Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = extrinsic gaussian process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 6549 KB  
Article
Design of Polymer Nanodielectrics for Capacitive Energy Storage
by Prajakta Prabhune, Yigitcan Comlek, Abhishek Shandilya, Ravishankar Sundararaman, Linda S. Schadler, Lynda Catherine Brinson and Wei Chen
Nanomaterials 2023, 13(17), 2394; https://doi.org/10.3390/nano13172394 - 22 Aug 2023
Cited by 7 | Viewed by 2939
Abstract
Polymer nanodielectrics present a particularly challenging materials design problem for capacitive energy storage applications like polymer film capacitors. High permittivity and breakdown strength are needed to achieve high energy density and loss must be low. Strategies that increase permittivity tend to decrease the [...] Read more.
Polymer nanodielectrics present a particularly challenging materials design problem for capacitive energy storage applications like polymer film capacitors. High permittivity and breakdown strength are needed to achieve high energy density and loss must be low. Strategies that increase permittivity tend to decrease the breakdown strength and increase loss. We hypothesize that a parameter space exists for fillers of modest aspect ratio functionalized with charge-trapping molecules that results in an increase in permittivity and breakdown strength simultaneously, while limiting increases in loss. In this work, we explore this parameter space, using physics-based, multiscale 3D dielectric property simulations, mixed-variable machine learning and Bayesian optimization to identify the compositions and morphologies which lead to the optimization of these competing properties. We employ first principle-based calculations for interface trap densities which are further used in breakdown strength calculations. For permittivity and loss calculations, we use continuum scale modelling and finite difference solution of Poisson’s equation for steady-state currents. We propose a design framework for optimizing multiple properties by tuning design variables including the microstructure and interface properties. Finally, we employ mixed-variable global sensitivity analysis to understand the complex interplay between four continuous microstructural and two categorical interface choices to extract further physical knowledge on the design of nanodielectrics. Full article
(This article belongs to the Special Issue Polymer Based Nanocomposites: Experiment, Theory and Simulations)
Show Figures

Figure 1

13 pages, 887 KB  
Article
Windowed Joint Detection and Decoding with IR-HARQ for Asynchronous SCMA Systems
by Mengsheng Guan, Min Zhu and Baoming Bai
Entropy 2023, 25(6), 930; https://doi.org/10.3390/e25060930 - 13 Jun 2023
Cited by 1 | Viewed by 1676
Abstract
To improve the decoding performance of asynchronous sparse code multiple access (SCMA) systems over additive white Gaussian noise (AWGN) channels, this paper proposes a novel windowed joint detection and decoding algorithm for a rate-compatible (RC), LDPC code-based, incremental redundancy (IR) hybrid automatic repeat [...] Read more.
To improve the decoding performance of asynchronous sparse code multiple access (SCMA) systems over additive white Gaussian noise (AWGN) channels, this paper proposes a novel windowed joint detection and decoding algorithm for a rate-compatible (RC), LDPC code-based, incremental redundancy (IR) hybrid automatic repeat quest (HARQ) scheme. Since incremental decoding can exchange information iteratively with the detections made at previous consecutive time units, we propose a windowed joint detection and decoding algorithm. The extrinsic information exchanging process is performed between the decoders and the previous w detectors at different consecutive time units. Simulation results show that the sliding-window IR-HARQ scheme for the SCMA system outperforms the original IR-HARQ scheme with a joint detection and decoding algorithm. The throughput of the SCMA system with the proposed IR-HARQ scheme is also improved. Full article
(This article belongs to the Special Issue Coding and Entropy)
Show Figures

Figure 1

12 pages, 747 KB  
Article
Extrinsic Bayesian Optimization on Manifolds
by Yihao Fang, Mu Niu, Pokman Cheung and Lizhen Lin
Algorithms 2023, 16(2), 117; https://doi.org/10.3390/a16020117 - 15 Feb 2023
Cited by 1 | Viewed by 2771
Abstract
We propose an extrinsic Bayesian optimization (eBO) framework for general optimization problems on manifolds. Bayesian optimization algorithms build a surrogate of the objective function by employing Gaussian processes and utilizing the uncertainty in that surrogate by deriving an acquisition function. This acquisition function [...] Read more.
We propose an extrinsic Bayesian optimization (eBO) framework for general optimization problems on manifolds. Bayesian optimization algorithms build a surrogate of the objective function by employing Gaussian processes and utilizing the uncertainty in that surrogate by deriving an acquisition function. This acquisition function represents the probability of improvement based on the kernel of the Gaussian process, which guides the search in the optimization process. The critical challenge for designing Bayesian optimization algorithms on manifolds lies in the difficulty of constructing valid covariance kernels for Gaussian processes on general manifolds. Our approach is to employ extrinsic Gaussian processes by first embedding the manifold onto some higher dimensional Euclidean space via equivariant embeddings and then constructing a valid covariance kernel on the image manifold after the embedding. This leads to efficient and scalable algorithms for optimization over complex manifolds. Simulation study and real data analyses are carried out to demonstrate the utilities of our eBO framework by applying the eBO to various optimization problems over manifolds such as the sphere, the Grassmannian, and the manifold of positive definite matrices. Full article
(This article belongs to the Special Issue Gradient Methods for Optimization)
Show Figures

Figure 1

14 pages, 3537 KB  
Article
Multidimensional Biomechanics-Based Score to Assess Disease Progression in Duchenne Muscular Dystrophy
by Carolina Migliorelli, Meritxell Gómez-Martinez, Paula Subías-Beltrán, Mireia Claramunt-Molet, Sebastian Idelsohn-Zielonka, Eudald Mas-Hurtado, Felip Miralles, Marisol Montolio, Marina Roselló-Ruano and Julita Medina-Cantillo
Sensors 2023, 23(2), 831; https://doi.org/10.3390/s23020831 - 11 Jan 2023
Cited by 4 | Viewed by 4557
Abstract
(1) Background: Duchenne (DMD) is a rare neuromuscular disease that progressively weakens muscles, which severely impairs gait capacity. The Six Minute-Walk Test (6MWT), which is commonly used to evaluate and monitor the disease’s evolution, presents significant variability due to extrinsic factors such as [...] Read more.
(1) Background: Duchenne (DMD) is a rare neuromuscular disease that progressively weakens muscles, which severely impairs gait capacity. The Six Minute-Walk Test (6MWT), which is commonly used to evaluate and monitor the disease’s evolution, presents significant variability due to extrinsic factors such as patient motivation, fatigue, and learning effects. Therefore, there is a clear need for the establishment of precise clinical endpoints to measure patient mobility. (2) Methods: A novel score (6M+ and 2M+) is proposed, which is derived from the use of a new portable monitoring system capable of carrying out a complete gait analysis. The system includes several biomechanical sensors: a heart rate band, inertial measurement units, electromyography shorts, and plantar pressure insoles. The scores were obtained by processing the sensor signals and via gaussian-mixture clustering. (3) Results: The 6M+ and 2M+ scores were evaluated against the North Star Ambulatory Assessment (NSAA), the gold-standard for measuring DMD, and six- and two-minute distances. The 6M+ and 2M+ tests led to superior distances when tested against the NSAA. The 6M+ test and the 2M+ test in particular were the most correlated with age, suggesting that these scores better characterize the gait regressions in DMD. Additionally, the 2M+ test demonstrated an accuracy and stability similar to the 6M+ test. (4) Conclusions: The novel monitoring system described herein exhibited good usability with respect to functional testing in a clinical environment and demonstrated an improvement in the objectivity and reliability of monitoring the evolution of neuromuscular diseases. Full article
(This article belongs to the Special Issue Sensor Technologies for Gait Analysis)
Show Figures

Figure 1

Back to TopTop