Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,121)

Search Parameters:
Keywords = fertility rate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2045 KB  
Article
Effects of Biochar-Based Fertilizer on Root Zeta Potential, Nutrient Leaching and Yield in an Intensive Protected Cropping System
by Kane Trubenbacher, Shahla Hosseini Bai, Lakmini Dissanayake, Negar Omidvar, Stephen Joseph and Michael B. Farrar
Land 2025, 14(10), 2036; https://doi.org/10.3390/land14102036 (registering DOI) - 13 Oct 2025
Abstract
Rising global demand for food and fibre requires more efficient and sustainable fertilizer strategies. Biochar mineral complexes (BMC) are being developed for use as an organic alternative to conventional synthetic fertilizers, or to supplement conventional fertilizers applied at lower rates. Biochar can change [...] Read more.
Rising global demand for food and fibre requires more efficient and sustainable fertilizer strategies. Biochar mineral complexes (BMC) are being developed for use as an organic alternative to conventional synthetic fertilizers, or to supplement conventional fertilizers applied at lower rates. Biochar can change electrochemical properties such as zeta potential (ZP) that influence nutrient use efficiency. However, the impact of BMCs on the ZP of plant roots remains unknown. This study investigated the effects of BMC on root zeta potential, nutrient leaching, and yield in an intensive protected cropping system. A novel BMC was developed and tested in four treatments: synthetic fertilizer, organic fertilizer, BMC with half-rate organic fertilizer, and BMC alone. Organic fertilizer significantly increased negative root ZP compared with other treatments, largely due to higher concentrations of –COOH and –OH functional groups on the potting media. Treatments containing organic fertilizer also increased pH and cation exchange capacity (CEC), enhancing nutrient availability and retention relative to synthetic fertilizer. Yield was greatest with synthetic fertilizer; however, BMC combined with half-rate organic fertilizer achieved similar yields to full-rate organic fertilizer. This indicates that BMC co-applied with half-rate organic fertilizer should be considered by farmers to be a viable alternative to full-rate organic fertilizer regimes to reduce net inputs and risk of negative environmental impacts from over-fertilization. Full article
Show Figures

Figure 1

13 pages, 451 KB  
Article
Environmental Sustainability in the Post-Soviet Republics: Cross-Country Evidence from a Composite Index
by Tommaso Filì, Enrico Ivaldi, Enrico Musso and Tiziano Pavanini
Sustainability 2025, 17(20), 9018; https://doi.org/10.3390/su17209018 (registering DOI) - 11 Oct 2025
Abstract
This study investigates the environmental dimension of sustainable development across fifteen post-Soviet republics in 2022. While sustainability is generally understood as a triadic construct—economic, social, and environmental—this paper isolates the ecological pillar to highlight cross-country differences shaped by industrial legacies, institutional capacity, and [...] Read more.
This study investigates the environmental dimension of sustainable development across fifteen post-Soviet republics in 2022. While sustainability is generally understood as a triadic construct—economic, social, and environmental—this paper isolates the ecological pillar to highlight cross-country differences shaped by industrial legacies, institutional capacity, and governance models. A composite Environmental Performance Index (EPI) is developed using the Mazziotta–Pareto Index (MPI), which captures both average performance and internal consistency across three SDG-related domains: SDG 6 (Clean Water and Sanitation), SDG 13 (Climate Action), and SDG 15 (Life on Land). The study adds to existing literature as it includes a non-compensatory composite index and cluster analysis, and in policy terms, it provides a benchmarking system for facilitating ecological transition in the post-Soviet context. The results reveal strong divergence across the region: Baltic countries and Moldova achieve higher scores, reflecting policy convergence with the European Union and stronger environmental institutions, while Central Asian republics lag due to resource dependence, water scarcity, and weaker governance. Geographic cluster analysis corroborates these differences, showing clear spatial patterns of environmental convergence and divergence. Correlation analysis further demonstrates that environmental sustainability is positively associated with GDP per capita, HDI, and life expectancy, while negatively linked with inequality and fertility rates. These findings stress the need for context-sensitive and evidence-based policies, intra-regional cooperation, and integrated governance mechanisms to advance ecological transition in line with the 2030 Agenda for Sustainable Development. Full article
Show Figures

Figure 1

20 pages, 1316 KB  
Article
Effects of Alternate Wetting and Drying (AWD) Irrigation on Rice Growth and Soil Available Nutrients on Black Soil in Northeast China
by Chaoyin Dou, Chen Qian, Yuping Lv and Yidi Sun
Agronomy 2025, 15(10), 2372; https://doi.org/10.3390/agronomy15102372 (registering DOI) - 10 Oct 2025
Abstract
Extensive practice has demonstrated that the continuous pursuit of high yields in the black soil region of Northeast China resulted in imbalances in soil nutrients and declines in both soil quality and water use efficiency. Alternate wetting and drying (AWD) irrigation offers a [...] Read more.
Extensive practice has demonstrated that the continuous pursuit of high yields in the black soil region of Northeast China resulted in imbalances in soil nutrients and declines in both soil quality and water use efficiency. Alternate wetting and drying (AWD) irrigation offers a promising solution for increasing rice yield and maintaining soil fertility. However, the success of this irrigation method largely depends on its scheduling. This study examined the threshold effects of AWD on rice growth, yield, and soil nutrient availability in the Sanjiang Plain, a representative black soil region in Northeast China. A two-year trial was conducted from 2023 to 2024 at the Qixing National Agricultural Science and Technology Park. “Longjing 31”, a local cultivar, was selected as the experimental material. The lower limit of soil water content under AWD was set as the experimental factor, with three levels: −10 kPa (LA), −20 kPa (MA), and −30 kPa (SA). The local traditional irrigation practice, continuous flooding, served as the control treatment (CK). Indicators of rice growth and soil nutrient content were measured and analyzed at five growth stages: tillering, jointing, heading, milk ripening, and yellow ripening. The results showed that, compared to CK, AWD had minimal impact on rice plant height and tiller number, with no significant differences (p > 0.05). However, AWD affected leaf area index (LAI), shoot dry matter (SDM), yield, and soil nutrient availability. In 2023, control had little effect on rice plant height and tiller number among the different irrigation treatments. The LAI of LA was 11.1% and 22.5% higher than that of MA and SA, respectively, while SDM in LA was 10.5% and 17.2% higher than in MA and SA. Significant differences were found between LA and MA, as well as between LA and SA, whereas no significant differences were observed between MA and SA. The light treatment is beneficial to the growth and development of rice, while the harsh growth environment caused by the moderate and severe treatments is unfavorable to rice growth. The average contents of nitrate nitrogen (NO3-N), available phosphorus (AP), and available potassium (AK) in LA were 11.4%, 8.4%, and 9.3% higher than in MA, and 16.7%, 11.5%, and 15.0% higher than in SA, respectively. Significant differences were observed between LA and SA. This is because the light treatment facilitates the release of available nutrients in the soil, while the moderate and severe treatments hinder this process. Although panicle number per unit area and grain number per panicle in LA were 7.5% and 2.3% higher than in MA, and 10.8% and 2.2% higher than in SA, these differences were not statistically significant. Seed setting rate and thousand-grain weight showed little variation across irrigation treatments. The yield of LA was 10,233.3 kg hm−2, 9.1% and 14.1% higher than that of MA and SA, respectively, with significant differences observed. Compared with the moderate and severe treatments, the light treatment increases indicators such as the number of panicles per unit area, grains per panicle, thousand-grain weight, and seed setting rate, resulting in significant differences among the treatments. Water use efficiency (WUE) decreased as the control level increased. The WUE of all AWD irrigation treatments was significantly higher than that of the control treatment (CK). Compared with CK, AWD reduces evaporation, percolation, and other water losses, leading to a significant decrease in water consumption. Meanwhile, the yield remains basically unchanged or even slightly increases, thus resulting in a higher WUE than CK. The trends in rice growth, soil nutrient indicators, and WUE in 2024 were generally consistent with those observed in 2023. In 2024, the yield of LA was 9832.7 kg hm−2, 14.9% and 17.3% higher than that of MA and SA, respectively, with significant differences observed. Based on the results, the following conclusions are drawn: (1) AWD irrigation can affect the growth of rice, alter the status of available nutrients in the soil, and thereby cause changes in yield and WUE; (2) LA is the optimal treatment for increasing rice yield, improving the availability of soil available nutrients, and improving WUE; (3) Both MA and SA enhanced WUE; however, these practices negatively impacted rice growth and the concentration of soil available nutrients, leading to a concurrent decline in yield. To increase rice yield and maintain soil fertility, LA, with an irrigation upper limit of 30 mm and a soil water potential threshold of −10 kPa, is recommended for the Sanjiang Plain region. Full article
Show Figures

Figure 1

18 pages, 960 KB  
Article
Quality Risk Identification and Fuzzy Comprehensive Assessment of Land Trusteeship Services in China
by Yunlong Sui and Lianghong Yu
Land 2025, 14(10), 2027; https://doi.org/10.3390/land14102027 - 10 Oct 2025
Abstract
The quality risks of land trusteeship services are increasingly prominent, leading to reduced crop yields for farmers and land degradation; however, relevant research remains insufficient. This paper aims to identify and evaluate the quality risk level of land trusteeship services. It comprehensively adopts [...] Read more.
The quality risks of land trusteeship services are increasingly prominent, leading to reduced crop yields for farmers and land degradation; however, relevant research remains insufficient. This paper aims to identify and evaluate the quality risk level of land trusteeship services. It comprehensively adopts a field survey, web crawler technology, and expert consultation methods to identify quality risk types, and then uses the fuzzy comprehensive evaluation method to assess the risk level based on survey data from Chinese farmers. The main conclusions are as follows: (1) Overall, the quality risk level of land trusteeship services is at a relatively high risk level. In terms of spatio-temporal patterns, the quality risk level shows an upward trend, and the quality risk level of mid-production services is increasing at the fastest rate. There are significant variations in service quality risk across prefecture-level cities in the Shandong Province of China. (2) In terms of risk heterogeneity, the quality risk level of small-scale pure farmers is higher than that of part-time farmers and large professional farmers, in that order. The quality risk level of the “farmer + service organization” model is higher than that of the “farmer + intermediary + service organization” model. According to the order of the quality risk level of different crops, the ranking (from highest to lowest) is cash crops, wheat, and corn. (3) The high quality risks of land trusteeship services will impact the multifunctionality of land systems. It exacerbates the land pollution and fertility degradation because of excessive application of chemical inputs like pesticides, fertilizers, and mulch by service organizations. It consequently destroys ecological systems, hinders sustainable agricultural development, and impacts farmers’ income and national food security by reducing yields. The research findings contribute to controlling the quality risks of land trusteeship services and protecting land. Full article
(This article belongs to the Section Land Systems and Global Change)
Show Figures

Figure 1

21 pages, 4298 KB  
Article
Growth and Photosynthetic Responses of Lactuca sativa L. to Different Zinc Fertilizer Sources and Applications
by Marina de-Francisco, Esther Hernández-Montes, Sarah DeSanto, Monica Montoya, Ana Obrador and Patricia Almendros
Horticulturae 2025, 11(10), 1221; https://doi.org/10.3390/horticulturae11101221 - 10 Oct 2025
Abstract
Zinc (Zn) is an essential micronutrient for plant growth, serving as a co-factor in enzymatic processes and pigment biosynthesis. In horticultural crops such as lettuce, Zn fertilization is increasingly relevant for optimizing yield and nutritional quality. In this study, a greenhouse pot experiment [...] Read more.
Zinc (Zn) is an essential micronutrient for plant growth, serving as a co-factor in enzymatic processes and pigment biosynthesis. In horticultural crops such as lettuce, Zn fertilization is increasingly relevant for optimizing yield and nutritional quality. In this study, a greenhouse pot experiment was conducted using Lactuca sativa L. cv. Romana Verano (Ramiro Arnedo) to evaluate the effects of four Zn sources with contrasting physio-chemical properties—ZnSO4, a synthetic chelate containing DTPA, EDTA, and HEDTA, a Zn–lignosulphonate complex, and ZnO nanoparticles—applied to soil at rates of 15, 30, 60, and 120 mg Zn·kg−1. Morphometric traits, photosynthetic pigmentation, and photosystem performance were assessed to determine differences in plant response. Results showed that low to moderate Zn supply (15–60 mg Zn·kg−1) maintained growth, leaf number, stem diameter, and biomass without significant changes compared to the control. In contrast, the highest dose (120 mg Zn·kg−1), particularly in chelated forms, led to reductions in growth and yield exceeding 80%, reflecting supra-optimal effects. Although lignosulphonate and nanoparticles sources lowered soil Zn availability, they did not affect lettuce growth or yield, indicating their potential as safer agricultural alternatives to conventional Zn fertilizers. Photosynthetic efficiency, measured through chlorophyll fluorescence and electron transport activity, was positively modulated by adequate Zn levels but declined at excessive concentrations. These findings highlight that Zn efficiency strongly depends on its chemical form and applied dose, providing practical insights for optimizing Zn fertilization strategies in lettuce and other horticultural crops. Full article
(This article belongs to the Special Issue 10th Anniversary of Horticulturae—Recent Outcomes and Perspectives)
Show Figures

Graphical abstract

23 pages, 2932 KB  
Article
Multi- and Transgenerational Effects of Silver Ions (Ag+) in the ng/L Range on Life Cycle Parameters and Population Growth of the Midge Chironomus riparius (Diptera, Chironomidae)
by Jingyun Ding, Stefanie Krais, Zequn Li, Rita Triebskorn and Heinz-R. Köhler
Toxics 2025, 13(10), 855; https://doi.org/10.3390/toxics13100855 - 10 Oct 2025
Abstract
Silver (Ag) is widely released into aquatic environments through industrial and municipal discharges, with concentrations often reaching toxic levels for aquatic organisms. Its further extensive use in antimicrobials, especially during the COVID-19 pandemic, has increased environmental inputs. As Ag+ is the most [...] Read more.
Silver (Ag) is widely released into aquatic environments through industrial and municipal discharges, with concentrations often reaching toxic levels for aquatic organisms. Its further extensive use in antimicrobials, especially during the COVID-19 pandemic, has increased environmental inputs. As Ag+ is the most toxic form of Ag, understanding its ecological risks remains critical for environmental regulation and ecosystem protection. Thus, we investigated multigenerational and transgenerational toxicity of Ag+ as AgNO3 on the ecologically important species midge Chironomus riparius using two complementary long-term life-cycle experiments. Experiment 1 simulated exposures with pulsed high environmentally relevant concentrations and recovery phases (nominal 3 µg/L), while Experiment 2 assessed continuous low environmentally relevant concentrations (nominal 0.01, 0.1, 1 and 3 µg/L) across four exposed generations of C. riparius followed by three recovery generations. Endpoints included survival, development, reproduction, growth as well as the population growth rate (PGR). Continuous Ag+ exposure produced cumulative increases in mortality and declines in emergence, reduced fertility and eggs per rope, delayed development (especially in females), and progressive reductions in PGR. Notably, adverse effects emerged or intensified over generations and were detectable at very low concentrations: some reproductive and survival endpoints showed significant impairment at the European Union’s environmental quality standard (EU-EQS) level (0.01 µg/L) by the fourth generation, while transgenerational effects persisted at ≥0.1 µg/L. Partial recovery occurred after removal of contamination at the lowest concentrations but not after higher exposures. The present study not only indicates that chronic, low-level Ag+ contamination can produce persistent, population-level adverse impacts on C. riparius, but also underscores the necessity for long-term ecological assessments to establish more protective standards and maintain ecosystem stability. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Figure 1

16 pages, 2535 KB  
Article
Straw-Increased C/N Ratio Mitigates Nitrate Leaching in Fluvial Soil by Enhancing Microbial N Pool and Reducing N Mineralization
by Yuhan Hu, Chunyuan Zhao, Wenwen Zhang, Peng Zhao, Shiyu Qin, Yupeng Zhang and Fuqing Sui
Agronomy 2025, 15(10), 2371; https://doi.org/10.3390/agronomy15102371 (registering DOI) - 10 Oct 2025
Abstract
Excessive application of nitrogen (N) fertilizer increases the risk of soil NO3-N leaching in fluvial soil, threatening soil and groundwater quality and safety. Enhancing soil carbon (C) by returning straw to the field can efficiently improve soil quality. The process [...] Read more.
Excessive application of nitrogen (N) fertilizer increases the risk of soil NO3-N leaching in fluvial soil, threatening soil and groundwater quality and safety. Enhancing soil carbon (C) by returning straw to the field can efficiently improve soil quality. The process of increasing C/N by straw returning to regulate soil nitrogen transformation and mitigate NO3-N leaching, and the ecological threshold of straw application rate in fluvial soil need to be further explored. This study aims to research a series of soil C/N ratio treatments (including no straw, CK; C/N of 15, 20, 25, 30, 35 and 40), which were set up by adding straw at different application rates, and to investigate the underlying process of increasing C/N ratio by incorporating straw to mitigate NO3-N leaching. As the soil C/N ratio increased, the total soil nitrogen showed a fluctuating increase with the highest value in S40 treatment (increased by 358 mg kg−1), while the NO3-N leaching amount reached the lowest value at the C/N ratio of 20, with an average reduction of 45% (decreased by 29.3 mg kg−1). Increasing soil C/N ratio significantly increased soil microbial biomass, cellulase, urease and N-acetyl-β-D-glucosaminidase activities while it decreased the net N mineralization rate, ammonification rate and nitrification rate. Principal component analysis showed that the NO3-N leaching was positively correlated with the ammonification rate, nitrification rate and net N mineralization rate, and negatively correlated with the abundances of bacteria, fungi and nitrogen-fixing genes (nifH) (p < 0.01). Structural equation model analysis showed that straw-regulated C/N, dissolved organic N and soil fungi were the most important factors affecting NO3-N leaching, followed by the ammonification rate. Overall, increasing soil C/N by adding straw could enhance soil microbial biomass (especially fungi) and enzyme activities to promote soil N storage and reduce net N mineralization, ammonification and nitrification to decrease NO3-N leaching. Full article
Show Figures

Figure 1

19 pages, 4151 KB  
Article
Microbial Role in Straw Organic Matter Depolymerization to Dissolved Organic Nitrogen Under Nitrogen Fertilizer Reduction in Coastal Saline Paddy Soil
by Xianglin Dai, Jianping Sun, Hao Li, Zijing Zhao, Ruiping Ma, Yahui Liu, Nan Shan, Yutao Yao and Zhizhong Xue
Microorganisms 2025, 13(10), 2333; https://doi.org/10.3390/microorganisms13102333 - 10 Oct 2025
Viewed by 40
Abstract
This study examines the effects of reduced nitrogen (N) application on rice straw N depolymerization in coastal saline paddy soil to establish a scientific basis for optimizing N application strategies during straw incorporation in coastal paddy systems. A 360-day field straw bag burial [...] Read more.
This study examines the effects of reduced nitrogen (N) application on rice straw N depolymerization in coastal saline paddy soil to establish a scientific basis for optimizing N application strategies during straw incorporation in coastal paddy systems. A 360-day field straw bag burial experiment was conducted using four N application levels: N0 (control, without N fertilizer), N1 (225 kg N/ha), N2 (300 kg N/ha), and N3 (375 kg N/ha). The results indicated that applying 300 kg N/ha significantly (p < 0.05) increased dissolved organic N (DON) content, apr and chiA gene copies, and the activities of alkaline protease, chitinase, leucine aminopeptidase, and N-acetylglucosaminidase. In addition, the application of 300 kg N/ha enhanced the synergistic effects of alkaline protein- and chitin-degrading microbial communities. Pseudomonas, Brevundimonas, Sorangium, Cohnella, and Thermosporothrix were identified as keystone taxa predominant in straw N depolymerization. Straw N depolymerization occurred by two primary pathways: direct regulation of enzyme activity by straw properties of total carbon and electrical conductivity, and indirect influence on N hydrolase activity and DON production through modified microbial community structures. The findings suggest that an application rate of 300 kg N/ha is optimal for promoting straw N depolymerization in coastal saline paddy fields. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

19 pages, 1630 KB  
Article
Effects of Biochar Addition on Gaseous Emissions During the Thermophilic Composting Phase and Subsequent Changes in Compost Characteristics
by Ibrahim A. Abdelfadeel, Khaled D. Alotaibi, Fahad N. Alkoiak, Saud S. Aloud and Ronnel B. Fulleros
Processes 2025, 13(10), 3210; https://doi.org/10.3390/pr13103210 - 9 Oct 2025
Viewed by 129
Abstract
The composting of organic waste is a sustainable strategy for waste management and soil fertility improvement. However, the composting process is often associated with greenhouse gas (GHG) emissions, having a negative impact on the environment. This study investigated the effects of BC pyrolysis [...] Read more.
The composting of organic waste is a sustainable strategy for waste management and soil fertility improvement. However, the composting process is often associated with greenhouse gas (GHG) emissions, having a negative impact on the environment. This study investigated the effects of BC pyrolysis temperature (300 °C, 600 °C) and application rate (5% and 10%) on GHG emissions during the thermophilic phase and compost quality. The experimental treatments were a control and four BC treatments varying in pyrolysis temperature (300 °C, 600 °C) and application rate (5%, 10%). As a result, BC pyrolyzed at 600 °C and added at 10% (T2R2) resulted in the highest thermophilic temperature (63.5 ± 0.5 °C). This treatment significantly achieved substantial reductions in NH3, N2O, CH4, and CO2 emissions by 55 ± 2.7%, 50 ± 2.7%, 88 ± 4.2%, and 23 ± 2.3%, respectively, relative to the control. Compost quality was enhanced notably, with dry matter increasing to 46.4 ± 0.11% (T2R1), organic matter reaching 30.9 ± 0.05% in T2R1, and total nitrogen peaking at 0.8 ± 0.001% (T1R2). The C:N ratio decreased from 27:1 in the control to 21:1 in the treatment of T1R2, indicating an accelerated composting process. The NH4-N levels were the highest in T1R2 and T2R2 (659 ± 0.1 and 416 ± 0.2 mg kg−1), while EC increased to 9.5 ± 0.006 ms/cm (T2R1), and bulk density decreased to 410 ± 0.08 kg/m3 (T1R1). These results demonstrate that high-temperature biochar, especially at a rate of 10%, is effective in reducing emissions and improving compost quality. Future research should explore long-term effects and microbial mechanisms to optimize biochar use in composting systems. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

21 pages, 10220 KB  
Article
Fragmentation Susceptibility of Controlled-Release Fertilizer Particles: Implications for Nutrient Retention and Sustainable Horticulture
by Zixu Chen, Yongxian Wang, Xiubo Chen, Linlong Jing, Linlin Sun, Hongjian Zhang and Jinxing Wang
Horticulturae 2025, 11(10), 1215; https://doi.org/10.3390/horticulturae11101215 - 9 Oct 2025
Viewed by 99
Abstract
As an important technology to enhance nutrient use efficiency and reduce agricultural non-point source pollution, controlled-release fertilizers (CRFs) have been widely applied in modern agriculture. However, during packaging, transportation, and field application, CRF particles are prone to mechanical impacts, which can lead to [...] Read more.
As an important technology to enhance nutrient use efficiency and reduce agricultural non-point source pollution, controlled-release fertilizers (CRFs) have been widely applied in modern agriculture. However, during packaging, transportation, and field application, CRF particles are prone to mechanical impacts, which can lead to particle fragmentation and damage to the controlled-release coating. This compromises the release kinetics, increases nutrient loss risk, and ultimately exacerbates environmental issues such as eutrophication. Currently, studies on the impact-induced fragmentation behavior of CRF particles remain limited, and there is an urgent need to investigate their fragmentation susceptibility mechanisms from the perspective of internal stress evolution. In this study, the mechanical properties of CRF particles were first experimentally determined to obtain essential parameters. A two-layer finite element model representing the coating and core structure of the particles was then constructed, and a fragmentation susceptibility index was proposed as the key evaluation criterion. The index, defined as the ratio of fractured volume to peak impact energy, reflects the efficiency of energy conversion at the critical moment of particle rupture (1–5). An explicit dynamic simulation framework incorporating multiple influencing factors—equivalent diameter, sphericity, impact material, velocity, and angle—was developed to analyze fragmentation behavior from the perspective of energy transformation. Based on the observed effects of these variables on fragmentation susceptibility, three regression models were developed using response surface methodology to quantitatively predict fragmentation susceptibility. Comparative analysis between the simulation and experimental results showed a fragmentation rate error range of 0–11.47%. The findings reveal the relationships between particle fragmentation modes and energy responses under various impact conditions. This research provides theoretical insights and technical guidance for optimizing the mechanical stability of CRFs and developing environmentally friendly fertilization strategies. Full article
(This article belongs to the Section Plant Nutrition)
Show Figures

Figure 1

17 pages, 9922 KB  
Article
Edaravone Mitigates Postovulatory Aging by Preserving Oocyte and Embryo Quality in Mice
by Kyeoung-Hwa Kim, Eun-Young Kim, Ah-Reum Lee, Mi-Kyoung Koong and Kyung-Ah Lee
Antioxidants 2025, 14(10), 1215; https://doi.org/10.3390/antiox14101215 - 9 Oct 2025
Viewed by 181
Abstract
Postovulatory aging (POA) significantly contributes to fertility decline, primarily through oxidative stress, which impairs oocyte quality, reduces embryonic developmental competence, and may adversely affect offspring health. Edaravone (EDA), a potent free radical scavenger, is known for its cytoprotective effects in various disease models. [...] Read more.
Postovulatory aging (POA) significantly contributes to fertility decline, primarily through oxidative stress, which impairs oocyte quality, reduces embryonic developmental competence, and may adversely affect offspring health. Edaravone (EDA), a potent free radical scavenger, is known for its cytoprotective effects in various disease models. This study aimed to evaluate whether EDA can mitigate the detrimental effects of POA on mouse oocyte and embryo quality and confirm its reproductive safety. Supplementation with 10 nM EDA significantly reduced meiotic abnormalities, restored mitochondrial distribution, enhanced mitochondrial membrane potential and ATP production, and decreased intracellular reactive oxygen species (ROS) in aged oocytes. Although EDA did not markedly improve fertilization or blastocyst formation rates, it enhanced embryo quality, with morphokinetic parameters comparable to those of young oocytes. Moreover, F1 offspring derived from embryos produced by EDA-treated POA oocytes were healthy, and female progeny exhibited normal reproductive competence. These findings demonstrate that EDA safely improves oocyte quality by alleviating POA-induced oxidative damage, offering a potential antioxidant strategy to enhance assisted reproductive technology (ART) outcomes when applied to IVF clinics. Full article
Show Figures

Graphical abstract

18 pages, 5469 KB  
Article
Trade-Offs Between Soil Environmental Impacts and Economic Returns in Optimizing Drip Fertigation for North China Greenhouse Tomatoes
by Lijuan Wang, Hanbo Wang, Tieqiang Wang and Daozhi Gong
Agronomy 2025, 15(10), 2363; https://doi.org/10.3390/agronomy15102363 - 9 Oct 2025
Viewed by 154
Abstract
Balancing soil nitrogen leaching with production benefits remains a critical challenge in sustainable greenhouse tomato cultivation. This study evaluated the effects of reduced water-soluble nitrogen fertilizer (N) application rates on soil environmental parameters and production outcomes to optimize nitrogen management strategies. Four treatments [...] Read more.
Balancing soil nitrogen leaching with production benefits remains a critical challenge in sustainable greenhouse tomato cultivation. This study evaluated the effects of reduced water-soluble nitrogen fertilizer (N) application rates on soil environmental parameters and production outcomes to optimize nitrogen management strategies. Four treatments were implemented across two growing seasons: control (CK), high-N (H), medium-N (M), and low-N (L) nitrogen fertilizer applications in soil solution (SS) and autumn–winter (AW) systems. Results demonstrated that reduced nitrogen inputs significantly decreased soil electrical conductivity and soil nitrogen retention by 88% and 83% in SS and AW, respectively, while reducing soil residual nitrate nitrogen. The tomato yield decreased by 14–26% under low fertilizer treatment, while fruit quality was substantially enhanced, with soluble solid content increasing by 56% in SS and 217% in AW for the L treatment compared to the CK. Nitrogen-use efficiency improved by 54.7% and 34.78% in SS and AW, respectively, demonstrating superior resource utilization under reduced fertilizer applications. Principal component analysis revealed that fruit quality was primarily influenced by soluble solid content, organic acid, total soluble solids, and sugar–acid ratio. Gray relational analysis identified the L treatment (361.62 kg ha−1 in SS and 182.6 kg ha−1 in AW) as optimal for comprehensive performance evaluation. The findings demonstrate that strategic nitrogen reduction effectively balances production benefits with environmental sustainability, providing a practical framework for sustainable nitrogen management in controlled environment agriculture. Full article
Show Figures

Figure 1

25 pages, 8828 KB  
Review
Agronomic Practices vs. Climate Factors: A Meta-Analysis of Influences on Nitrous Oxide Emissions from Corn and Soybean Fields
by Jamshid Ansari, Morgan P. Davis, Chenhui Li and Sheel Bansal
Agronomy 2025, 15(10), 2358; https://doi.org/10.3390/agronomy15102358 - 9 Oct 2025
Viewed by 205
Abstract
Nitrous oxide (N2O), a potent greenhouse gas (GHG) and major contributor to climate change, is primarily released through agricultural activities. To better understand and quantify how land management practices, local climate conditions, and soil physicochemical properties affect these agricultural N2 [...] Read more.
Nitrous oxide (N2O), a potent greenhouse gas (GHG) and major contributor to climate change, is primarily released through agricultural activities. To better understand and quantify how land management practices, local climate conditions, and soil physicochemical properties affect these agricultural N2O emissions, we conducted a review of the peer-reviewed literature on N2O emission from corn [Zea mays L.] and soybean [Glycine max (L.) Merr.] fields. We evaluated the seasonal, cumulative effects of three nitrogen fertilizer rates—no fertilizer (0), low (<188 kg N ha−1), and high (188–400 kg N ha−1)—tillage practices, local climate (precipitation and temperature), soil texture, and soil pH on soil N2O emissions. This meta-analysis included 77 articles for corn and 22 articles for soybean fields. Average N2O emissions during the corn rotation were 2.34 and 2.45 kg N2O-N ha−1 season−1 under low and high N fertilizer rates, respectively, and were both substantially (p < 0.0001) greater than those of non-fertilized corn fields (0.91 kg N2O-N ha−1 season−1). Non-fertilized soybean fields showed seasonal N2O emissions of 0.74 kg N2O-N ha−1, while low fertilizer application triggered a sharp increase (1.87 kg N2O-N ha−1) in N2O emissions by roughly 2.5 times (p < 0.028). Increased temperature did not significantly (p > 0.05) affect the emission of N2O from fertilized or non-fertilized corn fields. Regardless of fertilization and tillage practices, our analysis, including Principal Component Analysis, revealed that in corn fields, precipitation and soil pH are the dominant factors influencing soil N2O emissions. This study uniquely quantifies the influence of climate–soil factors, such as precipitation and soil pH, alongside agronomic practices, on N2O emissions, offering new insights beyond previous reviews focused primarily on fertilizer rates or tillage effects. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Figure 1

19 pages, 2428 KB  
Article
OsPIP2;1 Positively Regulates Rice Tolerance to Water Stress Under Coupling of Partial Root-Zone Drying and Nitrogen Forms
by Chunyi Kuang, Ziying Han, Xiang Zhang, Xiaoyuan Chen, Zhihong Gao and Yongyong Zhu
Int. J. Mol. Sci. 2025, 26(19), 9782; https://doi.org/10.3390/ijms26199782 - 8 Oct 2025
Viewed by 222
Abstract
The coupling of partial root-zone drying (PRD) with nitrogen forms exerts an interactive “water-promoted fertilization” effect, which enhances rice (Oryza sativa L.) growth and development, improves water use efficiency (WUE), mediates the expression of aquaporins (AQPs), and alters root water conductivity. In [...] Read more.
The coupling of partial root-zone drying (PRD) with nitrogen forms exerts an interactive “water-promoted fertilization” effect, which enhances rice (Oryza sativa L.) growth and development, improves water use efficiency (WUE), mediates the expression of aquaporins (AQPs), and alters root water conductivity. In this study, gene cloning and CRISPR-Cas9 technologies were employed to construct overexpression and knockout vectors of the OsPIP2;1 gene, which were then transformed into rice (cv. Meixiangzhan 2). Three water treatments were set: normal irrigation (CK); partial root-zone drying (PRD); and 10% PEG-simulated water stress (PEG), combined with a nitrogen form ratio of ammonium nitrogen (NH4+) to nitrate nitrogen (NO3) at 50:50 (A50/N50) for the coupled treatment of rice seedlings. The results showed that under the coupled treatment of PRD and the aforementioned nitrogen form, the expression level of the OsPIP2;1 gene in roots was upregulated by 0.62-fold on the seventh day, while its expression level in leaves was downregulated by 1.84-fold. Overexpression of OsPIP2;1 enabled Meixiangzhan 2 to maintain a higher abscisic acid (ABA) level under different water conditions, which helped rice reduce water potential and enhance water absorption. Compared with the CK treatment, overexpression of OsPIP2;1 increased the superoxide dismutase (SOD) activity of rice under PRD by 26.98%, effectively alleviating tissue damage caused by excessive accumulation of O2. The physiological and biochemical characteristics of OsPIP2;1-overexpressing rice showed correlations under PRD and A50/N50 nitrogen form conditions, with WUE exhibiting a significant positive correlation with transpiration rate, chlorophyll content, nitrogen content, and Rubisco enzyme activity. Overexpression of OsPIP2;1 could promote root growth and increase the total biomass of rice plants. The application of the OsPIP2;1 gene in rice genetic engineering modification holds great potential for improving important agricultural traits of crops. This study provides new insights into the mechanism by which the AQP family regulates water use in rice and has certain significance for exploring the role of AQP genes in rice growth and development as well as in response to water stress. Full article
(This article belongs to the Special Issue Plant Tolerance to Stress)
Show Figures

Figure 1

17 pages, 6432 KB  
Article
An AI-Enabled System for Automated Plant Detection and Site-Specific Fertilizer Application for Cotton Crops
by Arjun Chouriya, Peeyush Soni, Abhilash K. Chandel and Ajay Kumar Patel
Automation 2025, 6(4), 53; https://doi.org/10.3390/automation6040053 - 8 Oct 2025
Viewed by 255
Abstract
Typical fertilizer applicators are often restricted in performance due to non-uniformity in distribution, required labor and time intensiveness, high discharge rate, chemical input wastage, and fostering weed proliferation. To address this gap in production agriculture, an automated variable-rate fertilizer applicator was developed for [...] Read more.
Typical fertilizer applicators are often restricted in performance due to non-uniformity in distribution, required labor and time intensiveness, high discharge rate, chemical input wastage, and fostering weed proliferation. To address this gap in production agriculture, an automated variable-rate fertilizer applicator was developed for the cotton crop that is based on deep learning-initiated electronic control unit (ECU). The applicator comprises (a) plant recognition unit (PRU) to capture and predict presence (or absence) of cotton plants using the YOLOv7 recognition model deployed on-board Raspberry Pi microprocessor (Wale, UK), and relay decision to a microcontroller; (b) an ECU to control stepper motor of fertilizer metering unit as per received cotton-detection signal from the PRU; and (c) fertilizer metering unit that delivers precisely metered granular fertilizer to the targeted cotton plant when corresponding stepper motor is triggered by the microcontroller. The trials were conducted in the laboratory on a custom testbed using artificial cotton plants, with the camera positioned 0.21 m ahead of the discharge tube and 16 cm above the plants. The system was evaluated at forward speeds ranging from 0.2 to 1.0 km/h under lighting levels of 3000, 5000, and 7000 lux to simulate varying illumination conditions in the field. Precision, recall, F1-score, and mAP of the plant recognition model were determined as 1.00 at 0.669 confidence, 0.97 at 0.000 confidence, 0.87 at 0.151 confidence, and 0.906 at 0.5 confidence, respectively. The mean absolute percent error (MAPE) of 6.15% and 9.1%, and mean absolute deviation (MAD) of 0.81 g/plant and 1.20 g/plant, on application of urea and Diammonium Phosphate (DAP), were observed, respectively. The statistical analysis showed no significant effect of the forward speed of the conveying system on fertilizer application rate (p > 0.05), thereby offering a uniform application throughout, independent of the forward speed. The developed fertilizer applicator enhances precision in site-specific applications, minimizes fertilizer wastage, and reduces labor requirements. Eventually, this fertilizer applicator placed the fertilizer near targeted plants as per the recommended dosage. Full article
Show Figures

Figure 1

Back to TopTop