Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = fetal breathing movements

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 4486 KB  
Article
Ibuprofen Does Not Prevent Inhibition of Fetal Breathing Movements Caused by Intrauterine Inflammation in Fetal Sheep
by Nhi T. Tran, Vanesa Stojanovska, Sharmony B. Kelly, Kayla Vidinopoulos, John Atta, Eva Matthews-Staindl, Valerie A. Zahra, Yen Pham, Eric A. P. Herlenius, Stuart B. Hooper, Beth J. Allison, Robert Galinsky and Graeme R. Polglase
Int. J. Mol. Sci. 2025, 26(12), 5591; https://doi.org/10.3390/ijms26125591 - 11 Jun 2025
Viewed by 538
Abstract
Antenatal inflammation/infection is a major cause of neonatal apnoea and hypoventilation. Prostaglandin E2 (PGE2) is a key inflammatory mediator associated with depression of fetal and neonatal breathing. We aimed to determine whether antenatal ibuprofen, a cyclooxygenase inhibitor that reduces synthesis of [...] Read more.
Antenatal inflammation/infection is a major cause of neonatal apnoea and hypoventilation. Prostaglandin E2 (PGE2) is a key inflammatory mediator associated with depression of fetal and neonatal breathing. We aimed to determine whether antenatal ibuprofen, a cyclooxygenase inhibitor that reduces synthesis of PGE2, restores fetal breathing movements (FBM) in late-gestation fetal sheep exposed to systemic lipopolysaccharide (LPS). Fetal sheep (125 days gestation, d; term ~148 d) were instrumentally monitored for continuous measurement of FBM and physiological parameters. At 130 d fetuses were randomly allocated between groups receiving i.v. saline (CTLSAL, n = 9), escalating doses of LPS (i.v.) over 3 days (LPSSAL, n = 8), or ibuprofen one hour after each LPS dose (LPSIBU, n = 8). Regular plasma samples were collected for PGE2 assessment. At 135 d, cerebrospinal fluid and brainstem tissue were collected at autopsy for assessments of PGE2 expression, and immunohistochemical quantification of astrocytes and microglia within key brainstem respiratory centres was performed to assess inflammation. LPS exposure increased PGE2 levels in plasma, cerebrospinal fluid and the RTN/pFRG (p < 0.05) and decreased the incidence, amplitude and amount of the accentuated (>5 mmHg) FBMs. Ibuprofen reduced plasma and RTN/pFRG PGE2 expression (p < 0.01 and p = 0.031, respectively) but did not restore FBMs. Astrocyte and microglial density increased in the RTN/pFRG, NTS and raphe nucleus in LPSIBU fetuses, compared to LPSSAL (p < 0.05). Antenatal ibuprofen treatment did not restore depressed FBM, despite reducing the circulating and brainstem PGE2 levels in LPS-exposed fetal sheep. Other inflammatory pathways or more specific targeting of PGE2 may be more effective in preventing apnoea caused by exposure to intrauterine infection/inflammation. Full article
Show Figures

Figure 1

13 pages, 2860 KB  
Article
Novel Phonography-Based Measurement for Fetal Breathing Movement in the Third Trimester
by Márton Áron Goda, Tamás Telek and Ferenc Kovács
Sensors 2021, 21(1), 211; https://doi.org/10.3390/s21010211 - 31 Dec 2020
Cited by 5 | Viewed by 4093
Abstract
The detailed assessment of fetal breathing movement (FBM) monitoring can be a pre-indicator of many critical cases in the third trimester of pregnancy. Standard 3D ultrasound monitoring is time-consuming for FBM detection. Therefore, this type of measurement is not common. The main goal [...] Read more.
The detailed assessment of fetal breathing movement (FBM) monitoring can be a pre-indicator of many critical cases in the third trimester of pregnancy. Standard 3D ultrasound monitoring is time-consuming for FBM detection. Therefore, this type of measurement is not common. The main goal of this research is to provide a comprehensive image about FBMs, which can also have potential for application in telemedicine. Fifty pregnancies were examined by phonography, and nearly 9000 FBMs were identified. In the case of male and female fetuses, 4740 and 3100 FBM episodes were detected, respectively. The measurements proved that FBMs are well detectable in the 20–30 Hz frequency band. For these episodes, an average duration of 1.008 ± 0.13 s (p < 0.03) was measured in the third trimester. The recorded material lasted for 16 h altogether. Based on these measurements, an accurate assessment of FBMs could be performed. The epochs can be divided into smaller-episode groups separated by shorter breaks. During the pregnancy, the rate of these breaks continuously decreases, and episode groups become more contiguous. However, there are significant differences between male and female fetuses. The proportion of the episodes which were classified into minimally 10-member episode groups was 19.7% for males and only 12.1% for females, even at the end of the third trimester. In terms of FBM detection, phonography offers a novel opportunity for long-term monitoring. Combined with cardiac diagnostic methods, it can be used for fetal activity assessment in the third trimester and make measurement appreciably easier than before. Full article
(This article belongs to the Special Issue Neurophysiological Monitoring)
Show Figures

Figure 1

14 pages, 5299 KB  
Letter
Fetal Movement Counting Using Optical Fibre Sensors
by Chalani L. Abeywardena, Frederique J. Vanheusden, Kate F. Walker, Richard Arm and Qimei Zhang
Sensors 2021, 21(1), 48; https://doi.org/10.3390/s21010048 - 24 Dec 2020
Cited by 13 | Viewed by 5537
Abstract
Daily fetal movement counting based on maternal perception is widely deployed to monitor fetal wellbeing. However, the counting performed by the mother is prone to errors for various reasons. There are limited devices on the market that can provide reliable and automatic counting. [...] Read more.
Daily fetal movement counting based on maternal perception is widely deployed to monitor fetal wellbeing. However, the counting performed by the mother is prone to errors for various reasons. There are limited devices on the market that can provide reliable and automatic counting. This paper presents a prototype of a novel fetal movement monitoring device based on fibre Bragg grating sensors. Deformation of the skin caused by a fetal movement can lead to a change of the strain and stress on the optical fibre sensors, therefore can induce distortions to the breathing pattern of the mother. In the study data was gathered by the sensors through strain measurement and was post-processed using independent component analysis (ICA) and high-pass filtering to show the instances of the fetal movements. Information gathered during user trials with the prototype suggests that the system detects significantly higher numbers of fetus movements than that observed based on the mother’s perception. Among the various techniques available for fetal movement monitoring, fibre optic sensing provides many advantages including multiplex capability, flexibility and minimal size, making the concept an attractive solution for reliable monitoring of antenatal fetal movements. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

Back to TopTop