Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,210)

Search Parameters:
Keywords = fermentation characteristic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1256 KB  
Article
Effects of Vitamin D3 and 25(OH)D3 Supplementation on Growth Performance, Bone Parameters and Gut Microbiota of Broiler Chickens
by Rakchanok Phutthaphol, Chaiyapoom Bunchasak, Wiriya Loongyai and Choawit Rakangthong
Animals 2025, 15(19), 2900; https://doi.org/10.3390/ani15192900 (registering DOI) - 4 Oct 2025
Abstract
Broiler chickens are commonly reared in closed housing systems with limited exposure to sunlight, thereby relying entirely on dietary sources of vitamin D. The hydroxylated metabolite 25-hydroxycholecalciferol [25(OH)D3] has been proposed as a more potent form than native vitamin D3 [...] Read more.
Broiler chickens are commonly reared in closed housing systems with limited exposure to sunlight, thereby relying entirely on dietary sources of vitamin D. The hydroxylated metabolite 25-hydroxycholecalciferol [25(OH)D3] has been proposed as a more potent form than native vitamin D3 (cholecalciferol). This study evaluated the effects of dietary supplementation with vitamin D3 alone or in combination with 25(OH)D3 on growth performance, bone characteristics, and cecal microbiota in Ross 308 broilers. A total of 952 one-day-old male chicks were allocated to four treatments: a negative control (no vitamin D3), a positive control (vitamin D3 according to Ross 308 specifications), and a positive control supplemented with 25(OH)D3 at 1394 or 2788 IU/kg, in a randomized design with 17 replicates per treatment and 14 birds per replicate. Over a 40-day feeding trial, diets containing vitamin D3 (positive control) or supplemented with 25(OH)D3 significantly improved final body weight, weight gain, average daily gain, and feed conversion ratio compared with the negative control (p < 0.01), with no significant differences among the positive control and 25(OH)D3-supplemented groups, with a clear linear dose-dependent response. Although tibia ash and bone-breaking strength were not significantly affected, linear responses indicated a slight numerical trend toward improved skeletal mineralization with increasing 25(OH)D3. Microbiota analysis indicated that 25(OH)D3 affected cecal microbial ecology: low-dose inclusion showed reduced species richness and evenness, whereas high-dose inclusion restored richness to levels comparable to the positive control and enriched taxa associated with fiber fermentation and bile acid metabolism while reducing Lactobacillus dominance. In conclusion, supplementation with 25(OH)D3 in addition to vitamin D3 enhanced growth performance and selectively shaped the cecal microbiota of broilers, with suggestive benefits for bone mineralization. These findings highlight 25(OH)D3 as a more potent source of vitamin D than cholecalciferol alone and support its practical use in modern broiler nutrition to improve efficiency, skeletal health, and microbial balance. Full article
(This article belongs to the Section Poultry)
Show Figures

Figure 1

21 pages, 1746 KB  
Review
Carbon Recovery from Wastewater Feedstocks: Synthesis of Polyhydroxyalkanoates for Target Applications
by Mario I. Sepúlveda, Michael Seeger and Gladys Vidal
Resources 2025, 14(10), 156; https://doi.org/10.3390/resources14100156 - 1 Oct 2025
Abstract
Polyhydroxyalkanoate (PHA) bioplastics are produced from wastewater as a carbon recovery strategy. However, the tuneable characteristics of PHAs and wastewater biorefinery potential have not been comprehensively reviewed. The aim of this study is to review the main challenges and strategies for carbon recovery [...] Read more.
Polyhydroxyalkanoate (PHA) bioplastics are produced from wastewater as a carbon recovery strategy. However, the tuneable characteristics of PHAs and wastewater biorefinery potential have not been comprehensively reviewed. The aim of this study is to review the main challenges and strategies for carbon recovery from wastewater feedstocks via PHA production, assessing potential target biopolymer applications. Diverse PHA-accumulating prokaryotes metabolize organic pollutants present in wastewater through different metabolic pathways, determining the biopolymer characteristics. The synthesis of PHAs using mixed microbial cultures with wastewater feedstocks derived from municipal, agro-industrial, food processing, lignocellulosic biomass processing and biofuel production activities are described. Acidogenic fermentation of wastewater feedstocks and mixed microbial culture enrichment are key steps in order to enhance PHA productivity and determine biopolymer properties towards customized bioplastics for specific applications. Biorefinery of PHA copolymers and extracellular polysaccharides (EPSs), including alginate-like polysaccharides, are alternatives to enhance the value-chain of carbon recovery from wastewater. PHAs and EPSs exhibit a wide repertoire of applications with distinct safety control requirements; hence, coupling biopolymer production demonstrations with target applications is crucial to move towards full-scale applications. This study discusses the relationship between the metabolic basis of PHA synthesis and composition, wastewater type, and target applications, describing the potential to maximize carbon resource valorisation. Full article
(This article belongs to the Topic Advances and Innovations in Waste Management)
Show Figures

Figure 1

18 pages, 1555 KB  
Article
Alternative Yeast Strains in Beer Production: Impacts on Quality and Nutritional Value
by Loránd Alexa, Hajnalka Csoma, Diána Ungai, Béla Kovács, Nikolett Czipa, Ida Miklós, Zoltán Kállai, László Attila Papp and Szonja Takács
Beverages 2025, 11(5), 142; https://doi.org/10.3390/beverages11050142 - 1 Oct 2025
Abstract
Discovering new yeast species can be crucial for creating new types of beers. In this study, we investigated three new yeast species, Saccharomyces bayanus, Schizosaccharomyces japonicus and Schizosaccharomyces pombe var. malidevorans, which have not been previously used in the brewing industry. [...] Read more.
Discovering new yeast species can be crucial for creating new types of beers. In this study, we investigated three new yeast species, Saccharomyces bayanus, Schizosaccharomyces japonicus and Schizosaccharomyces pombe var. malidevorans, which have not been previously used in the brewing industry. Colour, total acidity, bitterness, aroma profile, total phenolic, flavonoid, mineral content and organoleptic characteristics of beers fermented by these strains were analysed to discover their applicability in the brewing industry. They did not significantly affect the nutritional value and colour of the beers, but showed increased acidity compared to the control Saccharomyces cerevisiae. GC-MS (Gas Chromatography-Mass Spectrometry) analysis revealed 33 aroma compounds, some of which were identical and some unique. S. cerevisiae and S. bayanus produced a similar number (19–20) of aroma compounds, while S. japonicus produced the fewest, including some undesirable compounds. Isobutyl alcohol, isoamyl alcohol, acetol, dimethylpyrazine, acetic acid, 4-cyclopentene-1,3-dione, butyrolactone, 2-furanmethanol, phenylethyl alcohol, maltol and pyranone that provide desired aromas in beers could be found in every sample. The new yeasts significantly increased polyphenols and decreased flavonoid content. Based on the results above and the taste scores, the strains S. bayanus and S. pombe var. malidevorans may be suitable for brewing, while S. japonicus is less or only suitable for combined fermentation. Full article
Show Figures

Graphical abstract

26 pages, 2251 KB  
Article
The Quality and Bioactive Properties of Mulberry Wine Under Different Fermentation Conditions
by Jiajun Li, Huiming Zhang and Tieyan Jin
Foods 2025, 14(19), 3393; https://doi.org/10.3390/foods14193393 - 30 Sep 2025
Abstract
This study systematically investigated the effects of key fermentation parameters—initial sugar content (24–28 °Brix), temperature (15–20 °C), and yeast inoculation rate (0.04–0.12%)—on the quality, volatile aroma characteristics, antioxidant capacity, and bioactive properties of mulberry wine. Through a combination of single-factor experiments and response [...] Read more.
This study systematically investigated the effects of key fermentation parameters—initial sugar content (24–28 °Brix), temperature (15–20 °C), and yeast inoculation rate (0.04–0.12%)—on the quality, volatile aroma characteristics, antioxidant capacity, and bioactive properties of mulberry wine. Through a combination of single-factor experiments and response surface methodology (RSM), optimal fermentation conditions were determined as follows: initial sugar content of 25 °Brix, temperature of 18 °C, and yeast inoculation rate of 0.08%. Under these conditions, the resulting wine exhibited superior sensory characteristics, enhanced antioxidant activity (total phenolic content, DPPH and ABTS radical scavenging capacity, and FRAP), and significantly higher levels of key aroma compounds (e.g., ethyl acetate, phenethyl alcohol) compared to unfermented mulberry juice. Furthermore, the wine exhibited dose-dependent inhibition of proliferation in HepG2 and HT29 cells with IC50 values of 0.82 mg/mL and 1.05 mg/mL, respectively, and demonstrated selective antibacterial activity against Escherichia coli and Staphylococcus aureus. These findings provide a scientific basis for optimizing the production of mulberry wine with enhanced sensory qualities and functional properties, highlighting its potential as a health-promoting fermented beverage. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

23 pages, 1644 KB  
Article
Characteristics of Novel Fermented Cloudy Fruit Juices Produced Using Lactiplantibacillus plantarum and Lactic Acid-Producing Lachancea spp. Yeasts
by Paweł Satora, Magdalena Skotniczny and Martyna Maziarek
Molecules 2025, 30(19), 3928; https://doi.org/10.3390/molecules30193928 - 30 Sep 2025
Abstract
Fermented fruit juices are considered functional beverages because they contain bioactive compounds derived from plant materials and produced by the microorganisms involved in fermentation. The composition of these beverages can vary depending on the strain used. This study aimed to determine the effect [...] Read more.
Fermented fruit juices are considered functional beverages because they contain bioactive compounds derived from plant materials and produced by the microorganisms involved in fermentation. The composition of these beverages can vary depending on the strain used. This study aimed to determine the effect of different microorganisms conducting lactic acid fermentation on the chemical composition and bioactive component content of naturally cloudy fermented pear and plum juices. The process used Lactiplantibacillus plantarum K7 bacteria, which were isolated during sauerkraut fermentation, as well as Lachancea thermotolerans PYCC6375 and Lachancea fermentati PYCC5883 yeast cultures, which have poor ethanol fermentation capabilities. The pH, acidity, sugars (HPLC), free amino nitrogen, selected organic acids (HPLC), color (CIELAB), polyphenols (HPLC), volatiles (GC-MS), aroma-active volatiles (GC-MS-O), and sensory characteristics were analyzed. The fermented juices obtained were rich in organic acids (of plant and microbial origin), polyphenols, and had a reduced sugar content (with polyols replacing glucose and fructose), as well as a low alcohol content (<0.2%). At the same time, all three microorganisms significantly enhanced the fruity aroma of the juices. Lachancea yeasts proved to be a viable alternative to lactic acid bacteria for producing fermented juices and were significantly better suited to fermenting plum juices. The highest polyphenol content and highest consumer preference rating were obtained with plum juices fermented with L. fermentati yeast. Full article
(This article belongs to the Special Issue Bioactive Compounds in Foods and Their By-Products)
Show Figures

Figure 1

16 pages, 3569 KB  
Article
Boosting Probiotic Biomass of Lactobacillus acidophilus CCFM137 Through pH-Stat Morphological Control and Medium Optimization
by Shao-Quan Yan, Yang-Yang Shi, Rui Yang, Rui Li, Feng Hang and Hao Zhang
Fermentation 2025, 11(10), 564; https://doi.org/10.3390/fermentation11100564 - 30 Sep 2025
Abstract
The fermentation performance of Lactobacillus acidophilus is constrained by factors such as low cell density and fastidious nutritional and environmental requirements, which greatly limit its industrial-scale applications. This study aimed to develop an efficient fermentation condition for L. acidophilus CCFM137 through systematic optimization [...] Read more.
The fermentation performance of Lactobacillus acidophilus is constrained by factors such as low cell density and fastidious nutritional and environmental requirements, which greatly limit its industrial-scale applications. This study aimed to develop an efficient fermentation condition for L. acidophilus CCFM137 through systematic optimization of both culture medium and environmental parameters, thereby enabling high-yield industrial-scale production of this strain. An optimized medium was developed, consisting of glucose (30 g/L), YEP FM503 (35 g/L), sodium acetate (5 g/L), ammonium citrate (2 g/L), K2HPO4 (2 g/L), MgSO4·7H2O (0.1 g/L), MnSO4·H2O (0.05 g/L), L-cysteine hydrochloride (0.5 g/L), and Tween 80 (1 mL/L), to achieve a viable cell count of 1.95 × 109 CFU/mL, representing a 9.42-fold increase over that of standard MRS broth. Subsequent pH-stat fermentation trials in a 100 L fermenter using the optimized medium revealed morphological and growth characteristics of the strain in variable pH-stat environments. Optimal performance was observed under pH-stat 4.5 rather than the more commonly used 5.7, achieving maximum viable cell counts of 3.37 × 109 CFU/mL, accompanied by a transformation of cell morphology toward shorter rod-shaped structures, as well as an increase in substrate utilization rate, cell recovery rate and lyophilization survival rate. The fermentation performance and cellular morphology of L. acidophilus CCFM137 were enhanced by both nutrient composition and pH environment. These results showed that this strategy has potential for application in high cell density fermentation of L. acidophilus CCFM137. Full article
(This article belongs to the Section Probiotic Strains and Fermentation)
Show Figures

Figure 1

15 pages, 1930 KB  
Article
Assessing Probiotic Efficacy: Short-Term Impact on Canine Gut Microbiota Using an In Vitro Colonic Fermentation Model
by Achraf Adib Lesaux, Jonas Ghyselinck, Cindy Duysburgh, Massimo Marzorati, Jonna E. B. Koper and Jake Burlet
Pets 2025, 2(4), 33; https://doi.org/10.3390/pets2040033 - 28 Sep 2025
Abstract
In dogs, gut microbiome dysbiosis is associated with several health conditions, including gastrointestinal disease. Probiotic supplementation can support a balanced gut microbiome. This study assessed the impact of a probiotic containing a mixture of Lacticaseibacillus casei, Limosilactobacillus fermentum, Levilactobacillus brevis, [...] Read more.
In dogs, gut microbiome dysbiosis is associated with several health conditions, including gastrointestinal disease. Probiotic supplementation can support a balanced gut microbiome. This study assessed the impact of a probiotic containing a mixture of Lacticaseibacillus casei, Limosilactobacillus fermentum, Levilactobacillus brevis, and Enterococcus faecium on the gut microbiota of six dogs using short-term colonic simulations. Two groups were included, i.e., blank versus supplementation with the test product, and incubated for 48 h. Probiotic-supplemented reactors had significantly greater fermentative activity compared with the blank, as shown by lower pH levels and higher gas pressure after 6 h, 24 h, and 48 h of incubation (p < 0.05 for all). Saccharolytic fermentation also increased, with a significantly higher level of acetate at 24 h and propionate at 6 h, 24 h, and 48 h with the test product versus blank (p < 0.05 for all). There was no significant effect of the test product on alpha-diversity, but beta-diversity analysis revealed a clear separation in the microbial community composition between the test product and blank. Eight bacterial taxa were enriched with test product supplementation, including the probiotic test strains as well as Megamonas and Bacteroides species. This study, using in vitro short-term colon simulations with six canine donors, provides insights into the probiotic characteristics of the test product. Full article
Show Figures

Graphical abstract

19 pages, 304 KB  
Article
Fermentation-Based Preservation of Okara and In Vitro Evaluation of Its Application in Dairy Cattle Diets
by Yi-Hsuan Chen, Yi-Wen Fang, Po-An Tu, Ching-Yi Chen and Han-Tsung Wang
Fermentation 2025, 11(10), 559; https://doi.org/10.3390/fermentation11100559 - 27 Sep 2025
Abstract
Okara, a protein-rich byproduct of soymilk production, is highly perishable because of its high moisture content. This study evaluated the preservation and nutritional value of okara fermented by lactic acid bacteria for use in dairy cattle diets. Fermentation effectively reduced pH within 2 [...] Read more.
Okara, a protein-rich byproduct of soymilk production, is highly perishable because of its high moisture content. This study evaluated the preservation and nutritional value of okara fermented by lactic acid bacteria for use in dairy cattle diets. Fermentation effectively reduced pH within 2 weeks and maintained quality for up to 6 weeks. However, aerobic exposure increased the concentration of ammonia, indicating a decline in stability. In vitro assessments revealed no significant differences in in vitro true dry matter digestibility, in vitro neutral detergent fiber digestibility, or gas production between fermented and fresh okara, although fermented okara had a higher concentration of ammonia nitrogen. In situ analysis revealed slightly lower dry matter effective degradability (ED) in fermented okara, but similar rumen-degradable and undegradable protein fractions. When fermented okara was used to replace soybean meal in total mixed rations, 25–50% inclusion-maintained digestibility and fermentation characteristics, with 25% replacement yielding the highest ED at a low ruminal passage rate (0.02 h−1). Taken together, these results suggest that fermented okara can be strategically incorporated into dairy rations as a sustainable protein alternative, supporting both rumen function and bypass protein supply. Full article
21 pages, 1575 KB  
Article
Non-Thermal UV-C Processing as an Alternative to Pasteurisation in Fermented Dairy Beverages: Ayran and Kefir
by Azize Atik
Fermentation 2025, 11(10), 557; https://doi.org/10.3390/fermentation11100557 - 27 Sep 2025
Abstract
This study investigated the microbiological, physicochemical, textural, and sensory characteristics of ayran and kefir samples produced from milk treated with different doses of UV-C radiation. For this purpose, raw milk was passed through a UV-C column at three different flow rates (15, 30, [...] Read more.
This study investigated the microbiological, physicochemical, textural, and sensory characteristics of ayran and kefir samples produced from milk treated with different doses of UV-C radiation. For this purpose, raw milk was passed through a UV-C column at three different flow rates (15, 30, and 45 mL/min), and irradiated with doses of 72, 36, and 24 J/mL, respectively, corresponding to the flow rate. Samples produced from milk pasteurised by thermal treatment were used as the control group. This research indicated that UV-C treatment effectively reduced the microbial load in milk to a level comparable to that achieved through conventional pasteurisation. A reduction of 2.15 log cfu/mL in total aerobic mesophilic bacteria count was achieved, while total coliform group bacteria counts were decreased to an undetectable level. Samples produced from milk treated with UV-C showed lower pH and higher titration acidity (% lactic acid). Furthermore, the organic acid content was higher in these samples. Lactic acid, the main organic acid, levels in the ayran and kefir samples were measured at their highest as 11,951.51 mg/kg and 12,989.34 mg/kg, respectively, in the UV45 sample with a radiation dose of 24 J/mL. The treatment of UV-C resulted in a minor change in the colour and textural properties of the samples. Nonetheless, this change was not significant enough to influence consumer acceptance. The application of UV-C to raw milk, depending on the radiation level used, can enhance the fermentation process in the production of ayran and kefir. This study showed that the application of UV-C has improved the quality of drinkable fermented milk products. This research has shown that, while reducing nutritional losses caused by thermal processing, microbial safety is obtained at an approximate value similar to pasteurisation. As a result, UV-C application decreases the loss of dietary compounds and provides an alternative method for microbial inactivation. Full article
(This article belongs to the Special Issue Advances in Fermented Foods and Beverages)
Show Figures

Figure 1

18 pages, 1428 KB  
Review
Waste to Value: L-Asparaginase Production from Agro-Industrial Residues
by Enzo Corvello, Bruno C. Gambarato, Nathalia V. P. Veríssimo, Thiago Q. J. Rodrigues, Alice D. R. Pesconi, Ana K. F. Carvalho and Heitor B. S. Bento
Processes 2025, 13(10), 3088; https://doi.org/10.3390/pr13103088 - 26 Sep 2025
Abstract
The agro-industrial sector is a key pillar of the global economy, playing a central role in the supply of food, energy, and industrial inputs. However, its production chain generates significant amounts of residues and by-products, which, if not properly managed, may cause considerable [...] Read more.
The agro-industrial sector is a key pillar of the global economy, playing a central role in the supply of food, energy, and industrial inputs. However, its production chain generates significant amounts of residues and by-products, which, if not properly managed, may cause considerable environmental impacts. In this context, the search for alternatives to reuse these materials is essential, particularly when they can be converted into high-value products. One promising application is their use as a nutrient source for microorganisms in high-value biotechnological processes, such as the production of L-Asparaginase, an important enzyme used both in mitigating acrylamide formation in foods and as a biopharmaceutical in Acute Lymphoblastic Leukemia therapy. This approach offers a sustainable and competitive pathway, combining robust, scalable, and economical enzyme production with waste valorization and circular economy benefits. Although interest in developing more sustainable processes is growing, supported by international agreements and strategies for the valorization of agricultural residues, important challenges remain. The variability and impurity of residues pose significant challenges for producing biological products for the pharmaceutical and food industries. In addition, meeting regulatory requirements is essential to ensure product safety and traceability, while achieving high yields is crucial to maintain production viability compared to conventional media. Overcoming these barriers is critical to enable industrial-scale application of this approach. This review provides a residue-centered revision of the most relevant agro-industrial by-products used as substrates for L-asparaginase production, systematically comparing their compositional characteristics, fermentation strategies, and reported yields. Additionally, we present a novel SWOT (Strengths, Weaknesses, Opportunities, Threats) analysis that critically examines the technical, regulatory, and economic challenges of implementing residue-based processes on an industrial scale. Full article
(This article belongs to the Section Biological Processes and Systems)
Show Figures

Figure 1

15 pages, 1336 KB  
Article
Oenological Potential of Lachancea thermotolerans and Hanseniaspora uvarum from High-Sugar Musts: Impacts on Fermentation and Wine Volatilome
by María Trinidad Alcalá-Jiménez, Juan Carlos García-García, Juan Carlos Mauricio, Juan Moreno, Rafael A. Peinado and Teresa García-Martínez
Microorganisms 2025, 13(10), 2260; https://doi.org/10.3390/microorganisms13102260 - 26 Sep 2025
Abstract
Currently, there is little scientific data to support the importance of selecting non-Saccharomyces yeasts from different wineries in the Protected Designation of Origin (PDO) in Andalusia, southern Spain, and how this group of yeasts can affect the sensory properties of wine. Therefore, [...] Read more.
Currently, there is little scientific data to support the importance of selecting non-Saccharomyces yeasts from different wineries in the Protected Designation of Origin (PDO) in Andalusia, southern Spain, and how this group of yeasts can affect the sensory properties of wine. Therefore, this research aimed to study some specific microbiological properties and the metabolites they could produce in order to evaluate the oenological potential of two non-Saccharomyces yeast strains isolated from a region of Andalusia (Córdoba, Spain), Hanseniaspora uvarum TJ-27 and Lachancea thermotolerans T-9, isolated from musts with high sugar content. Of 80 yeast isolates selected, these two strains were chosen for their notable β-glucosidase activity (observed in up to 40% of isolates), cellulase activity (present in 24%), and killer phenotype (found in 40%). In this study, strains that displayed characteristics associated with aroma release were selected. Fermentation assays using a high-sugar synthetic medium revealed that neither H. uvarum TJ-27 nor L. thermotolerans T-9 was able to complete alcoholic fermentation independently, achieving ethanol yields of only 5–6% v/v, indicating the need for subsequent fermentation by Saccharomyces cerevisiae. The originality of this study provides insight into the metabolites contributed by these strains to the wines produced. The best results were obtained when both strains were inoculated together. Furthermore, volatilome analysis showed elevated levels of key compounds such as isoamyl alcohols and 2,3-butanediol. These findings highlight the practical potential of using selected non-Saccharomyces strains from Andalusia to improve fermentation results and wine quality. The novelty of this study lies mainly in confirmation within region-specific isolates. Full article
(This article belongs to the Section Food Microbiology)
Show Figures

Figure 1

18 pages, 667 KB  
Article
Red Pepper Fermentation with Geothermal Mineral Water: Impact on Nutritional Profile and Quality Characteristics
by Anna Wrzodak, Justyna Szwejda-Grzybowska, Wioletta Popińska and Monika Mieszczakowska-Frąc
Agronomy 2025, 15(10), 2279; https://doi.org/10.3390/agronomy15102279 - 26 Sep 2025
Abstract
Red bell pepper (Capsicum annuum L.) is a valuable source of health-promoting phytochemicals and essential minerals. This study investigated the impact of using geothermal mineral water versus tap water as the fermentation medium on the nutritional, physicochemical, and sensory properties of two [...] Read more.
Red bell pepper (Capsicum annuum L.) is a valuable source of health-promoting phytochemicals and essential minerals. This study investigated the impact of using geothermal mineral water versus tap water as the fermentation medium on the nutritional, physicochemical, and sensory properties of two red bell peppers (cultivars ‘Yecla F1’ and ‘Salomon F1’). The results showed that fermentation caused a significant decrease in the content of L-ascorbic acid (by 30–50%), carotenoids (~30%) and polyphenols (by 25–30%), with lower nutrient losses observed in peppers fermented with geothermal water. In addition, fermentation with geothermal water increased the calcium, magnesium, and potassium contents of the peppers compared to tap water. Sensory analysis showed that the pepper cultivars had a greater impact on the overall sensory quality than the fermentation medium or the evaluation time, although geothermal water had a positive effect on the texture of the fermented peppers. These results suggest that geothermal water may be a beneficial alternative to traditional water sources in vegetable fermentation, improving both the nutritional and sensory properties of the final product. Full article
(This article belongs to the Section Plant-Crop Biology and Biochemistry)
Show Figures

Figure 1

18 pages, 3840 KB  
Article
Screening of a Gossypol-Removing Yeast Strain and Characterization of Its Removal Mechanism
by Yushuo Zhang, Tingyao Lv, Qiuyang Jiang, Xiaotong Zeng, Feng Li and Dayong Xu
Microorganisms 2025, 13(10), 2251; https://doi.org/10.3390/microorganisms13102251 - 25 Sep 2025
Abstract
Gossypol, a polyphenolic naphthalene derivative and yellow polyphenolic pigment found in cotton seed glands, presents notable environmental, animal, and human health hazards. To screen for yeast strains capable of utilizing gossypol and to investigate their removal efficiency and mechanisms. Yeast strains capable of [...] Read more.
Gossypol, a polyphenolic naphthalene derivative and yellow polyphenolic pigment found in cotton seed glands, presents notable environmental, animal, and human health hazards. To screen for yeast strains capable of utilizing gossypol and to investigate their removal efficiency and mechanisms. Yeast strains capable of utilizing gossypol as the exclusive carbon source were isolated from cotton field soil. The identification of these strains involved assessment of colony morphology, physiological and biochemical characteristics, and phylogenetic analysis utilizing 26S rDNA gene sequences. Safety evaluations included hemolytic and antibiotic susceptibility tests. The growth responses of the selected strains to varying temperatures and pH levels were determined. Using cotton meal as the solid fermentation substrate, the effects of single factors on gossypol removal by the strains were determined. The intracellular and extracellular localization as well as the nature of the gossypol-removing active components in the strains were characterized, followed by an investigation into the molecular mechanism of gossypol removal using LC-MS analysis. A total of 17 gossypol-utilizing strains were isolated from cotton field soil samples, with strain ZYS-3 demonstrating superior removal capability. Strain ZYS-3 was identified as Meyerozyma guilliermondii, exhibiting no hemolytic activity and susceptibility to nine commonly used antifungal agents. The optimal growth parameters for this strain were determined to be a temperature of 30 °C and a pH of 5.0. In solid-state fermentation using cotton meal at 30 °C with initial fermentation conditions (10% corn flour added as an external carbon source, 40% moisture content, and 6% inoculum concentration) for 3 days, strain ZYS-3 achieved a gossypol removal rate of 73.57%. Subsequent optimization of the fermentation process, including the addition of 10% corn flour as an external carbon source, adjustment of moisture content to 55%, and inoculum concentration to 10%, resulted in an increased gossypol removal rate of 89.77% after 3 days of fermentation, representing a 16.2% enhancement over the initial conditions. Assessment of gossypol removal activity revealed that strain ZYS-3 predominantly removes gossypol through the secretion of extracellular enzymes targeting specific active groups (phenolic hydroxyl groups and aldehyde groups) within the gossypol molecule. These enzymes facilitate oxidation and elimination reactions, leading to the opening of the naphthalene ring and subsequent removal of gossypol. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

17 pages, 5442 KB  
Article
Solid-State Fermentation of Riceberry Rice with Mushroom Mycelium for Enhanced Beta-Glucan Production and Health Applications
by Jutamat Nacha, Hongyu Chen, Amorn Owatworakit, Kittirat Saharat, Anupong Makeudom and Sunita Chamyuang
Molecules 2025, 30(19), 3879; https://doi.org/10.3390/molecules30193879 - 25 Sep 2025
Abstract
Beta-glucans (β-glucans), polysaccharides found in cereals and fungi, are recognized for their prebiotic and potential anti-cancer activities, particularly in the colorectal area. This study aims to optimize the production of β-glucan through the solid-state fermentation of germinated Riceberry rice with Pleurotus ostreatus and [...] Read more.
Beta-glucans (β-glucans), polysaccharides found in cereals and fungi, are recognized for their prebiotic and potential anti-cancer activities, particularly in the colorectal area. This study aims to optimize the production of β-glucan through the solid-state fermentation of germinated Riceberry rice with Pleurotus ostreatus and evaluate the bioactivities of the resulting extract. The crude β-glucan extract, obtained with a recovery rate of 54.95% and 79.98% purity, demonstrated an effective extraction process, as confirmed by thermogravimetric analysis (TGA). Fourier-transform infrared spectroscopy (FTIR) analysis verified the presence of β-1,3/1,6-glycosidic linkages, characteristic of the bioactive β-glucans found in yeast and mushrooms. The biological assessment demonstrated the extract’s functional properties. At a concentration of 1 mg/mL, the crude β-glucan extract significantly promoted the growth of probiotics Lacticaseibacillus rhamnosus and Bacillus coagulans, exhibiting high Prebiotic Index (PI) values of 6.36 ± 0.72 and 115.70 ± 10.19, respectively, with PI values indicating strong prebiotic potential. For comparison, the standard prebiotic inulin yielded PI values of 0.41 ± 0.09 and 90.53 ± 2.28 for the same respective bacteria, highlighting the superior performance of the fungal-fermented β-glucan. Furthermore, the extract displayed efficacy in inhibiting colon cancer cells in preliminary in vitro tests. It reduced the viability of the SW480 colorectal cancer cell line by 66.23% and induced cell death in 27.94 ± 0.93% of the cells after 48 h of treatment, performing comparably to a commercial yeast β-glucan standard. Crucially, the extract showed no significant cytotoxicity toward the normal human colon cell line, CCD-841 CoN. These findings highlight the promising method of fungal solid-state fermentation on germinated Riceberry rice in the production of high-purity, bioactive β-glucans for use in functional foods. Full article
(This article belongs to the Special Issue New Development in Fermented Products—Third Edition)
Show Figures

Figure 1

23 pages, 1444 KB  
Review
Streptococcus thermophilus: Metabolic Properties, Functional Features, and Useful Applications
by Alyaa Zaidan Ghailan and Alaa Kareem Niamah
Appl. Microbiol. 2025, 5(4), 101; https://doi.org/10.3390/applmicrobiol5040101 - 23 Sep 2025
Viewed by 167
Abstract
Streptococcus thermophilus is a Gram-positive, homofermentative lactic acid bacterium classified within the Firmicutes phylum, recognized for its probiotic properties and significant role in promoting human health. This review consolidates existing understanding of its metabolic pathways, functional metabolites, and diverse applications, highlighting evidence-based insights [...] Read more.
Streptococcus thermophilus is a Gram-positive, homofermentative lactic acid bacterium classified within the Firmicutes phylum, recognized for its probiotic properties and significant role in promoting human health. This review consolidates existing understanding of its metabolic pathways, functional metabolites, and diverse applications, highlighting evidence-based insights to enhance scientific integrity. S. thermophilus predominantly ferments lactose through the Embden-Meyerhof-Parnas pathway, resulting in L(+)-lactic acid as the primary end-product, along with secondary metabolites including acetic acid, formic acid, and pyruvate derivatives. Exopolysaccharides (EPS) are composed of repeating units of glucose, galactose, rhamnose, and N-acetylgalactosamine. They display strain-specific molecular weights ranging from 10 to 2000 kDa and contribute to the viscosity of fermented products, while also providing antioxidant and immunomodulatory benefits. Aromatic compounds such as acetaldehyde and phenylacetic acid are products of amino acid catabolism and carbohydrate metabolism, playing a significant role in the sensory characteristics observed in dairy fermentations. Bacteriocins, such as thermophilins (e.g., Thermophilin 13, 110), exhibit extensive antimicrobial efficacy against pathogens including Listeria monocytogenes and Bacillus cereus. Their activity is modulated by quorum-sensing mechanisms that involve the blp gene cluster, and they possess significant stability under heat and pH variations, making them suitable for biopreservation applications. In food applications, S. thermophilus functions as a Generally Recognized as Safe (GRAS) starter culture in the production of yogurt and cheese, working in conjunction with Lactobacillus delbrueckii subsp. bulgaricus to enhance acidification and improve texture. Specific strains have been identified to mitigate lactose intolerance, antibiotic-related diarrhea, and inflammatory bowel diseases through the modulation of gut microbiota, the production of short-chain fatty acids, and the inhibition of Helicobacter pylori. The genome, characterized by a G + C content of approximately 37 mol%, facilitates advancements in Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas technology and heterologous protein expression, with applications extending to non-dairy fermentations and the development of postbiotics. This review emphasizes the adaptability of S. thermophilus, showcasing the variability among strains and the necessity for thorough preclinical and clinical validation to fully utilize its potential in health, sustainable agriculture, and innovation. It also addresses challenges such as susceptibility to bacteriophages and limitations in proteolytic activity. Full article
Show Figures

Figure 1

Back to TopTop