Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,757)

Search Parameters:
Keywords = extractive waste

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 5046 KB  
Article
A Comprehensive Analysis of the Effectiveness of a Water-Based Extraction Method in Cement Bypass Dust Valorization
by Karolina Wojtacha-Rychter, Magdalena Król and Jakub Dechnik
Materials 2025, 18(20), 4668; https://doi.org/10.3390/ma18204668 (registering DOI) - 11 Oct 2025
Abstract
The solid by-product from cement kiln gas installations, known as cement bypass dust (CBPD), is rich in chlorides, which limits the reuse of materials in cement. In this study, three types of CBPD were subjected to an extraction process to obtain a low-chlorine [...] Read more.
The solid by-product from cement kiln gas installations, known as cement bypass dust (CBPD), is rich in chlorides, which limits the reuse of materials in cement. In this study, three types of CBPD were subjected to an extraction process to obtain a low-chlorine waste material. The relationships between the process parameters, including extraction time (1, 2, 5, 10, and 30 min), temperature (21, 45, and 90 °C), and extraction efficiency, were investigated. The chlorine removal efficiency ranged from 70% to 90%, with the optimal time and temperature identified as 1 min and 21 °C, respectively. Furthermore, a comprehensive characterization of CBPD was conducted before and after the extraction process using X-ray diffraction (XRD), X-ray fluorescence (XRF), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FT-IR); an approach not yet extensively reported in the literature. The results demonstrated that chloride removal corresponded to an increase in concentrations of Ca, Al, Si, Mg, and Fe oxides in the solid residue. For CBPD samples with initial chloride contents of 13.65% and 15.43%, calcium content in the residue increased by approximately 40%. No linear and predictable relationship was observed between the leaching time or temperature and the release of metals in the solid residue. Full article
(This article belongs to the Section Construction and Building Materials)
35 pages, 2483 KB  
Review
Fungal and Microalgal Chitin: Structural Differences, Functional Properties, and Biomedical Applications
by Lijing Yin, Hang Li, Ronge Xing, Rongfeng Li, Kun Gao, Guantian Li and Song Liu
Polymers 2025, 17(20), 2722; https://doi.org/10.3390/polym17202722 - 10 Oct 2025
Abstract
Chitin, one of the most abundant natural polysaccharides, has gained increasing attention for its structural diversity and potential in biomedicine, agriculture, food packaging, and advanced materials. Conventional chitin production from crustacean shell waste faces limitations, including seasonal availability, allergenic protein contamination, heavy metal [...] Read more.
Chitin, one of the most abundant natural polysaccharides, has gained increasing attention for its structural diversity and potential in biomedicine, agriculture, food packaging, and advanced materials. Conventional chitin production from crustacean shell waste faces limitations, including seasonal availability, allergenic protein contamination, heavy metal residues, and environmentally harmful demineralization processes. Chitin from fungi and microalgae provides a sustainable and chemically versatile alternative. Fungal chitin, generally present in the α-polymorph, is embedded in a chitin–glucan–protein matrix that ensures high crystallinity, mechanical stability, and compatibility for biomedical applications. Microalgal β-chitin, particularly from diatoms, is secreted as high-aspect-ratio microrods and nanofibrils with parallel chain packing, providing enhanced reactivity and structural integrity that are highly attractive for functional materials. Recent progress in green extraction technologies, including enzymatic treatments, ionic liquids, and deep eutectic solvents, enables the recovery of chitin with reduced environmental burden while preserving its native morphology. By integrating sustainable sources with environmentally friendly processing methods, fungal and microalgal chitin offer unique structural polymorphs and tunable properties, positioning them as a promising alternative to crustacean-derived chitin. Full article
(This article belongs to the Special Issue Polysaccharides: Synthesis, Properties and Applications)
Show Figures

Graphical abstract

46 pages, 13482 KB  
Review
Evaluating the Sustainability of Emerging Extraction Technologies for Valorization of Food Waste: Microwave, Ultrasound, Enzyme-Assisted, and Supercritical Fluid Extraction
by Elixabet Díaz-de-Cerio and Esther Trigueros
Agriculture 2025, 15(19), 2100; https://doi.org/10.3390/agriculture15192100 - 9 Oct 2025
Abstract
Food industry generates substantial waste, raising economic and environmental concerns. Green Chemistry (GC) highlights the extraction of nutritional and bioactive compounds as a key strategy for waste valorization, driving interest in sustainable methods to recover valuable compounds efficiently. This review evaluates the sustainability [...] Read more.
Food industry generates substantial waste, raising economic and environmental concerns. Green Chemistry (GC) highlights the extraction of nutritional and bioactive compounds as a key strategy for waste valorization, driving interest in sustainable methods to recover valuable compounds efficiently. This review evaluates the sustainability of widely used emerging extraction technologies—Microwave-, Ultrasound- and Enzyme-Assisted, as well as Supercritical Fluid Extraction—and their alignment with GC principles for agri-food waste valorization. It first outlines the principles, key parameters, and main advantages and limitations of each technique. Subsequently, sustainability is then assessed in selected studies using the Analytical GREEnness Metric Approach (AGREEprep). By calculating the greenness score (GS), this metric quantifies the adherence of extraction processes to sustainability standards. The analysis reveals variations within the same extraction method, influenced by solvent choice and operating conditions, as well as differences across the techniques, highlighting the importance of process design in achieving green and efficient valorization. Full article
Show Figures

Figure 1

18 pages, 2837 KB  
Article
Selective Separation of Pd, Pt, and Rh from Wastes Using Commercial Extractants for the Sustainable Development of Critical Metals Management
by Karolina Pianowska, Joanna Kluczka, Grzegorz Benke, Karolina Goc and Katarzyna Leszczyńska-Sejda
Sustainability 2025, 17(19), 8956; https://doi.org/10.3390/su17198956 - 9 Oct 2025
Abstract
This paper presents the results of research on the selective separation of palladium, platinum, and rhodium from waste solutions using commercial organic extractants such as Mextral 63H and trioctylamine. The research was carried out on a real waste solution, containing low concentrations of [...] Read more.
This paper presents the results of research on the selective separation of palladium, platinum, and rhodium from waste solutions using commercial organic extractants such as Mextral 63H and trioctylamine. The research was carried out on a real waste solution, containing low concentrations of platinum group metals and significant amounts of base metals such as copper, iron, chromium, and nickel. It was found that a 20% solution of Mextral 63H in toluene selectively extracts over 99% of Pd, while a 10% solution of trioctylamine effectively extracts both Pd and Pt with a yield of over 98%. Effective stripping agents were also selected for the obtained Pd and Pt extracts: 2 M thiourea solution for Pd and diluted solutions of nitric and perchloric acids for Pt. The research allowed the development of a technological scheme enabling the separation of all three platinum group metals by selective extraction of Pd and then Pt, while Rh remains in the raffinate after both extraction stages. The proposed model, developed on the basis of results obtained for a real solution, assumes selective recovery of palladium, platinum, and rhodium from such solutions, which can find application in the precious metals industry. Moreover, the developed technology is in line with the sustainable development of the critical metals economy. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

14 pages, 294 KB  
Article
Harnessing and Evaluating Almond Hulls and Shells for Bio-Based Products
by Ana T. Caeiro, Ricardo A. Costa, Duarte M. Neiva, Jéssica Silva, Rosalina Marrão, Albino Bento, Nuno Saraiva, Francisco Marques, Jorge Rebelo, André Encarnação and Jorge Gominho
Environments 2025, 12(10), 369; https://doi.org/10.3390/environments12100369 - 9 Oct 2025
Viewed by 70
Abstract
Almond hulls and shells, the byproducts of the almond industry, were analyzed to assess their potential valorization pathways. Shells showed a higher content in lignin and polysaccharides, but very low levels of extractives and inorganics. Hull’s high polar extractives fraction showed poor phenolic [...] Read more.
Almond hulls and shells, the byproducts of the almond industry, were analyzed to assess their potential valorization pathways. Shells showed a higher content in lignin and polysaccharides, but very low levels of extractives and inorganics. Hull’s high polar extractives fraction showed poor phenolic preponderance and antioxidant activity, but high sugar and mineral contents, and its lipophilic extracts were highly enriched in triterpenes (from 73.5% to 91.3%), while shells presented more fatty acids (27.4% to 34.2%) and sterols (17.4% to 29.1%). Shells exhibited much higher S/G ratio (syringyl to guaiacyl units) in their lignin polymer (1.0 to 1.4), compared to hulls (0.5 to 0.6). After mineral analyses, hulls showed high amounts of potassium (3.7–4.9%). Fixed carbon content was similar for both materials, but shells showed a higher energetic content, ~20 MJ/kg. Finally, both hulls and pellets increased the water holding capacity (WHC) of the soil by 50%, when added in weight percentages of 6.25% (hulls) and 25% (pellets). With these results, the range of possibilities for these waste materials is exciting: shells could be used to obtain hemicellulose oligosaccharides, while hulls could be used in sugar extraction for biotransformation or as a soil amendment. Full article
Show Figures

Graphical abstract

22 pages, 10530 KB  
Article
Preventive Effects of an Opuntia stricta var. dillenii Extract on Lipid Metabolism in a High-Fat High-Fructose Diet-Induced Obesity Animal Model
by Iker Gómez-García, Alfredo Fernández-Quintela, Paula Oliver, Catalina Picó, M. Pilar Cano, María P. Portillo and Jenifer Trepiana
Nutrients 2025, 17(19), 3178; https://doi.org/10.3390/nu17193178 - 8 Oct 2025
Viewed by 115
Abstract
Background: Due to the continuous global rise in obesity prevalence, foods rich in bioactive compounds are increasingly recognised for the management of several diseases. Objective: The present study aims to investigate whether an Opuntia stricta var. dillenii fruit peel extract, rich in betalains [...] Read more.
Background: Due to the continuous global rise in obesity prevalence, foods rich in bioactive compounds are increasingly recognised for the management of several diseases. Objective: The present study aims to investigate whether an Opuntia stricta var. dillenii fruit peel extract, rich in betalains and phenolic compounds, is able to prevent obesity induced by a high-fat high-fructose diet in rats, along with the potential mechanisms of action underlying this effect. Results: The supplementation with Opuntia stricta var. dillenii extract obtained from the peel fruit partially prevents obesity development by attenuating HFHF-induced fat accumulation. This effect was observed predominantly in visceral adipose tissue, rather than in the subcutaneous depot. The obesity prevention was accompanied by the improvement of serum lipid profile. The mechanisms underlying the extract anti-obesity effect which were analysed in epididymal adipose tissue, involve preventing the rise in the availability of triglyceride synthesis substrates induced by high-fat high-fructose feeding, the inhibition of triglyceride assembly, and in the case of the high dose, increased lipolysis. Conclusions: According to these results, the peel wastes of Opuntia stricta var. dillenii fruit represent a promising natural source of bioactive compounds for obesity prevention. Nevertheless, these preclinical effects should be replicated in further studies in human beings. Full article
Show Figures

Figure 1

20 pages, 582 KB  
Review
From Waste to Wonder: Valorization of Colombian Plant By-Products for Peroxidase Production and Biotechnological Innovation
by John J. Castillo
Processes 2025, 13(10), 3198; https://doi.org/10.3390/pr13103198 - 8 Oct 2025
Viewed by 113
Abstract
The valorization of agricultural by-products represents a sustainable strategy to reduce waste and create high-value biotechnological products. This review highlights Colombian plant-derived peroxidases (PODs) obtained from Guinea grass, royal palm, African oil palm, lemongrass, sleepy plant, and sweet potato. These enzymes catalyze oxidative [...] Read more.
The valorization of agricultural by-products represents a sustainable strategy to reduce waste and create high-value biotechnological products. This review highlights Colombian plant-derived peroxidases (PODs) obtained from Guinea grass, royal palm, African oil palm, lemongrass, sleepy plant, and sweet potato. These enzymes catalyze oxidative reactions and show potential in biosensing, polymer synthesis, environmental remediation, and health monitoring. We summarize extraction and purification strategies while addressing current challenges such as operational stability, scalability, and cost. Special emphasis is given to applications like cross-linked enzymatic aggregates (CLEAs) and electrochemical biosensors, where Colombian PODs demonstrate superior stability and sensitivity compared to horseradish peroxidase (HRP). This review frames these advances within the circular bioeconomy, presenting insights into waste reduction and CO2 savings. By integrating local biodiversity into innovative processes, Colombian PODs can drive sustainable technologies and provide industrial and environmental solutions. Full article
(This article belongs to the Special Issue Enzyme Production Using Industrial and Agricultural By-Products)
Show Figures

Figure 1

14 pages, 1111 KB  
Article
Estimating Mercury and Arsenic Release from the La Soterraña Abandoned Mine Waste Dump (Asturias, Spain): Source-Term Reconstruction Using High-Accuracy UAV Surveys and Historical Topographic Data
by Lorena Salgado, Arturo Colina, Alejandro Vega, Luis M. Lara, Eduardo Rodríguez-Valdés, José R. Gallego, Elías Afif Khouri and Rubén Forján
Land 2025, 14(10), 2016; https://doi.org/10.3390/land14102016 - 8 Oct 2025
Viewed by 172
Abstract
The waste dump from the abandoned La Soterraña mine, a former mercury extraction site, contains high concentrations of mercury (Hg) and arsenic (As), which pose a significant environmental risk due to direct exposure to the environment. Given the site’s topography and slope, surface [...] Read more.
The waste dump from the abandoned La Soterraña mine, a former mercury extraction site, contains high concentrations of mercury (Hg) and arsenic (As), which pose a significant environmental risk due to direct exposure to the environment. Given the site’s topography and slope, surface runoff has been identified as the primary mechanism for the dispersal of these toxic elements into nearby watercourses. This study quantifies the amount of Hg and As released into fluvial systems through surface runoff from the waste dump. Historical topographic data, Airborne Laser Exploration Survey public data from the National Plan for Aerial Orthophotographs (1st PNOA-LiDAR) of the Spanish Ministry of Transport, Mobility and Urban Agenda, and high-precision photogrammetric drone surveys were utilized, with centimeter-level accuracy achieved using airborne GNSS RTK positioning systems on the drone. The methodology yields reliable results when comparing surfaces generated from topographic data collected with consistent methodologies and standards. Analysis indicates an environmental release exceeding 1000 kg of mercury (Hg) and 12,000 kg of arsenic (As) between 2019 and 2023, based on high spatial resolution data (GSD = 8 cm). These findings highlight a sustained temporal contribution of chemical contaminants, which imposes serious environmental and biological health risks due to persistent exposure to toxic elements. Full article
Show Figures

Figure 1

23 pages, 3175 KB  
Article
Optimizing Reinforcement Bar Fabrication in Construction Projects via Multi-Dimensional Applications in Building Information Modeling
by Yu Luo, Yiminxuan Liu, Xiaofeng Liao, Changsaar Chai, Heap-Yih Chong, Yongtong Huang and Zhaoyin Zhou
Appl. Sci. 2025, 15(19), 10807; https://doi.org/10.3390/app151910807 - 8 Oct 2025
Viewed by 176
Abstract
Steel reinforcement is one of the most important materials used in the construction industry. This research optimizes reinforcement bar fabrication by integrating Building Information Modeling (BIM) with visual programming in Dynamo. On-site rebar cutting and bending generate significant material waste, increasing costs and [...] Read more.
Steel reinforcement is one of the most important materials used in the construction industry. This research optimizes reinforcement bar fabrication by integrating Building Information Modeling (BIM) with visual programming in Dynamo. On-site rebar cutting and bending generate significant material waste, increasing costs and environmental impact. To address this, an intelligent Dynamo script was developed to extract detailed 3D rebar and 4D scheduling data from BIM models. The script optimizes material usage by specifying cut-off lengths to improve reuse and minimize waste. Validation through two real-world case studies demonstrated the method’s significant potential. Effectiveness was assessed using benchmarks comparing the number of bars saved, waste reduced, and overall cost savings. The study confirms that optimized fabrication significantly cuts waste and cost. Its effectiveness, however, varies with rebar type and structural component, with the most significant gains observed in medium-length bars and pile caps. By offering a novel tool for sustainable construction, this research advances BIM-enabled reinforcement design and material optimization. Full article
Show Figures

Figure 1

17 pages, 1830 KB  
Article
Green Extraction and Targeted LC-MS Analysis of Biopesticides in Honey Using Natural Deep Eutectic Solvents
by Theaveraj Ravi, Alba Reyes-Ávila, Laura Carbonell-Rozas, Asiah Nusaibah Masri, Antonia Garrido Frenich and Roberto Romero-González
Foods 2025, 14(19), 3438; https://doi.org/10.3390/foods14193438 - 8 Oct 2025
Viewed by 233
Abstract
Natural Deep Eutectic Solvents (NADES) were synthesized from food-grade components and evaluated as green extractants for the simultaneous recovery and liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry (LC–Q-Orbitrap-MS) analysis of biopesticide residues in a complex matrix like honey. Conventional solid–liquid extraction (SLE) was [...] Read more.
Natural Deep Eutectic Solvents (NADES) were synthesized from food-grade components and evaluated as green extractants for the simultaneous recovery and liquid chromatography coupled to quadrupole-Orbitrap mass spectrometry (LC–Q-Orbitrap-MS) analysis of biopesticide residues in a complex matrix like honey. Conventional solid–liquid extraction (SLE) was applied, initially using choline chloride-2,3-butanediol (1:4, molar ratio) as the NADES extractant solvent, before systematically evaluating other NADES formulations. Extraction parameters, such as time (10 min, 20 min, and 30 min), technique (rotary mixing vs. sonication), and NADES composition, namely lactic acid–glucose–water (LGH, 5:1:9, molar ratio), lactic acid–glycerol–water (LGLH, 1:1:3, molar ratio), urea–glycerol–water (UGLH, 1:1:2, molar ratio), and choline chloride–2,3-butanediol (ChClBt, 1:4, molar ratio), were systematically optimized. Rotating agitation for 10 min yielded the highest overall recoveries and was therefore selected as the optimal extraction time. Rotary shaking was chosen over sonication due to its superior performance across both simple and complex matrices. Among the NADES tested, UGLH proved to be the most effective composition for the honey matrix. The analytical method was validated for the honey matrix. Linearity showed excellent performance across the tested concentration range, with R2 values above 0.95 for all analytes. Matrix effects were within ±20% for nearly half of the compounds, while a few exhibited moderate matrix enhancement. Recoveries ranged from 50.1% to 120.5% at 500 µg/kg and 1000 µg/kg, demonstrating acceptable extraction performance. Intra-day and inter-day precision showed relative standard deviations (RSDs) below 20% for most analytes. Limits of quantification (LOQs) were established at 500 µg/kg for eight compounds based on recovery and precision criteria. These results confirm the suitability of the proposed NADES-based method for sensitive and reliable analysis of biopesticide residues in honey. When compared to conventional extraction methods, the proposed NADES-based protocol proved to be a greener alternative, achieving the highest AGREEprep score due to its use of non-toxic solvents, lower waste generation, and overall sustainability. Full article
Show Figures

Figure 1

21 pages, 2799 KB  
Article
Development and Characterization of Sustainable Antimicrobial Food Packaging Films with Incorporated Silver Nanoparticles Synthesized from Olive Oil Mill By-Products
by Christina M. Gkaliouri, Nikolas Rigopoulos, Zacharias Ioannou, Efstathios Giaouris, Konstantinos P. Giannakopoulos and Kosmas Ellinas
Sustainability 2025, 17(19), 8916; https://doi.org/10.3390/su17198916 - 8 Oct 2025
Viewed by 284
Abstract
The growing accumulation of non-biodegradable petrochemical plastics and increasing food waste present urgent environmental and public health challenges. This study addresses both issues by developing biodegradable food packaging films from agar and starch, enhanced with antimicrobial properties by incorporating silver nanoparticles. The innovation [...] Read more.
The growing accumulation of non-biodegradable petrochemical plastics and increasing food waste present urgent environmental and public health challenges. This study addresses both issues by developing biodegradable food packaging films from agar and starch, enhanced with antimicrobial properties by incorporating silver nanoparticles. The innovation of this work is the synthesis of novel agar–starch–silver nanoparticle coatings, where the contained nanoparticles were produced via green methods using two agro-industrial by-products of Greek olive oil production—olive stone extract and olive mill wastewater—as reducing agents. The morphology of the novel coatings was confirmed using transmission electron microscopy combined with energy-dispersive X-ray spectroscopy, revealing nanoscale particles with variable sizes. Additional film characterization was performed through Fourier-transform infrared spectroscopy, scanning electron microscopy coupled with energy-dispersive spectroscopy, and surface profilometry. Infrared spectroscopy analysis suggested the presence of functional groups responsible for nanoparticle stabilization, while energy-dispersive X-ray spectroscopy revealed silver aggregation in both olive stone extract and olive mill wastewater-derived films. Profilometry showed that films with olive mill wastewater-based nanoparticles had a rougher surface than those synthesized from olive stone extract. Antibacterial efficacy was tested against Escherichia coli (Gram-negative) and Staphylococcus epidermidis (Gram-positive) using a spot-on-film assay with high (106 CFU/film) and low (103 CFU/film) bacterial loads. After 72 h of incubation at 4 °C, both film types showed strong antibacterial activity at high bacterial concentrations, demonstrating their potential for active food packaging. These findings highlight a promising approach to sustainable food packaging within the circular economy, utilizing agricultural waste to create biodegradable materials with effective antimicrobial functionality. Full article
Show Figures

Figure 1

17 pages, 1122 KB  
Article
Spray-Dried Phenolic Compounds from Olive Mill Waste Water as Animal Feed Supplement: Impact on the Aromatic Profile of “Caciotta Cheese”
by Giulia Francesca Cifuni, Pasquale Caparra, Enzo Perri, Cinzia Benincasa, Giuseppe Morone and Salvatore Claps
Molecules 2025, 30(19), 3991; https://doi.org/10.3390/molecules30193991 - 5 Oct 2025
Viewed by 161
Abstract
This study evaluated the effect of dietary supplementation with different levels of spray-dried phenolic compounds, extracted from olive mill wastewater, on the volatile compound profile of Caciotta cheese produced from cow’s milk. Thirty dairy cows were divided into three groups and fed diets [...] Read more.
This study evaluated the effect of dietary supplementation with different levels of spray-dried phenolic compounds, extracted from olive mill wastewater, on the volatile compound profile of Caciotta cheese produced from cow’s milk. Thirty dairy cows were divided into three groups and fed diets containing 0% (C), 0.1% (T0.1), and 0.2% (T0.2) polyphenols on a dry matter basis. Milk from each group was used in three cheesemaking sessions, and 27 cheese samples ripened for 21 days were analyzed. Volatile compounds were extracted using solid phase microextraction (SPME) coupled with mass spectrometry, while the odour fingerprint was assessed using an electronic nose (PEN3). Principal Component Analysis (PCA) revealed a clear separation among groups, indicating distinct aromatic profiles associated with dietary polyphenol levels. In summary, incorporating by-products from olive mill wastewater into the diets of dairy cows can significantly affect the aroma of cheese. This approach represents a sustainable and innovative strategy that promotes waste valorization, reduces environmental impact, and supports circular economy principles by transforming a pollutant into a valuable additive. Full article
Show Figures

Figure 1

20 pages, 2313 KB  
Review
Citrus Waste Valorisation Processes from an Environmental Sustainability Perspective: A Scoping Literature Review of Life Cycle Assessment Studies
by Grazia Cinardi, Provvidenza Rita D’Urso, Giovanni Cascone and Claudia Arcidiacono
AgriEngineering 2025, 7(10), 335; https://doi.org/10.3390/agriengineering7100335 - 5 Oct 2025
Viewed by 270
Abstract
Citrus fruits and related processed products represent a major agricultural sector worldwide, contributing to food supply chains and to regional economies, particularly in Mediterranean and subtropical areas. Citrus processing generates significant amounts of post-processing waste, and their sustainable management is a critical challenge, [...] Read more.
Citrus fruits and related processed products represent a major agricultural sector worldwide, contributing to food supply chains and to regional economies, particularly in Mediterranean and subtropical areas. Citrus processing generates significant amounts of post-processing waste, and their sustainable management is a critical challenge, driving growing scientific interest in exploring environmentally sustainable and profitable valorisation strategies. This study aimed at mapping the sustainability of post-processing citrus valorisation strategies documented in the scientific literature, through a scoping literature review based on the PRISMA-ScR model. Only peer-reviewed studies in English were selected from Scopus and Web of Science; in detail, 29 life cycle assessment studies (LCAs) focusing on the valorisation of citrus by-products have been analysed. Most of the studies were focused on essential oil extraction and energy production. Most of the biorefinery systems and valorisation aims proposed were found to be better than the business-as-usual solution. However, results are strongly influenced by the functional unit and allocation method. Economic allocation to the main product resulted in better environmental performances. The major environmental hotspot is the agrochemicals required for crop management. The analysis of LCAs facilitated the identification of valorisation strategies that deserve greater interest from the scientific community to propose sustainable bio-circular solutions in the agro-industrial and agricultural sectors. Full article
Show Figures

Figure 1

12 pages, 2884 KB  
Article
Potential Application of Fibers Extracted from Recycled Maple Leaf Waste in Broadband Sound Absorption
by Jie Jin, Yecheng Feng, Haipeng Hao, Yunle Cao and Zhuqing Zhang
Buildings 2025, 15(19), 3582; https://doi.org/10.3390/buildings15193582 - 5 Oct 2025
Viewed by 226
Abstract
To address environmental pollution issues and optimize the utilization of waste biomass resources, this study proposes a novel eco-friendly sound-absorbing material based on maple leaf waste and tests its sound absorption performance. The fibers were extracted from maple leaf waste through a wet [...] Read more.
To address environmental pollution issues and optimize the utilization of waste biomass resources, this study proposes a novel eco-friendly sound-absorbing material based on maple leaf waste and tests its sound absorption performance. The fibers were extracted from maple leaf waste through a wet decomposition and grinding process. Metallurgical microscopy was employed to observe the microstructural characteristics of maple leaf fibers to identify the potential synergistic effect. The effects of two key factors—sample thickness and mass density—on sound absorption performance were investigated. The sound absorption coefficients were measured using the transfer function method in a dual-microphone impedance tube to evaluate their sound-absorbing performance. Experimental results demonstrate that the prepared maple leaf fibers, as acoustic materials, exhibit excellent acoustic performance across a wide frequency range, with an average sound absorption coefficient of 0.7. Increasing sample thickness improves the sound absorption coefficient in low- and mid-frequency ranges. Additionally, increased sample mass density was found to enhance acoustic performance in low- and mid-frequency bands. This study developed an eco-friendly material with lightweight and efficient acoustic absorption properties using completely biodegradable maple leaf waste. The results provide high-performance, economical, and ecologically sustainable solutions for controlling building and traffic noise while promoting the development of eco-friendly acoustic materials. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 1782 KB  
Review
From Olive Oil to Pomace: Sustainable Valorization Pathways Linking Food Processing and Human Health
by Lucia Bubulac, Claudia Florina Bogdan-Andreescu, Daniela Victorița Voica, Bogdan Mihai Cristea, Maria Simona Chiș and Dan Alexandru Slăvescu
Appl. Sci. 2025, 15(19), 10717; https://doi.org/10.3390/app151910717 - 4 Oct 2025
Viewed by 611
Abstract
The olive tree (Olea europaea L.) has been cultivated for millennia, with olive oil representing both a cornerstone of the Mediterranean diet and a major agricultural commodity. Its composition, rich in monounsaturated fatty acids, polyphenols, tocopherols and squalene, supports well-documented cardioprotective, antioxidant [...] Read more.
The olive tree (Olea europaea L.) has been cultivated for millennia, with olive oil representing both a cornerstone of the Mediterranean diet and a major agricultural commodity. Its composition, rich in monounsaturated fatty acids, polyphenols, tocopherols and squalene, supports well-documented cardioprotective, antioxidant and anti-inflammatory benefits. Olive oil production generates substantial secondary streams, including pomace, leaves, pits and mill wastewater, which are rich in phenols, triterpenes and fibers. This review consolidates recent advances in their phytochemical characterization, innovative extraction technologies and health-promoting effects, while highlighting the economic and regulatory prospects for industrial adoption. Comparative analysis shows that olive leaves can produce up to 16,674.0–50,594.3 mg/kg total phenolics; oleuropein 4570.0–27,547.7 mg/kg, pomace retains 2.24 g GAE/100 g dried matrix (DM)total phenolics; oil 13.66% DM; protein 6.64% DM, and wastewater contains high concentration of phenolics content of olives. Innovative extraction techniques, such as ultrasound and microwave-assisted methods, allow for a recovery, while reducing solvent use and energy input. The analysis highlights opportunities for integrating these by-products into circular bioeconomy models, supporting the development of functional foods, nutraceutical applications and sustainable waste management. Future research should address techno-economic feasibility, regulatory harmonization and large-scale clinical validation to accelerate market translation. Full article
Show Figures

Figure 1

Back to TopTop