Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,633)

Search Parameters:
Keywords = extrudate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2985 KB  
Review
Analysis of the Durability of Thermal Insulation Properties in Inverted Foundation Slab Systems of Single-Family Buildings in Poland
by Barbara Francke, Dorota Kula and Eugeniusz Koda
Buildings 2025, 15(19), 3579; https://doi.org/10.3390/buildings15193579 - 4 Oct 2025
Abstract
This manuscript is aimed at analyzing how operating factors may affect the durability of thermal insulation in building partitions located underground. It examines the durability of inverted insulation systems where thermal insulation is installed above the waterproofing layer and used in residential foundation [...] Read more.
This manuscript is aimed at analyzing how operating factors may affect the durability of thermal insulation in building partitions located underground. It examines the durability of inverted insulation systems where thermal insulation is installed above the waterproofing layer and used in residential foundation slabs. The article demonstrates that, despite their popularity due to cost efficiency, the long-term success of these systems depends on thorough investigations of thermal isolation, especially considering different climate conditions. The analysis was based on an extensive literature review (2016–2024), supplemented with laboratory test results on extruded (XPS) and expanded (EPS) polystyrene boards. Additional tests examined the water penetration mechanism into insulation layers that are in direct contact with groundwater, revealing that cyclic freezing and thawing significantly increase moisture levels. The findings highlight the need for updated region-specific guidelines for the underground insulation in Central and Eastern Europe. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

14 pages, 2518 KB  
Article
Assessment of Intervertebral Lumbar Disk Herniation: Accuracy of Dual-Energy CT Compared to MRI
by Giuseppe Ocello, Gianluca Tripodi, Flavio Spoto, Leonardo Monterubbiano, Gerardo Serra, Giorgio Merci and Giovanni Foti
J. Clin. Med. 2025, 14(19), 7000; https://doi.org/10.3390/jcm14197000 - 3 Oct 2025
Abstract
Background: Lumbar disk herniation is a common cause of low back pain and radiculopathy, significantly impacting patients’ life quality and functional capacity. Magnetic Resonance Imaging (MRI) remains the gold standard for its assessment due to its superior soft tissue contrast and multiplanar imaging [...] Read more.
Background: Lumbar disk herniation is a common cause of low back pain and radiculopathy, significantly impacting patients’ life quality and functional capacity. Magnetic Resonance Imaging (MRI) remains the gold standard for its assessment due to its superior soft tissue contrast and multiplanar imaging capabilities. However, recent advances in spectral computed tomography (CT), particularly dual-energy CT (DECT), have introduced new diagnostic opportunities, offering improved soft tissue characterization. Objective: To evaluate the diagnostic performance of DECT in detecting and grading lumbar disk herniations using dedicated color-coded fat maps. Materials and Methods: A total of 205 intervertebral levels from 41 consecutive patients with lumbar symptoms were prospectively analyzed. All patients underwent both DECT and MRI within 3 days. Three radiologists with varying years of experience independently assessed DECT images using color-coded reconstructions. A five-point grading score was attributed to each lumbar level: 1 = normal disk, 2 = bulging/protrusion, 3 = focal herniation, 4 = extruded herniation, and 5 = migrated fragment. The statistical analysis included Pearson’s correlation for score consistency, Cohen’s Kappa for interobserver agreement, generalized estimating equations for a cluster-robust analysis, and an ROC curve analysis. The DECT diagnostic accuracy was assessed in a dichotomized model (grades 1–2 = no herniation; 3–5 = herniation), using MRI as reference. Results: A strong correlation was observed between DECT and MRI scores across all readers (mean Pearson’s r = 0.826, p < 0.001). The average exact agreement between DECT and MRI was 79.4%, with the highest concordance at L1–L2 (86.7%) and L5–S1 (80.4%). The interobserver agreement was substantial (mean Cohen’s κ = 0.765), with a near-perfect agreement between the two most experienced readers (κ = 0.822). The intraclass correlation coefficient was 0.906 (95% CI: 0.893–0.918). The ROC analysis showed excellent performance (AUC range: 0.953–0.986). In the dichotomous model, DECT demonstrated a markedly higher sensitivity than conventional CT (95.1% vs. 57.2%), with a comparable specificity (DECT: 99.0%; CT: 96.5%) and improved overall accuracy (98.4% vs. 90.0%). Subgroup analyses by age and disk location revealed no statistically significant differences. Conclusions: The use of DECT dedicated color-coded fat map reconstructions showed high diagnostic performance in the assessment of lumbar disk herniations compared to MRI. These findings support the development of dedicated post-processing tools, facilitating the broader clinical adoption of spectral CT, especially in cases where MRI is contraindicated or less accessible. Full article
(This article belongs to the Special Issue Dual-Energy and Spectral CT in Clinical Practice: 2nd Edition)
Show Figures

Figure 1

15 pages, 4895 KB  
Article
Magnetic Thixotropic Fluid for Direct-Ink-Writing 3D Printing: Rheological Study and Printing Performance
by Zhenkun Li, Tian Liu, Hongchao Cui, Jiahao Dong, Zijian Geng, Chengyao Deng, Shengjie Zhang, Yin Sun and Heng Zhou
Colloids Interfaces 2025, 9(5), 66; https://doi.org/10.3390/colloids9050066 - 2 Oct 2025
Abstract
Yield stress and thixotropy are critical rheological properties for enabling successful 3D printing of magnetic colloidal systems. However, conventional magnetic colloids, typically composed of a single dispersed phase, exhibit insufficient rheological tunability for reliable 3D printing. In this study, we developed a novel [...] Read more.
Yield stress and thixotropy are critical rheological properties for enabling successful 3D printing of magnetic colloidal systems. However, conventional magnetic colloids, typically composed of a single dispersed phase, exhibit insufficient rheological tunability for reliable 3D printing. In this study, we developed a novel magnetic colloidal system comprising a carrier liquid, magnetic nanoparticles, and organic modified bentonite. A direct-ink-writing 3D-printing platform was specifically designed and optimized for thixotropic materials, incorporating three distinct extruder head configurations. Through an in-depth rheological investigation and printing trials, quantitative analysis revealed that the printability of magnetic colloids is significantly affected by multiple factors, including magnetic field strength, pre-shear conditions, and printing speed. Furthermore, we successfully fabricated 3D architectures through the precise coordination of deposition paths and magnetic field modulation. This work offers initial support for the material’s future applications in soft robotics, in vivo therapeutic systems, and targeted drug delivery platforms. Full article
Show Figures

Graphical abstract

21 pages, 5507 KB  
Article
Exploring the Effect of the Porogenic Agent on Flat Membranes Based on Polyamide 6 (PA6)/Carbon Nanotubes (MWCNT) Nanocomposites
by Clara Maria Marinho Serafim, Renê Anísio da Paz, Rafael Agra Dias, Vanessa da Nóbrega Medeiros, Pamela Thainara Vieira da Silva, Carlos Bruno Barreto Luna, Renate Maria Ramos Wellen and Edcleide Maria Araújo
Processes 2025, 13(10), 3155; https://doi.org/10.3390/pr13103155 - 2 Oct 2025
Abstract
Polymeric membranes are a highly viable technology for wastewater treatment, water purification, and other filtration operations. Accordingly, flat membranes were developed from extruded nanocomposites of polyamide 6 (PA6) and carbon nanotubes (MWCNT), varying the filler content to 1, 3, and 5 parts per [...] Read more.
Polymeric membranes are a highly viable technology for wastewater treatment, water purification, and other filtration operations. Accordingly, flat membranes were developed from extruded nanocomposites of polyamide 6 (PA6) and carbon nanotubes (MWCNT), varying the filler content to 1, 3, and 5 parts per hundred resin (phr). The membranes were produced using the phase inversion process through the immersion–precipitation technique. In total, eight membrane compositions were developed with solvent/polymer ratios of 80/20 (weight %). Calcium chloride (CaCl2) was used as a pore-forming agent at a content of 10 phr. Thus, the characterizations performed were: solution viscosity, FTIR, contact angle measurement, SEM, AFM, water permeability test, and water vapor permeation test. The results showed that the high viscosity of membranes, excessive gelation time, and higher MWCNT contents contributed to a decrease and/or absence of flow. Through SEM images and water flow measurements, the significant influence of CaCl2 was observed in modifying the membrane morphology (more interconnected porous structures), ensuring the presence of flow. The AFM images also confirm this phenomenon through the increase in roughness. Water vapor transmission increased with higher MWCNT content. These results demonstrate that PA6 and MWCNT membranes were effective for water filtration, only in those where CaCl2 was used, and for water vapor initially. Full article
(This article belongs to the Special Issue Processing and Applications of Polymer Composite Materials)
Show Figures

Figure 1

15 pages, 1105 KB  
Article
Development of a Geopolymer for 3D Printing Using Submerged Arc Welding (SAW) Slag
by Fernando Fernández, Marina Sánchez, Pablo Gómez García, Míriam Hernández, Miguel Hurtado, Yanjuan Chen, Hubert Rahier and Carlos Rodríguez
Constr. Mater. 2025, 5(4), 73; https://doi.org/10.3390/constrmater5040073 - 1 Oct 2025
Abstract
Reducing the carbon footprint of the construction sector is a growing priority. This study explores the potential of using submerged arc welding (SAW) slag as a precursor in the development of low-carbon geopolymeric materials for 3D printing. The influence of potassium hydroxide (KOH) [...] Read more.
Reducing the carbon footprint of the construction sector is a growing priority. This study explores the potential of using submerged arc welding (SAW) slag as a precursor in the development of low-carbon geopolymeric materials for 3D printing. The influence of potassium hydroxide (KOH) molarity, partial replacement of ground granulated blast furnace slag (GGBFS) with SAW slag, and water-to-binder (w/b) ratio was evaluated in terms of fresh and hardened properties. Increasing KOH molarity delayed setting times, with the longest delays at 10 M and 12 M. The highest compressive strength (48.5 MPa at 28 days) was achieved at 8 M; higher molarities led to strength losses due to excessive precursor dissolution and increased porosity. GGBFS replacement increased setting times due to its higher Al2O3 and MgO content, which slowed geopolymerization. The optimized formulation, containing 20% SAW slag and activated with 8 M KOH at a w/b ratio of 0.29, exhibited good workability, extrudability, and shape retention. This mixture also performed best in 3D printing trials, strong layer adhesion and no segregation, although minor edge irregularities were observed. These results suggest that SAW slag is a promising sustainable material showing for 3D-printed geopolymers, with further optimization of printing parameters needed to enhance surface quality. Full article
37 pages, 10606 KB  
Article
Numerical Analysis of the Three-Roll Bending Process of 6061-T6 Aluminum Profiles with Multiple Bending Radii Using the Finite Element Method
by Mauricio da Silva Moreira, Carlos Eduardo Marcos Guilherme, João Henrique Corrêa de Souza, Elizaldo Domingues dos Santos and Liércio André Isoldi
Metals 2025, 15(10), 1097; https://doi.org/10.3390/met15101097 - 1 Oct 2025
Abstract
The present work numerically investigates the mechanical behavior of six 6061-T6 aluminum profiles during roll bending, considering, in two specific cases, the application of the process in different bending directions (vertical and horizontal), totaling eight cases analyzed, with emphasis on the influence of [...] Read more.
The present work numerically investigates the mechanical behavior of six 6061-T6 aluminum profiles during roll bending, considering, in two specific cases, the application of the process in different bending directions (vertical and horizontal), totaling eight cases analyzed, with emphasis on the influence of multiple bending radii. Notably, two of the profiles are characterized by high geometric complexity, making their analysis particularly relevant within the scope of this study. Using the finite element method in ANSYS® (version 2022 R2) (SOLID187 element), the study expands the previously validated model to a broader range of geometries and includes an additional validation and verification stage. The results reveal: (i) an inverse relationship between bending radius and von Mises stress, with critical values close to the material’s strength limit at smaller radii; (ii) characteristic displacement patterns for each profile, quantified through specific curve fittings; and (iii) a systematic comparison among the six profiles, highlighting stress concentrations and deformations differentiated by geometry. The simulations provide criteria for predicting forming defects and optimizing process parameters, expanding the database for industrial designs with multiple extruded profiles. Full article
(This article belongs to the Special Issue Advances in Lightweight Material Forming Technology)
Show Figures

Figure 1

20 pages, 2858 KB  
Article
Development of 3D-Printed Carbon Capture Adsorbents by Zeolites Derived from Coal Fly Ash
by Silviya Boycheva, Boian Mladenov, Ivan Dimitrov and Margarita Popova
J. Compos. Sci. 2025, 9(10), 524; https://doi.org/10.3390/jcs9100524 - 1 Oct 2025
Abstract
The present study aims to develop 3D-structured adsorbents for carbon capture with the utilization of coal ash after its conversion into zeolites. For this purpose, printing paste mixtures with a viscosity of 800 Pa·s were developed based on an environmentally friendly and safe [...] Read more.
The present study aims to develop 3D-structured adsorbents for carbon capture with the utilization of coal ash after its conversion into zeolites. For this purpose, printing paste mixtures with a viscosity of 800 Pa·s were developed based on an environmentally friendly and safe polymer binder filled with coal ash zeolite with the addition of bentonite as a filler. The optimal consistency of the printing mixtures for preserving the shape and dimensions of the 3D-printed structures was established. Various model configurations of the macrostructure of 3D adsorbents were developed, and the optimal settings of the extruding system for their printing were established. After calcination, the resulting 3D structures were studied using instrumental analysis techniques, investigating the influence of 3D structuring on the phase composition, surface characteristics, and adsorption capacity for CO2 capture in comparison with the initial powder coal ash zeolite adsorbents. The role of compensating cations in terms of the adsorption ability of powders in 3D-printed adsorbents was investigated. The current study offers an innovative and previously unexplored approach to a more expedient and practically significant utilization of aluminosilicate solid waste and, in particular, coal ash, through their 3D structuring and outlines a new research and technological direction in the development of economically advantageous, technologically feasible, and environmentally friendly 3D adsorbents. Full article
(This article belongs to the Special Issue 3D Printing and Additive Manufacturing of Composites)
Show Figures

Graphical abstract

18 pages, 14537 KB  
Article
Enhanced Mechanical and Corrosion Properties of As-Extruded Mg-12Gd-2Zn-0.4Zr Alloy by Nd Additions
by Jiahuan He, Lixin Hong, Jianwei Dai and Xiaobo Zhang
Metals 2025, 15(10), 1077; https://doi.org/10.3390/met15101077 - 26 Sep 2025
Abstract
The microstructures and mechanical and corrosion properties of Mg-12Gd-2Zn-xNd-0.4Zr (x = 0, 0.5, and 1.0 wt.%) alloys after hot-extrusion have been studied by scanning electron microscope (SEM), transmission electron microscope (TEM), electron back scattered diffraction (EBSD), X-ray diffractometer (XRD), electronic [...] Read more.
The microstructures and mechanical and corrosion properties of Mg-12Gd-2Zn-xNd-0.4Zr (x = 0, 0.5, and 1.0 wt.%) alloys after hot-extrusion have been studied by scanning electron microscope (SEM), transmission electron microscope (TEM), electron back scattered diffraction (EBSD), X-ray diffractometer (XRD), electronic universal testing machine, atomic force microscope (AFM), immersion, and electrochemical tests. The results show that all the alloys consist of an α-Mg matrix, β phase, and stacking faults (SFs). Obvious texture (<1¯21¯0> parallel to the extrusion direction and the direction close to <0001>) can be found due to the introduction of the Nd element. The yield strength (YS) of the alloys with Nd additions in different testing conditions is higher than that without Nd addition. The addition of 0.5 wt.% Nd achieves the highest tensile YS at room temperature (262 MPa) and 180 °C (251 MPa), along with compression YS (246 MPa), attributable to grain refinement, stacking faults, texture, and solute atom strengthening. Moreover, the compression YS to tensile YS ratio of the as-extruded alloy increases from 0.87 to 0.98, indicating a significant improvement of tension–compression YS asymmetry. The Nd addition also plays a great role in the enhanced corrosion resistance of the alloys. Specifically, the corrosion potential of the different phases in the alloys shows the following order: β phase > SFs > α-Mg matrix. The alloy with 0.5 wt.% Nd addition exhibits the best corrosion resistance owing to its lower corrosion potential difference between the β phase and α-Mg matrix. Full article
Show Figures

Figure 1

14 pages, 3334 KB  
Article
Clinical Evaluation of Underwater Discharge Plasma as a Root Canal Irrigant: A Randomized Pilot Study on Efficacy and Safety
by Jeong-Hyo Lyu, Young-Hee Kim, Hyun-Sook Chung, Sang-Yoon Park, Sang-Min Yi, Soo-Hwan Byun, Sung-Woon On, Jae-Seo Lee and Byoung-Eun Yang
Biomedicines 2025, 13(10), 2343; https://doi.org/10.3390/biomedicines13102343 - 25 Sep 2025
Abstract
Background/Objectives: Root canal therapy (RCT) aims to eliminate intracanal infection and promote periapical healing through mechanical instrumentation and chemical disinfection. Conventional irrigants, such as sodium hypochlorite (NaOCl), are effective but may exhibit limited penetration into anatomically complex root canal systems and carry the [...] Read more.
Background/Objectives: Root canal therapy (RCT) aims to eliminate intracanal infection and promote periapical healing through mechanical instrumentation and chemical disinfection. Conventional irrigants, such as sodium hypochlorite (NaOCl), are effective but may exhibit limited penetration into anatomically complex root canal systems and carry the risks of cytotoxicity if extruded beyond the apical foramen or into surrounding periodontal tissues. In this pilot study, we evaluated the clinical effectiveness and safety of underwater discharge plasma (UDP) as a biocompatible alternative to NaOCl for root canal irrigation. Methods: A prospective, randomized clinical trial was conducted involving 30 patients who required root canal treatment. Patients were randomly allocated to the UDP (n = 15) or NaOCl (n = 15) group. All treatments were performed by a single operator following standardized protocols. Pain was assessed using the visual analog scale (VAS), and periapical healing was evaluated using the Periapical Index (PAI) at baseline, 2 months, and 4 months. Statistical analyses included the Friedman test, Mann–Whitney U test, and Fisher’s exact test. Interobserver agreement for radiographic readings was evaluated using quadratic-weighted Cohen’s kappa coefficient. Results: A total of 28 patients completed the study. VAS scores significantly decreased over time in both groups (p < 0.05), with no significant difference between the groups at any time point (p > 0.05). At 4 months, radiographic healing was observed in 71.4% and 92.9% of patients in the UDP and NaOCl groups, respectively (p > 0.05). PAI score changes and clinical success rates were comparable between groups. No adverse effects or thermal damage was reported when using UDP. Conclusions: UDP demonstrated short-term clinical efficacy and safety comparable to that of NaOCl. Thus, UDP may serve as a biocompatible alternative for root canal disinfection. Further large-scale and long-term studies are warranted to confirm its clinical utility. Full article
Show Figures

Figure 1

18 pages, 6933 KB  
Article
Recycling of PBS and PBS Bio-Composites Containing Organic By-Product Waste
by Nadka Tz. Dintcheva, Giulia Infurna, Cristina Scolaro, Erika Alessia Di Liberto, Mariem Ltayef and Annamaria Visco
Polymers 2025, 17(19), 2577; https://doi.org/10.3390/polym17192577 - 24 Sep 2025
Viewed by 126
Abstract
The current work is driven by applying circular principles, and it investigated the potential recyclability of polybutylene succinate (PBS) containing brewer’s spent grain filler (BSGF, 30 wt%) in comparison to the recyclability of pure PBS. PBS is much more stable than the PBS/BSGF [...] Read more.
The current work is driven by applying circular principles, and it investigated the potential recyclability of polybutylene succinate (PBS) containing brewer’s spent grain filler (BSGF, 30 wt%) in comparison to the recyclability of pure PBS. PBS is much more stable than the PBS/BSGF composite during processing cycles. Typically, thermomechanical degradation induces radical formation and branching of the macromolecular chain in PBS. Furthermore, PBS becomes less hydrophilic (by 53%, reaching 84°, approaching the 90° threshold), and its surface roughness increases by about 38% after five processing cycles. BSGF increases the viscosity of the melt, especially at low frequencies, and stabilizes the melt in the PBS/BSGF, which has lower torque variations during processing compared to pure PBS. Furthermore, BSGF in r-PBS/BSGF increases both hydrophilicity (by about 15%, from 75° to 64°) and surface roughness (by about 17%) after five processing cycles of the solid bio-composite and limits the formation of carboxylic groups during thermomechanical degradation. PBS is recyclable five times because it maintains its properties unchanged during extrusion cycles. At least two reprocessing steps are required for PBS/BSGF to obtain an optimal dispersion of BSGF, which can be re-extruded approximately three times. PBS/BSGF after four and five extrusion steps shows increased rigidity (Et PBS/BSGF > Et PBS) and reduced ductility (εb PBS/BSGF < εbt PBS), which could limit the recyclability of the PBS-based composite. Full article
Show Figures

Graphical abstract

21 pages, 4703 KB  
Article
Development of Bioceramic Bone-Inspired Scaffolds Through Single-Step Melt-Extrusion 3D Printing for Segmental Defect Treatment
by Aikaterini Dedeloudi, Pietro Maria Bertelli, Laura Martinez-Marcos, Thomas Quinten, Imre Lengyel, Sune K. Andersen and Dimitrios A. Lamprou
J. Funct. Biomater. 2025, 16(10), 358; https://doi.org/10.3390/jfb16100358 - 23 Sep 2025
Viewed by 182
Abstract
The increasing demand for novel tissue engineering (TE) applications in bone tissue regeneration underscores the importance of exploring advanced manufacturing techniques and biomaterials for personalised treatment approaches. Three-dimensional printing (3DP) technology facilitates the development of implantable devices with intricate geometries, enabling patient-specific therapeutic [...] Read more.
The increasing demand for novel tissue engineering (TE) applications in bone tissue regeneration underscores the importance of exploring advanced manufacturing techniques and biomaterials for personalised treatment approaches. Three-dimensional printing (3DP) technology facilitates the development of implantable devices with intricate geometries, enabling patient-specific therapeutic solutions. Although Fused Filament Fabrication (FFF) and Direct Ink Writing (DIW) are widely utilised for fabricating bone-like implants, the need for multiple processing steps often prolongs the overall production time. In this study, a single-step melt-extrusion 3DP technique was performed to develop multi-material scaffolds including bioceramics, hydroxyapatite (HA), and β-tricalcium phosphate (TCP) in both their bioactive and calcined forms at 10% and 20% w/w, within polycaprolactone (PCL) matrices. Printing parameters were optimised, and physicochemical properties of all biomaterials and final forms were evaluated. Thermal degradation and surface morphology analyses assessed the consistency and distribution of the ceramics across the different formulations. The tensile testing of the scaffolds defined the impact of each ceramic type and wt% on scaffold flexibility performance, while in vitro cell studies determined the cytocompatibility efficiency. Hence, all 3D-printed PCL–ceramic composite scaffolds achieved structural integrity and physicochemical and thermal stability. The mechanical profile of extruded samples was relevant to the ceramic consistency, providing valuable insights for further mechanotransduction investigations. Notably, all materials showed high cell viability and proliferation, indicating strong biocompatibility. Therefore, this additive manufacturing (AM) process is a precise and fast approach for developing biomaterial-based scaffolds, with potential applications in surgical restoration and support of segmental bone defects. Full article
(This article belongs to the Section Synthesis of Biomaterials via Advanced Technologies)
Show Figures

Graphical abstract

26 pages, 5102 KB  
Article
Towards Sustainable Mortar: Optimising Sika-Fibre Dosage in Ground Granulated Blast Furnace Slag (GGBS) and Silica Fume Blends for 3D Concrete Printing
by Wen Si, Ben Hopkins, Mehran Khan and Ciaran McNally
Buildings 2025, 15(19), 3436; https://doi.org/10.3390/buildings15193436 - 23 Sep 2025
Viewed by 189
Abstract
Three-dimensional concrete printing (3DCP) is rapidly emerging as a transformative construction technology, enabling formwork-free fabrication, geometric flexibility, and reduced labour. However, the lack of conventional reinforcement and the strict requirements for fresh and hardened properties present significant challenges. Fibre reinforcement and supplementary cementitious [...] Read more.
Three-dimensional concrete printing (3DCP) is rapidly emerging as a transformative construction technology, enabling formwork-free fabrication, geometric flexibility, and reduced labour. However, the lack of conventional reinforcement and the strict requirements for fresh and hardened properties present significant challenges. Fibre reinforcement and supplementary cementitious materials (SCMs), such as ground granulated blast furnace slag (GGBS), offer pathways to enhance printability while mitigating environmental impact. This study investigates the combined effect of natural cellulose microfibres and silica fume on the rheological, mechanical, and sustainability performance of 3D-printable mortars. Six mixes were prepared with 50% GGBS, 45% cement, and 5% silica fume, incorporating fibre dosages from 0% to 1%. Results showed that a 0.5% fibre dosage provided the most favourable balance. At this dosage, static yield stress increased to 9.35 Pa and thixotropy reached 8623 mPa·s, enhancing structuration for shape retention. Plastic viscosity remained stable at 4–5 Pa·s, ensuring adequate extrusion performance. Higher fibre dosages (≥0.75%) caused a significant increase in rheological resistance, with static yield stress reaching 208 Pa and thixotropy 135,342 mPa·s. This resulted in excessive structuration, fibre clustering, and poor extrudability. Compressive strength was achieved at 109.10 MPa (92% of silica fume-only mix) with 0.5% fibre. In comparison, flexural strength was 13.20 MPa at 0.5% fibre content and reduced gradually to 12.29 MPa at 1% fibre due to weak fibre–matrix bonding and porosity. Sustainability analysis confirmed that using 50% GGBS and 5% silica fume reduced embodied carbon compared to a 100% cement mix. This study also demonstrated that cellulose microfibres at 0.25–0.5% are optimal for balancing fresh properties, mechanical strength, and sustainability in 3D-printed mortars. Full article
Show Figures

Figure 1

18 pages, 4842 KB  
Article
Positron Annihilation Studies of Hydrostatically Extruded AA1050 Aluminum
by Ewa Dryzek, Mirosław Wróbel, Maciej Sarnek and Jacek Skiba
Materials 2025, 18(18), 4428; https://doi.org/10.3390/ma18184428 - 22 Sep 2025
Viewed by 116
Abstract
AA1050 aluminum was hydrostatically extruded at room temperature to true strains of 0.9 and 3.2, and at cryogenic temperature to a true strain of 0.9. As a result of the extrusion process, the yield strength (YS) increased by 130–160% to 120–130 MPa, and [...] Read more.
AA1050 aluminum was hydrostatically extruded at room temperature to true strains of 0.9 and 3.2, and at cryogenic temperature to a true strain of 0.9. As a result of the extrusion process, the yield strength (YS) increased by 130–160% to 120–130 MPa, and the ultimate tensile strength (UTS) rose by 64–81% to 125–140 MPa. The hardness reached 46–49 HV. YS and UTS values correspond to mechanical properties typical of the H6 or H8 temper designations, with unusually high elongation at break ranging from 15% to 16.4%. Differences in lattice parameters, crystallite size, and lattice strain between samples deformed under various conditions—as well as those annealed after deformation—were within the margin of measurement uncertainty. This indicated that differences in defect density between the samples were relatively small, due to dynamic recovery occurring during extrusion. However, positron annihilation spectroscopy demonstrated that the cryo-cooled material extruded at a true strain of 0.9, as well as the one extruded at RT at a true strain of 3.2, exhibited significantly higher mean lattice defect concentrations compared to the sample extruded at RT at a true strain of 0.9. The predominant defects detected were vacancies associated with dislocations. The extrusion parameters also significantly affected the crystallographic texture. In particular, they altered the relative proportions of the <111> and <100> components in the axial texture, with the <100> component becoming dominant in cryogenically extruded samples. This trend was further intensified during recrystallization, which enhanced the <100> component even more. Recrystallization of the deformed materials occurred in the temperature range of 520–570 K. The activation energy for grain boundary migration during recrystallization was estimated to be approximately 1.5 eV. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

16 pages, 1148 KB  
Article
Refined Cost Calculation Framework for FDM Parts
by Bálint Leon Seregi and Péter Ficzere
J. Manuf. Mater. Process. 2025, 9(9), 321; https://doi.org/10.3390/jmmp9090321 - 22 Sep 2025
Viewed by 285
Abstract
Fused deposition modeling (FDM) is a widely used additive manufacturing (AM) technology, favored for its design flexibility and suitability for low-volume production. However, precise cost estimation remains a critical challenge, particularly in industrial environments where decision-making depends on accurate financial assessments. This study [...] Read more.
Fused deposition modeling (FDM) is a widely used additive manufacturing (AM) technology, favored for its design flexibility and suitability for low-volume production. However, precise cost estimation remains a critical challenge, particularly in industrial environments where decision-making depends on accurate financial assessments. This study proposes a comprehensive, parameter-based cost calculation model for FDM processes, with a special focus on the wear of machine tooling. Unlike conventional methods, the model separates tooling costs from general machine operation costs and introduces a novel approach to nozzle wear estimation based on extruded material volume rather than printing time. The framework incorporates key cost components—including material usage, support removal, machine operation, tooling degradation, and labor—and links them to quantifiable parameters such as part volume, build time, and energy consumption. The methodology was tested across multiple scenarios with different geometries and production volumes, revealing significant differences between time- and volume-based wear calculations. The results demonstrate that the proposed model provides more accurate and adaptable cost predictions, especially in varied production settings. This approach enhances the financial transparency of FDM workflows and supports better-informed decisions in both prototyping and small-batch manufacturing contexts. Full article
(This article belongs to the Special Issue Innovative Rapid Tooling in Additive Manufacturing Processes)
Show Figures

Figure 1

19 pages, 3628 KB  
Article
Additive Manufacturing of Bio-Based PA11 Composites with Recycled Short Carbon Fibers: Stiffness–Strength Characterization
by Christian Brauner, Thierry Bourquin, Julian Kupski, Lucian Zweifel, Mohammad Hajikazemi, Chester Houwink and Martin Eichenhofer
Polymers 2025, 17(18), 2549; https://doi.org/10.3390/polym17182549 - 20 Sep 2025
Viewed by 257
Abstract
Short carbon fiber-reinforced bio-based polyamide 11 (PA11) composites were developed in filament form for Additive Fusion Technology (AFT) 3D printing and benchmarked against injection-molded samples. Composites containing 15 and 25 weight percent (wt%) recycled carbon fibers (rCFs) were successfully extruded into 1.75 mm [...] Read more.
Short carbon fiber-reinforced bio-based polyamide 11 (PA11) composites were developed in filament form for Additive Fusion Technology (AFT) 3D printing and benchmarked against injection-molded samples. Composites containing 15 and 25 weight percent (wt%) recycled carbon fibers (rCFs) were successfully extruded into 1.75 mm diameter filaments, whereas higher fiber contents (35 wt%) led to brittle filament failure. AFT printing with subsequent consolidation produced short fiber composites with highly aligned fibers, while injection molding generated more randomly oriented microstructures. Mechanical testing revealed that AFT-printed composites in the fiber direction achieved significantly higher stiffness and comparable tensile strength to injection-molded counterparts. At 25 wt% fiber content, AFT 0° specimens reached an axial tensile modulus of 14.5 GPa, about 32% higher than injection-molded samples (11.0 GPa), with similar axial tensile strength (~123 vs. 126 MPa). However, AFT specimens displayed pronounced anisotropy: transverse (90°) properties dropped to ~2.3 GPa for transverse modulus and ~46–50 MPa transverse tensile strength, near matrix-dominated levels. Impact testing showed orientation-dependent toughness, with AFT 90° samples at 15% fiber content achieving the highest impact energy (76 kJ·m−2), while AFT 0° samples were ~30% lower than injection-molded equivalents. Dynamic mechanical analysis confirmed that AFT 0° composites maintained higher stiffness up to ~80 °C. Overall, these results demonstrate that aligned short fiber filaments enable high stiffness and strength performance comparable to injection molding, with the trade-off of anisotropy that must be carefully considered in design. This study is the first to demonstrate the feasibility of combining bio-based PA11 with recycled short carbon fibers in AFT printing, thereby extending additive manufacturing to sustainable and high-stiffness short fiber composites. Full article
(This article belongs to the Special Issue Development in Fiber-Reinforced Polymer Composites: 2nd Edition)
Show Figures

Graphical abstract

Back to TopTop