Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = facultative parthenogenesis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 600 KB  
Article
Does Temperature Tolerance Increase in Long-Term Domesticated Frankliniella occidentalis Under Constant Temperature?
by Lin Shu, Hongbo Li, Yawen Chang and Yuzhou Du
Insects 2025, 16(6), 557; https://doi.org/10.3390/insects16060557 - 24 May 2025
Viewed by 699
Abstract
The wide distribution of Frankliniella occidentalis is largely due to its extreme temperature adaptability. In current studies, most scholars consider environmental changes to be the main factor affecting insect temperature adaptation. However, our previous studies have shown that the adaptability of F. occidentalis [...] Read more.
The wide distribution of Frankliniella occidentalis is largely due to its extreme temperature adaptability. In current studies, most scholars consider environmental changes to be the main factor affecting insect temperature adaptation. However, our previous studies have shown that the adaptability of F. occidentalis to extreme temperature conditions can be strengthened through domestication. In this study, the population of F. occidentalis raised in the laboratory for a long time (2008–2022) under relatively constant temperature and humidity conditions was used as the experimental material. Over 14 years, changes in temperature tolerance after the same high- and low-temperature stress were evaluated by comparing the survival data of the 2010 population, 2016 population (more than 100 generations), and 2022 population (more than 200 generations). The survival data and LT50 values demonstrated significant stage- and sex-specific differences in thermal tolerance: The cold tolerance of F. occidentalis improved significantly, with LT50 decreasing from −12.5 °C (P2010) to −13.4 °C (P2022) for females and −11.5 °C to −13.0 °C for males. Notably, male adults showed higher survival rates than females at −14 °C and −15 °C. Meanwhile, heat tolerance increased most markedly in 2nd instar larvae (ΔLT50 = +4.1 °C). These findings indicate an environment-independent evolutionary pathway within the population, providing a new research direction for insect population evolution. Full article
(This article belongs to the Special Issue Ecological Adaptation of Insect Pests)
Show Figures

Figure 1

28 pages, 2915 KB  
Article
Parthenogenesis and the Evolution of Anisogamy
by George W. A. Constable and Hanna Kokko
Cells 2021, 10(9), 2467; https://doi.org/10.3390/cells10092467 - 18 Sep 2021
Cited by 8 | Viewed by 4180
Abstract
Recently, it was pointed out that classic models for the evolution of anisogamy do not take into account the possibility of parthenogenetic reproduction, even though sex is facultative in many relevant taxa (e.g., algae) that harbour both anisogamous and isogamous species. Here, we [...] Read more.
Recently, it was pointed out that classic models for the evolution of anisogamy do not take into account the possibility of parthenogenetic reproduction, even though sex is facultative in many relevant taxa (e.g., algae) that harbour both anisogamous and isogamous species. Here, we complement this recent analysis with an approach where we assume that the relationship between progeny size and its survival may differ between parthenogenetically and sexually produced progeny, favouring either the former or the latter. We show that previous findings that parthenogenesis can stabilise isogamy relative to the obligate sex case, extend to our scenarios. We additionally investigate two different ways for one mating type to take over the entire population. First, parthenogenesis can lead to biased sex ratios that are sufficiently extreme that one type can displace the other, leading to de facto asexuality for the remaining type that now lacks partners to fuse with. This process involves positive feedback: microgametes, being numerous, lack opportunities for syngamy, and should they proliferate parthenogenetically, the next generation makes this asexual route even more prominent for microgametes. Second, we consider mutations to strict asexuality in producers of micro- or macrogametes, and show that the prospects of asexual invasion depend strongly on the mating type in which the mutation arises. Perhaps most interestingly, we also find scenarios in which parthenogens have an intrinsic survival advantage yet facultatively sexual isogamous populations are robust to the invasion of asexuals, despite us assuming no genetic benefits of recombination. Here, equal contribution from both mating types to zygotes that are sufficiently well provisioned can outweigh the additional costs associated with syngamy. Full article
Show Figures

Figure 1

18 pages, 2103 KB  
Article
Mating-Induced Trade-Offs upon Egg Production versus Fertilization and Offspring’s Survival in a Sawfly with Facultative Parthenogenesis
by Hong Yu, Min-Rui Shi, Jin Xu, Peng Chen and Jian-Hong Liu
Insects 2021, 12(8), 693; https://doi.org/10.3390/insects12080693 - 2 Aug 2021
Cited by 6 | Viewed by 2207
Abstract
Investigation of mating-induced trade-offs between reproduction and survival is conducive to provide evolutionary insights into reproductive strategies and aging. Here, we used RNAseq and bioinformatics to reveal mating-induced changes of genes and pathways related to reproduction and survival in female Cephalcia chuxiongica, [...] Read more.
Investigation of mating-induced trade-offs between reproduction and survival is conducive to provide evolutionary insights into reproductive strategies and aging. Here, we used RNAseq and bioinformatics to reveal mating-induced changes of genes and pathways related to reproduction and survival in female Cephalcia chuxiongica, a pine defoliator with facultative parthenogenesis and long larval dormancy. Results showed that mating induced substantial downregulation on genes and pathways associated to immunity, stress response, and longevity. However, mating induced divergent reproductive response, with downregulation on genes and pathways related to egg production while upregulation on genes and pathways related to egg fertilization. Considering the nature of limited resources in adults, low fecundity, and egg protection behavior in C. chuxiongica, we suggest that mating triggers trade-offs between reproduction and survival in this insect and females of this species may have evolved specific strategies to adapt to the environmental and hosts’ conditions, e.g., restrict whole fecundity to ensure higher fertilization and offspring’s survival. Moreover, mating induced significant responses on genes and pathways that play important roles in vertebrate reproduction while their function in insects are unclear, such as the progesterone-mediated oocyte maturation pathway; the significant regulation after mating suggests that their function may be evolutionarily conserved in animal kingdom. Full article
Show Figures

Figure 1

22 pages, 6994 KB  
Review
Fisher vs. the Worms: Extraordinary Sex Ratios in Nematodes and the Mechanisms that Produce Them
by Justin Van Goor, Diane C. Shakes and Eric S. Haag
Cells 2021, 10(7), 1793; https://doi.org/10.3390/cells10071793 - 15 Jul 2021
Cited by 18 | Viewed by 5237
Abstract
Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with [...] Read more.
Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two “seminal” contributions of G. A. Parker. Full article
Show Figures

Figure 1

20 pages, 1097 KB  
Article
Epigenetic Patterns and Geographical Parthenogenesis in the Alpine Plant Species Ranunculus kuepferi (Ranunculaceae)
by Christoph C. F. Schinkel, Eleni Syngelaki, Bernhard Kirchheimer, Stefan Dullinger, Simone Klatt and Elvira Hörandl
Int. J. Mol. Sci. 2020, 21(9), 3318; https://doi.org/10.3390/ijms21093318 - 7 May 2020
Cited by 12 | Viewed by 3442
Abstract
Polyploidization and the shift to apomictic reproduction are connected to changes in DNA cytosine-methylation. Cytosine-methylation is further sensitive to environmental conditions. We, therefore, hypothesize that DNA methylation patterns would differentiate within species with geographical parthenogenesis, i.e., when diploid sexual and polyploid apomictic populations [...] Read more.
Polyploidization and the shift to apomictic reproduction are connected to changes in DNA cytosine-methylation. Cytosine-methylation is further sensitive to environmental conditions. We, therefore, hypothesize that DNA methylation patterns would differentiate within species with geographical parthenogenesis, i.e., when diploid sexual and polyploid apomictic populations exhibit different spatial distributions. On natural populations of the alpine plant Ranunculus kuepferi, we tested differences in methylation patterns across two cytotypes (diploid, tetraploid) and three reproduction modes (sexual, mixed, apomictic), and their correlation to environmental data and geographical distributions. We used methylation-sensitive amplified fragment-length polymorphism (methylation-sensitive AFLPs) and scored three types of epiloci. Methylation patterns differed independently between cytotypes versus modes of reproduction and separated three distinct combined groups (2x sexual + mixed, 4x mixed, and 4x apomictic), with differentiation of 4x apomicts in all epiloci. We found no global spatial autocorrelation, but instead correlations to elevation and temperature gradients in 22 and 36 epiloci, respectively. Results suggest that methylation patterns in R. kuepferi were altered by cold conditions during postglacial recolonization of the Alps, and by the concomitant shift to facultative apomixis, and by polyploidization. Obligate apomictic tetraploids at the highest elevations established a distinct methylation profile. Methylation patterns reflect an ecological gradient rather than the geographical differentiation. Full article
Show Figures

Figure 1

Back to TopTop