nowadays, society is becoming increasingly committed to traveling by plane for work, tourism, and leisure in general. However, either due to internal, specific factors or to external determinants, like terrorism and climate changes, a growing number of travelers have experienced the so-called fear of flying, a persistent, irrational fear of flight-related situations for which a clear, efficacious therapy does not yet exist. Based on the usual interaction with the surrounding environment, conducted by means of the five human senses, and particularly on the neurophysiological pathway followed by the chemical senses, in this study, we revise the findings in the related literature on the topic, proposing an alternative way to alleviate the anxiety related to the fear of flight. This is based on chemosensory stimulation being applied directly during a flight and is possibly concerned with the consumption of meals, an usual activity performed onboard. After an introductory section aimed at understanding the problem, we present some studies related to chemosensory perception during the flight, highlighting the specificities of the scenarios, followed by a description of findings related to the meals proposed by flight companies in this context, and finally wrapping up the possible alternative approaches that could be conducted by such providers to alleviate the fear of flying condition through chemosensory stimulation vehiculated by meals, and enhance the quality of flight experience related to food consumption onboard. Full article
Show Figures

Figure 1

23 pages, 12625 KB  
Article
Genome-Wide Identification and Expression Analysis of Auxin-Responsive GH3 Gene Family in Pepper (Capsicum annuum L.)
by Qiao-Lu Zang, Meng Wang, Lu Liu, Xiao-Mei Zheng and Yan Cheng
Plants 2025, 14(14), 2231; https://doi.org/10.3390/plants14142231 - 18 Jul 2025
Viewed by 545
Abstract
As an auxin-responsive gene, Gretchen Hagen 3 (GH3) maintains hormonal homeostasis by conjugating excess auxin with amino acids in plant stress-related signaling pathways. GH3 genes have been characterized in many plant species, but the characteristics of pepper (Capsicum annuum L.) [...] Read more.
As an auxin-responsive gene, Gretchen Hagen 3 (GH3) maintains hormonal homeostasis by conjugating excess auxin with amino acids in plant stress-related signaling pathways. GH3 genes have been characterized in many plant species, but the characteristics of pepper (Capsicum annuum L.) GH3 (CaGH3) gene family members in response to multiple stimulants are largely unknown. In this study, we systematically identified the CaGH3 gene family at the genome level and identified eight members on four chromosomes in pepper. CaGH3s were divided into two groups (I and III) and shared conserved motifs, domains, and gene structures. Moreover, CaGH3s had close evolutionary relationships with tomato (Solanum lycopersicum L.), and the promoters of most CaGH3 genes contained hormone and abiotic stress response elements. A protein interaction prediction analysis demonstrated that the CaGH3-3/3-6/3-7/3-8 proteins were possibly core members of the CaGH3 family interaction. In addition, qRT-PCR results showed that CaGH3 genes were differentially expressed in pepper tissues and could be induced by phytohormones (IAA, ABA, and MeJA) and abiotic stresses (salt, low temperature, and drought) with different patterns. In addition, CaGH3-5 and CaGH3-7 were cloned, and the sequences showed a high degree of conservation. Moreover, the results of subcellular localization indicated that they were located in the membrane and chloroplast. Notably, after overexpressing CaGH3-7 in tomato, RNA-seq was performed on wild-type and transgenic lines, and the differentially expressed genes were mainly enriched in response to external stimuli. This study not only lays the foundation for a comprehensive understanding of the function of the CaGH3 gene family during plant growth and stress responses but also provides potential genetic resources for pepper resistance breeding. Full article
Show Figures

Figure 1

20 pages, 3164 KB  
Review
Is Hydra Axis Definition a Fluctuation-Based Process Picking Up External Cues?
by Mikhail A. Zhukovsky, Si-Eun Sung and Albrecht Ott
J. Dev. Biol. 2025, 13(3), 24; https://doi.org/10.3390/jdb13030024 - 17 Jul 2025
Viewed by 636
Abstract
Axis definition plays a key role in the establishment of animal body plans, both in normal development and regeneration. The cnidarian Hydra can re-establish its simple body plan when regenerating from a random cell aggregate or a sufficiently small tissue fragment. At the [...] Read more.
Axis definition plays a key role in the establishment of animal body plans, both in normal development and regeneration. The cnidarian Hydra can re-establish its simple body plan when regenerating from a random cell aggregate or a sufficiently small tissue fragment. At the beginning of regeneration, a hollow cellular spheroid forms, which then undergoes symmetry breaking and de novo body axis definition. In the past, we have published related work in a physics journal, which is difficult to read for scientists from other disciplines. Here, we review our work for readers not so familiar with this type of approach at a level that requires very little knowledge in mathematics. At the same time, we present a few aspects of Hydra biology that we believe to be linked to our work. These biological aspects may be of interest to physicists or members of related disciplines to better understand our approach. The proposed theoretical model is based on fluctuations of gene expression that are triggered by mechanical signaling, leading to increasingly large groups of cells acting in sync. With a single free parameter, the model quantitatively reproduces the experimentally observed expression pattern of the gene ks1, a marker for ‘head forming potential’. We observed that Hydra positions its axis as a function of a weak temperature gradient, but in a non-intuitive way. Supposing that a large fluctuation including ks1 expression is locked to define the head position, the model reproduces this behavior as well—without further changes. We explain why we believe that the proposed fluctuation-based symmetry breaking process agrees well with recent experimental findings where actin filament organization or anisotropic mechanical stimulation act as axis-positioning events. The model suggests that the Hydra spheroid exhibits huge sensitivity to external perturbations that will eventually position the axis. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Developmental Biology 2025)
Show Figures

Figure 1

Back to TopTop