Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,349)

Search Parameters:
Keywords = fault detection, fault diagnosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 1507 KB  
Article
Real-Time Joint Fault Detection and Diagnosis of Hexapod Robot Based on Improved Random Forest
by Qilei Fang, Yifan Men, Kai Zhang, Man Yu and Yin Liu
Processes 2025, 13(9), 2762; https://doi.org/10.3390/pr13092762 - 28 Aug 2025
Viewed by 108
Abstract
In the field of robotic fault detection, although the random forest (RF) algorithm is widely adopted, its limited accuracy remains a critical constraint in practical engineering applications. To address this technical challenge, this study proposes a Two-Stages Random Forest (TSRF) algorithm. This approach [...] Read more.
In the field of robotic fault detection, although the random forest (RF) algorithm is widely adopted, its limited accuracy remains a critical constraint in practical engineering applications. To address this technical challenge, this study proposes a Two-Stages Random Forest (TSRF) algorithm. This approach constructs a hierarchical architecture with a dynamic adaptive weighting strategy, where the class probability vectors generated in the 1st-stage serve as meta-features for the 2nd-stage classifier. Such hierarchical optimization enables the model to precisely identify fault-sensitive features, effectively overcoming the performance limitations of conventional single-model frameworks. To validate the proposed approach, we conducted comparative experiments using a multidimensional kinematic feature dataset from hexapod robot joint fault detection. Benchmark models included geometry-feature-based RF and physics-informed RF as established baselines. Experimental results demonstrate that TSRF achieves a classification accuracy of 99.7% on the test set, representing an 18.8% improvement over standard RF. This significant advancement provides a novel methodological framework for intelligent fault diagnosis in complex electromechanical systems. Full article
(This article belongs to the Section Process Control and Monitoring)
Show Figures

Figure 1

14 pages, 5572 KB  
Article
Ir- and Pt-Doped InTe Monolayers as Potential Sensors for SF6 Decomposition Products: A DFT Investigation
by Juanjuan Tan, Shuying Huang, Jianhong Dong, Jiaming Fan, Dejian Hou and Shaomin Lin
Materials 2025, 18(17), 4022; https://doi.org/10.3390/ma18174022 - 28 Aug 2025
Viewed by 238
Abstract
The burgeoning demand for reliable fault detection in high-voltage power equipment necessitates advanced sensing materials capable of identifying trace sulfur hexafluoride SF6 decomposition products (SDPs). In this work, the first-principles calculations were employed to comprehensively evaluate the potential of Ir- and Pt-doped [...] Read more.
The burgeoning demand for reliable fault detection in high-voltage power equipment necessitates advanced sensing materials capable of identifying trace sulfur hexafluoride SF6 decomposition products (SDPs). In this work, the first-principles calculations were employed to comprehensively evaluate the potential of Ir- and Pt-doped InTe (Ir-InTe and Pt-InTe) monolayers as high-performance gas sensors for the four specific SDPs (H2S, SO2, SOF2, SO2F2). The results reveal that Ir and Pt atoms are stably incorporated into the hollow sites of the InTe monolayer, significantly reducing the intrinsic bandgap from 1.536 eV to 0.278 eV (Ir-InTe) and 0.593 eV (Pt-InTe), thereby enhancing the material’s conductivity. Furthermore, Ir-InTe exhibits selective chemisorption for H2S, SO2, and SOF2, with adsorption energies exceeding −1.35 eV, while Pt-InTe shows chemisorption capability for all four SDPs. These interactions are further supported by significant charge transfer and orbital hybridization. Crucially, these interactions induce notable bandgap changes, with Ir-InTe showing up to a 65.5% increase (for SOF2) and Pt-InTe showing an exceptional 105.2% increase (for SO2F2), alongside notable work function variations. Furthermore, recovery time analysis indicates that Ir-InTe is suitable for reusable H2S sensing at 598 K (0.24 s), whereas Pt-InTe offers recyclable detection of SO2 (5.27 s) and SOF2 (0.16 s) at the same temperature. This work provides theoretical guidance for the development of next-generation InTe-based gas sensors for the fault diagnosis in high-voltage power equipment. Full article
(This article belongs to the Special Issue Ab Initio Modeling of 2D Semiconductors and Semimetals)
Show Figures

Figure 1

22 pages, 7015 KB  
Article
Induction Motor Fault Diagnosis Using Low-Cost MEMS Acoustic Sensors and Multilayer Neural Networks
by Seon Min Yoo, Hwi Gyo Lee, Wang Ke Hao and In Soo Lee
Appl. Sci. 2025, 15(17), 9379; https://doi.org/10.3390/app15179379 - 26 Aug 2025
Viewed by 319
Abstract
Induction motors are the dominant choice in industrial applications due to their robustness, structural simplicity, and high reliability. However, extended operation under extreme conditions, such as high temperatures, overload, and contamination, accelerates the degradation of internal components and increases the likelihood of faults. [...] Read more.
Induction motors are the dominant choice in industrial applications due to their robustness, structural simplicity, and high reliability. However, extended operation under extreme conditions, such as high temperatures, overload, and contamination, accelerates the degradation of internal components and increases the likelihood of faults. These faults are challenging to detect, as they typically develop gradually without clear external indicators. To address this issue, the present study proposes a cost-effective fault diagnosis system utilizing low-cost MEMS acoustic sensors in conjunction with a lightweight multilayer neural network (MNN). The same MNN architecture is employed to systematically compare three types of input feature representations: raw time-domain waveforms, FFT-based statistical features, and PCA-compressed FFT features. A total of 5040 samples were used to train, validate, and test the model for classifying three conditions: normal, rotor fault, and bearing fault. The time-domain approach achieved 90.6% accuracy, misclassifying 102 samples. In comparison, FFT-based statistical features yielded 99.8% accuracy with only two misclassifications. The FFT + PCA method produced similar performance while reducing dimensionality, making it more suitable for resource-constrained environments. These results demonstrate that acoustic-based fault diagnosis provides a practical and economical solution for industrial applications. Full article
(This article belongs to the Special Issue Artificial Intelligence in Machinery Fault Diagnosis)
Show Figures

Figure 1

28 pages, 5688 KB  
Article
Fault Diagnosis of a Bogie Gearbox Based on Pied Kingfisher Optimizer-Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise, Improved Multi-Scale Weighted Permutation Entropy, and Starfish Optimization Algorithm–Least-Squares Support Vector Machine
by Guangjian Zhang, Shilun Ma and Xulong Wang
Entropy 2025, 27(9), 905; https://doi.org/10.3390/e27090905 - 26 Aug 2025
Viewed by 300
Abstract
Current methods of detecting bogie gearbox faults mainly depend on manual judgment, which leads to inaccurate fault identification. In this study, a fault diagnosis model is proposed based on a pied kingfisher optimizer-improved complete ensemble empirical mode decomposition with adaptive noise (PKO-ICEEMDAN), improved [...] Read more.
Current methods of detecting bogie gearbox faults mainly depend on manual judgment, which leads to inaccurate fault identification. In this study, a fault diagnosis model is proposed based on a pied kingfisher optimizer-improved complete ensemble empirical mode decomposition with adaptive noise (PKO-ICEEMDAN), improved multi-scale weighted permutation entropy (IMWPE), and a starfish optimization algorithm optimizing a least-squares support vector machine (SFOA-LSSVM). Firstly, the acceleration signals of a bogie gearbox under six different working conditions were extracted through experiments. Secondly, the acceleration signals were decomposed by ICEEMDAN optimized by PKO to obtain the intrinsic mode function (IMF). Thirdly, IMFs with rich fault information were selected to reconstruct the signals according to the double screening criteria of both the correlation coefficient and variance contribution rate, and the IMWPE of the reconstructed signals was extracted. Finally, IMWPE as a feature vector was input into LSSVM optimized by the SFOA for fault diagnosis and compared with various models. The results show that the average accuracy of the training data of the proposed model was 99.13%, and the standard deviation was 0.09, while the average accuracy of the testing data was 99.44%, and the standard deviation was 0.12. Thus, the effectiveness of the proposed fault diagnosis model for the bogie gearbox was verified. Full article
Show Figures

Figure 1

21 pages, 2893 KB  
Article
Intelligent Fault Diagnosis System for Running Gear of High-Speed Trains
by Shuai Yang, Guoliang Gao, Ziyang Wang, Shengfeng Zeng, Yikai Ouyang and Guanglei Zhang
Sensors 2025, 25(17), 5269; https://doi.org/10.3390/s25175269 - 24 Aug 2025
Viewed by 566
Abstract
Conventional rail transit train running gear fault diagnosis mainly depends on routine maintenance inspections and manual judgment. However, these approaches lack robustness under complex operational environments and elevated noise levels, rendering them inadequate for real-time performance and the rigorous accuracy standards demanded by [...] Read more.
Conventional rail transit train running gear fault diagnosis mainly depends on routine maintenance inspections and manual judgment. However, these approaches lack robustness under complex operational environments and elevated noise levels, rendering them inadequate for real-time performance and the rigorous accuracy standards demanded by modern rail transit systems. Furthermore, many existing deep learning–based methods suffer from inherent limitations in feature extraction or incur prohibitive computational costs when processing multivariate time series data. This study represents one of the early efforts to introduce the TimesNet time series modeling framework into the domain of fault diagnosis for rail transit train running gear. By utilizing an innovative multi-period decomposition strategy and a mechanism for reshaping one-dimensional data into two-dimensional tensors, the framework enables advanced temporal-spatial representation of time series data. Algorithm validation is performed on both the high-speed train running gear bearing fault dataset and the multi-mode fault diagnosis datasets of gearbox under variable working conditions. The TimesNet model exhibits outstanding diagnostic performance on both datasets, achieving a diagnostic accuracy of 91.7% on the high-speed train bearing fault dataset. Embedded deployment experiments demonstrate that single-sample inference is completed within 70.3 ± 5.8 ms, thereby satisfying the real-time monitoring requirement (<100 ms) with a 100% success rate over 50 consecutive tests. The two-dimensional reshaping approach inherent to TimesNet markedly enhances the capacity of the model to capture intrinsic periodic structures within multivariate time series data, presenting a novel paradigm for the intelligent fault diagnosis of complex mechanical systems in train running gears. The integrated human–machine interaction system includes a comprehensive closed-loop process encompassing detection, diagnosis, and decision-making, thereby laying a robust foundation for the continued development of train running gear predictive maintenance technologies. Full article
Show Figures

Figure 1

24 pages, 1538 KB  
Article
Intelligent Fault Diagnosis for Rotating Machinery via Transfer Learning and Attention Mechanisms: A Lightweight and Adaptive Approach
by Zhengjie Wang, Xing Yang, Tongjie Li, Lei She, Xuanchen Guo and Fan Yang
Actuators 2025, 14(9), 415; https://doi.org/10.3390/act14090415 - 23 Aug 2025
Viewed by 239
Abstract
Fault diagnosis under variable operating conditions remains challenging due to the limited adaptability of traditional methods. This paper proposes a transfer learning-based approach for bearing fault diagnosis across different rotational speeds, addressing the critical need for reliable detection in changing industrial environments. The [...] Read more.
Fault diagnosis under variable operating conditions remains challenging due to the limited adaptability of traditional methods. This paper proposes a transfer learning-based approach for bearing fault diagnosis across different rotational speeds, addressing the critical need for reliable detection in changing industrial environments. The method trains a diagnostic model on labeled source-domain data and transfers them to unlabeled target domains through a two-stage adaptation strategy. First, only the source-domain data are labeled to reflect real-world scenarios where target-domain labels are unavailable. The model architecture combines a convolutional neural network (CNN) for feature extraction with a self-attention mechanism for classification. During source-domain training, the feature extractor parameters are frozen to focus on classifier optimization. When transferring to target domains, the classifier parameters are frozen instead, allowing the feature extractor to adapt to new speed conditions. Experimental validation on the Case Western Reserve University bearing dataset (CWRU), Jiangnan University bearing dataset (JNU), and Southeast University gear and bearing dataset (SEU) demonstrates the method’s effectiveness, achieving accuracies of 99.95%, 99.99%, and 100%, respectively. The proposed method achieves significant model size reduction compared to conventional TL approaches (e.g., DANN and CDAN), with reductions of up to 91.97% and 64%, respectively. Furthermore, we observed a maximum reduction of 61.86% in FLOPs consumption. The results show significant improvement over conventional approaches in maintaining diagnostic performance across varying operational conditions. This study provides a practical solution for industrial applications where equipment operates under non-stationary speeds, offering both computational efficiency and reliable fault detection capabilities. Full article
(This article belongs to the Section Actuators for Manufacturing Systems)
Show Figures

Figure 1

22 pages, 1805 KB  
Article
Fault Diagnosis of Wind Turbine Pitch Bearings Based on Online Soft-Label Meta-Learning and Gaussian Prototype Network
by Lianghong Wang, Zhongzhuang Bai, Hongxiang Li, Panpan Yang, Jie Tao, Xuemei Zou, Jinliang Zhao and Chunwei Wang
Energies 2025, 18(16), 4437; https://doi.org/10.3390/en18164437 - 20 Aug 2025
Viewed by 399
Abstract
Meta-learning has demonstrated significant advantages in small-sample tasks and has attracted considerable attention in wind turbine fault diagnosis. However, due to extreme operating conditions and equipment aging, the monitoring data of wind turbines often contain false alarms or missed detections. This results in [...] Read more.
Meta-learning has demonstrated significant advantages in small-sample tasks and has attracted considerable attention in wind turbine fault diagnosis. However, due to extreme operating conditions and equipment aging, the monitoring data of wind turbines often contain false alarms or missed detections. This results in inaccurate fault sample labeling. In meta-learning, these erroneous labels not only fail to help models quickly adapt to new meta-test tasks, but they also interfere with learning for new tasks, which leads to “negative transfer” phenomena. To address this, this paper proposes a novel method called Online Soft-Labeled Meta-learning with Gaussian Prototype Networks (SL-GPN). During training, the method dynamically aggregates feature similarities across multiple tasks or samples to form online soft labels. They guide model training process and effectively solve small-sample bearing fault diagnosis challenges. Experimental tests on small-sample data under various operating conditions and error labels were carried out. The results show that the proposed method improves diagnostic accuracy in small-sample environments, reduces false alarm rates, and demonstrates excellent generalization performance. Full article
Show Figures

Figure 1

26 pages, 2471 KB  
Article
Fault-Tolerant Tracking Observer-Based Controller Design for DFIG-Based Wind Turbine Affected by Stator Inter-Turn Short Circuit
by Yossra Sayahi, Moez Allouche, Mariem Ghamgui, Sandrine Moreau, Fernando Tadeo and Driss Mehdi
Symmetry 2025, 17(8), 1343; https://doi.org/10.3390/sym17081343 - 17 Aug 2025
Viewed by 401
Abstract
This paper introduces a novel strategy for the diagnosis and fault-tolerant control (FTC) of inter-turn short-circuit (ITSC) faults in the stator windings of Doubly Fed Induction Generator (DFIG)-based wind turbines. ITSC faults are among the most common electrical issues in rotating machines: early [...] Read more.
This paper introduces a novel strategy for the diagnosis and fault-tolerant control (FTC) of inter-turn short-circuit (ITSC) faults in the stator windings of Doubly Fed Induction Generator (DFIG)-based wind turbines. ITSC faults are among the most common electrical issues in rotating machines: early detection is therefore essential to reduce maintenance costs and prevent severe damage to the wind turbine system. To address this, a Fault Detection and Diagnosis (FDD) approach is proposed to identify and assess the severity of ITSC faults in the stator windings. A state-space model of the DFIG under ITSC fault conditions is first developed in the (d,q) reference frame. Based on this model, an Unknown Input Observer (UIO) structured using Takagi–Sugeno (T-S) fuzzy models is designed to estimate the fault level. To mitigate the impact of the fault and ensure continued operation under degraded conditions, a T-S fuzzy fault-tolerant controller is synthesized. This controller enables natural decoupling and optimal power extraction across a wide range of rotor speed variations. Since the effectiveness of the FTC relies on accurate fault information, a Proportional-Integral Observer (PIO) is employed to estimate the ITSC fault level. The proposed diagnosis and compensation strategy is validated through simulations performed on a 3 kW wind turbine system, demonstrating its efficiency and robustness. Full article
(This article belongs to the Special Issue Symmetry, Fault Detection, and Diagnosis in Automatic Control Systems)
Show Figures

Figure 1

15 pages, 1844 KB  
Article
Artificial Intelligence Agent-Enabled Predictive Maintenance: Conceptual Proposal and Basic Framework
by Wenyu Jiang and Fuwen Hu
Computers 2025, 14(8), 329; https://doi.org/10.3390/computers14080329 - 15 Aug 2025
Viewed by 868
Abstract
Predictive maintenance (PdM) represents a significant evolution in maintenance strategies. However, challenges such as system integration complexity, data quality, and data availability are intricately intertwined, collectively impacting the successful deployment of PdM systems. Recently, large model-based agents, or agentic artificial intelligence (AI), have [...] Read more.
Predictive maintenance (PdM) represents a significant evolution in maintenance strategies. However, challenges such as system integration complexity, data quality, and data availability are intricately intertwined, collectively impacting the successful deployment of PdM systems. Recently, large model-based agents, or agentic artificial intelligence (AI), have evolved from simple task automation to active problem-solving and strategic decision-making. As such, we propose an AI agent-enabled PdM method that leverages an agentic AI development platform to streamline the development of a multimodal data-based fault detection agent, a RAG (retrieval-augmented generation)-based fault classification agent, a large model-based fault diagnosis agent, and a digital twin-based fault handling simulation agent. This approach breaks through the limitations of traditional PdM, which relies heavily on single models. This combination of “AI workflow + large reasoning models + operational knowledge base + digital twin” integrates the concepts of BaaS (backend as a service) and LLMOps (large language model operations), constructing an end-to-end intelligent closed loop from data perception to decision execution. Furthermore, a tentative prototype is demonstrated to show the technology stack and the system integration methods of the agentic AI-based PdM. Full article
Show Figures

Figure 1

15 pages, 746 KB  
Article
Consensus-Regularized Federated Learning for Superior Generalization in Wind Turbine Diagnostics
by Lan Li, Juncheng Zhou, Qiankun Peng, Quan Zhou and Haoming Zhang
Mathematics 2025, 13(16), 2570; https://doi.org/10.3390/math13162570 - 11 Aug 2025
Viewed by 400
Abstract
Ensuring the reliable operation of wind turbines is critical for the global transition to sustainable energy, yet it is challenged by faults that are difficult to detect in real-time. Traditional diagnostics rely on centralized data, which raises significant privacy and scalability concerns. To [...] Read more.
Ensuring the reliable operation of wind turbines is critical for the global transition to sustainable energy, yet it is challenged by faults that are difficult to detect in real-time. Traditional diagnostics rely on centralized data, which raises significant privacy and scalability concerns. To address these limitations, this study introduces a Consensus-Regularized Federated Learning (CR-FL) framework. This framework mathematically formalizes and mitigates the problem of “client drift” caused by heterogeneous data from different turbines by augmenting the local training objective with a proximal regularization term. This forces models to learn generalizable fault features while preserving data privacy. To validate our framework, we implemented a lightweight neural network within a federated paradigm and benchmarked it against a powerful, centralized Light Gradient Boosting Machine (LightGBM) model using real-world SCADA data. The federated training process, through its inherent constraint on local updates, acts as a practical implementation of our consensus-regularization principle. Model performance was comprehensively evaluated using accuracy, precision, F1-score, and Area Under the ROC Curve (AUC) metrics. The results demonstrate that our federated approach not only preserves privacy but also achieves superior performance in key metrics, including AUC and precision. This confirms that the regularizing effect of the federated process enables the global model to generalize better across heterogeneous data distributions than its centralized counterpart. This study provides a practical, scalable, and methodologically superior solution for fault diagnosis in wind turbine systems, paving the way for more collaborative and secure infrastructure monitoring. Full article
Show Figures

Figure 1

22 pages, 9340 KB  
Article
The Effect of Defect Size and Location in Roller Bearing Fault Detection: Experimental Insights for Vibration-Based Diagnosis
by Haobin Wen, Khalid Almutairi, Jyoti K. Sinha and Long Zhang
Sensors 2025, 25(16), 4917; https://doi.org/10.3390/s25164917 - 9 Aug 2025
Viewed by 274
Abstract
In rotating machines, any faults in anti-friction bearings occurring during operation can lead to failures that are unacceptable due to considerable downtime losses and maintenance costs. Hence, early fault detection is essential, and different vibration-based methods (VBMs) are explored to recognise incipient fault [...] Read more.
In rotating machines, any faults in anti-friction bearings occurring during operation can lead to failures that are unacceptable due to considerable downtime losses and maintenance costs. Hence, early fault detection is essential, and different vibration-based methods (VBMs) are explored to recognise incipient fault signatures. Based on rotordynamics, if a bearing defect causes metal-to-metal (MtM) impacts during shaft rotation, the impacts excite high-frequency resonance responses of the bearing assembly. The defect-related frequencies are modulated with the resonance responses and rely on signal demodulation for fault detection. However, the current study highlights that the bearing fault/faults may not be detected if the defect in a bearing is not causing MtM impacts nor exciting the high-frequency resonance of the bearing assembly. In a roller bearing, a localised defect may maintain persistent contact between rolling elements and raceways, thereby preventing the occurrence of impulse vibration responses. Due to contact persistence, such defects may not generate impact and may not be detected by existing VBMs, and the bearing could behave as healthy. This paper investigates such specific cases by exploring the relationship between roller-bearing defect characteristics and their potential to generate impact loads during operation. Using an experimental bearing rig, different roller and inner-race defects are presented while their fault characteristic frequencies remain undetected by the envelope analysis, fast Kurtogram, cyclic spectral coherence, and tensor decomposition methods. This study highlights the significance of both the dimension and location of defects within bearings on their detectability based on the rotordynamics concept. Further, simple roller-beam experiments are carried out to visualise and validate the reliability of the experimental observations made on the roller bearing dynamics. Full article
(This article belongs to the Special Issue Electronics and Sensors for Structure Health Monitoring)
Show Figures

Figure 1

16 pages, 4442 KB  
Article
Faulted-Pole Discrimination in Shipboard DC Microgrids Using S-Transformation and Convolutional Neural Networks
by Yayu Yang, Zhenxing Wang, Ning Gao, Kangan Wang, Binjie Jin, Hao Chen and Bo Li
J. Mar. Sci. Eng. 2025, 13(8), 1510; https://doi.org/10.3390/jmse13081510 - 5 Aug 2025
Viewed by 313
Abstract
The complex topology of shipboard DC microgrids and the strong coupling between positive and negative poles during faults pose significant challenges for faulted-pole identification, especially under high-resistance conditions. To address these issues, this paper proposes a novel faulted-pole identification method based on S-Transformation [...] Read more.
The complex topology of shipboard DC microgrids and the strong coupling between positive and negative poles during faults pose significant challenges for faulted-pole identification, especially under high-resistance conditions. To address these issues, this paper proposes a novel faulted-pole identification method based on S-Transformation and convolutional neural networks (CNNs). Single-ended voltage and current measurements from the generator side are used to generate time–frequency spectrograms via S-Transformation, which are then processed by a CNN trained to classify the faulted pole. This approach avoids reliance on complex threshold settings. Simulation results on a representative shipboard DC microgrid demonstrate that the proposed method achieves high accuracy, fast response, and strong robustness, even under high-resistance fault scenarios. The method significantly enhances the selectivity and reliability of fault protection, offering a promising solution for advanced marine DC power systems. Compared to conventional fault-diagnosis techniques, the proposed model achieves notable improvements in classification accuracy and computational efficiency for line-fault detection. Full article
Show Figures

Figure 1

24 pages, 1313 KB  
Review
Data Augmentation and Knowledge Transfer-Based Fault Detection and Diagnosis in Internet of Things-Based Solar Insecticidal Lamps: A Survey
by Zhengjie Wang, Xing Yang, Tongjie Li, Lei Shu, Kailiang Li and Xiaoyuan Jing
Electronics 2025, 14(15), 3113; https://doi.org/10.3390/electronics14153113 - 5 Aug 2025
Viewed by 349
Abstract
Internet of Things (IoT)-based solar insecticidal lamps (SIL-IoTs) offer an eco-friendly alternative by merging solar energy harvesting with intelligent sensing, advancing sustainable smart agriculture. However, SIL-IoTs encounter practical challenges, e.g., hardware aging, electromagnetic interference, and abnormal data patterns. Therefore, developing an effective fault [...] Read more.
Internet of Things (IoT)-based solar insecticidal lamps (SIL-IoTs) offer an eco-friendly alternative by merging solar energy harvesting with intelligent sensing, advancing sustainable smart agriculture. However, SIL-IoTs encounter practical challenges, e.g., hardware aging, electromagnetic interference, and abnormal data patterns. Therefore, developing an effective fault detection and diagnosis (FDD) system is essential. In this survey, we systematically identify and address the core challenges of implementing FDD of SIL-IoTs. Firstly, the fuzzy boundaries of sample features lead to complex feature interactions that increase the difficulty of accurate FDD. Secondly, the category imbalance in the fault samples limits the generalizability of the FDD models. Thirdly, models trained on single scenarios struggle to adapt to diverse and dynamic field conditions. To overcome these challenges, we propose a multi-level solution by discussing and merging existing FDD methods: (1) a data augmentation strategy can be adopted to improve model performance on small-sample datasets; (2) federated learning (FL) can be employed to enhance adaptability to heterogeneous environments, while transfer learning (TL) addresses data scarcity; and (3) deep learning techniques can be used to reduce dependence on labeled data; these methods provide a robust framework for intelligent and adaptive FDD of SIL-IoTs, supporting long-term reliability of IoT devices in smart agriculture. Full article
(This article belongs to the Collection Electronics for Agriculture)
Show Figures

Figure 1

26 pages, 8736 KB  
Article
Uncertainty-Aware Fault Diagnosis of Rotating Compressors Using Dual-Graph Attention Networks
by Seungjoo Lee, YoungSeok Kim, Hyun-Jun Choi and Bongjun Ji
Machines 2025, 13(8), 673; https://doi.org/10.3390/machines13080673 - 1 Aug 2025
Viewed by 432
Abstract
Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a [...] Read more.
Rotating compressors are foundational in various industrial processes, particularly in the oil-and-gas sector, where reliable fault detection is crucial for maintaining operational continuity. While Graph Attention Network (GAT) frameworks are widely available, this study advances the state of the art by introducing a Bayesian GAT method specifically tailored for vibration-based compressor fault diagnosis. The approach integrates domain-specific digital-twin simulations built with Rotordynamic software (1.3.0), and constructs dual adjacency matrices to encode both physically informed and data-driven sensor relationships. Additionally, a hybrid forecasting-and-reconstruction objective enables the model to capture short-term deviations as well as long-term waveform fidelity. Monte Carlo dropout further decomposes prediction uncertainty into aleatoric and epistemic components, providing a more robust and interpretable model. Comparative evaluations against conventional Long Short-Term Memory (LSTM)-based autoencoder and forecasting methods demonstrate that the proposed framework achieves superior fault-detection performance across multiple fault types, including misalignment, bearing failure, and unbalance. Moreover, uncertainty analyses confirm that fault severity correlates with increasing levels of both aleatoric and epistemic uncertainty, reflecting heightened noise and reduced model confidence under more severe conditions. By enhancing GAT fundamentals with a domain-tailored dual-graph strategy, specialized Bayesian inference, and digital-twin data generation, this research delivers a comprehensive and interpretable solution for compressor fault diagnosis, paving the way for more reliable and risk-aware predictive maintenance in complex rotating machinery. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

23 pages, 1396 KB  
Article
Unsupervised Anomaly Detection Method for Electrical Equipment Based on Audio Latent Representation and Parallel Attention Mechanism
by Wei Zhou, Shaoping Zhou, Yikun Cao, Junkang Yang and Hongqing Liu
Appl. Sci. 2025, 15(15), 8474; https://doi.org/10.3390/app15158474 - 30 Jul 2025
Viewed by 421
Abstract
The stable operation of electrical equipment is critical for industrial safety, yet traditional anomaly detection methods often suffer from limitations, such as high resource demands, dependency on expert knowledge, and lack of real-world capabilities. To address these challenges, this article proposes an unsupervised [...] Read more.
The stable operation of electrical equipment is critical for industrial safety, yet traditional anomaly detection methods often suffer from limitations, such as high resource demands, dependency on expert knowledge, and lack of real-world capabilities. To address these challenges, this article proposes an unsupervised anomaly detection method for electrical equipment, utilizing audio latent representation and a parallel attention mechanism. The framework employs an autoencoder to extract low-dimensional features from audio signals and introduces a phase-aware parallel attention block to dynamically weight these features for an improved anomaly sensitivity. With adversarial training and a dual-encoding mechanism, the proposed method demonstrates robust performance in complex scenarios. Using public datasets (MIMII and ToyADMOS) and our collected real-world wind turbine data, it achieves high AUC scores, surpassing the best baselines, which demonstrates our framework design is suitable for industrial applications. Full article
Show Figures

Figure 1

Back to TopTop