Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,136)

Search Parameters:
Keywords = fiber laser

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3190 KB  
Article
The Influence of Technological Parameters on the Contrast of Copper Surfaces in the Laser Marking Process
by Lyubomir Lazov, Edmunds Teirumnieks, Emil Yankov, Nikolay Angelov, Risham Singh Ghalot and Plamen Tsankov
Materials 2025, 18(17), 4024; https://doi.org/10.3390/ma18174024 - 28 Aug 2025
Abstract
This study examines the influence of key technological parameters—marking speed, raster step (Δx), pulse duration, power density, and effective energy—on the laser marking of copper using Yb-doped fiber and CuBr MOPA lasers. Two experimental setups were used: the fiber laser, with [...] Read more.
This study examines the influence of key technological parameters—marking speed, raster step (Δx), pulse duration, power density, and effective energy—on the laser marking of copper using Yb-doped fiber and CuBr MOPA lasers. Two experimental setups were used: the fiber laser, with 100 ns and 200 ns pulses, and the CuBr laser with 30 ns pulses. Marking speed ranged from 10 to 80 mm/s, with raster steps from 3 to 20 µm for the fiber laser and 3 to 27 µm for the CuBr laser. The study compares different pulse durations and evaluates the impact of laser wavelength on the marking process. Optimal effective energy ranges were identified: 17.4–43.1 kJ/cm2 for the Yb-doped fiber laser and 9.90–43.1 kJ/cm2 for the CuBr laser. The originality of this work lies in its direct comparison of Yb-doped fiber and CuBr MOPA lasers for copper marking, alongside the simultaneous optimization of multiple parameters. The study provides novel guidelines for high-contrast copper marking, a material with known laser-processing challenges. The identified optimal energy ranges and process parameters can significantly improve the efficiency and quality of industrial copper marking applications. Full article
(This article belongs to the Special Issue Processing of Metals and Alloys)
Show Figures

Figure 1

27 pages, 9585 KB  
Article
Shock Response Characteristics and Equation of State of High-Mass-Fraction Pressed Tungsten Powder/Polytetrafluoroethylene-Based Composites
by Wei Zhu, Weihang Li, Wenbin Li, Xiaoming Wang and Wenjin Yao
Polymers 2025, 17(17), 2309; https://doi.org/10.3390/polym17172309 - 26 Aug 2025
Abstract
Tungsten powder/polytetrafluoroethylene (W/PTFE) composites have the potential to replace traditional metallic materials as casings for controllable power warheads. Under explosive loading, they generate high-density and relatively uniformly distributed metal powder particles, thereby enhancing close-range impact effects while reducing collateral damage. To characterize the [...] Read more.
Tungsten powder/polytetrafluoroethylene (W/PTFE) composites have the potential to replace traditional metallic materials as casings for controllable power warheads. Under explosive loading, they generate high-density and relatively uniformly distributed metal powder particles, thereby enhancing close-range impact effects while reducing collateral damage. To characterize the material’s response under impact loading, plate impact tests were conducted to investigate the effects of tungsten content (70 wt%, 80 wt%, and 90 wt%) and tungsten particle size (200 μm, 400 μm, and 600 μm) on the impact behavior of the composites. The free surface velocity histories of the target plates were measured using a 37 mm single-stage light gas gun and a full-fiber laser interferometer (DISAR), enabling the determination of the shock velocity–particle velocity relationship to establish the equation of state. Experimental data show a linear relationship between shock velocity and particle velocity, with the 80 wt% and 90 wt% composites exhibiting similar shock velocities. The fitted slope increases from 2.792 to 2.957 as the tungsten mass fraction rises from 70 wt% to 90 wt%. With particle size increasing from 200 μm to 600 μm, the slope decreases from 3.204 to 2.756, while c0 increases from 224.7 to 633.3. Comparison of the Hugoniot pressure curves of different specimens indicated that tungsten content significantly affects the impact behavior, whereas variations in tungsten particle size have a negligible influence on the Hugoniot pressure. A high tungsten content with small particle size (e.g., 90 wt% with ~200 μm) improves the overall compressive properties of composite materials. Based on the experimental results, a mesoscale finite element model consistent with the tests was developed. The overall error between the numerical simulations and experimental results was less than 5% under various conditions, thereby validating the accuracy of the model. Numerical simulations revealed the coupling mechanism between tungsten particle plastic deformation and matrix flow. The strong rarefaction unloading effect initiated at the composite’s free surface caused matrix spallation and jetting. Multiple wave systems were generated at the composite–copper interface, whose interference and coupling ultimately resulted in a nearly uniform macroscopic pressure field. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

16 pages, 6809 KB  
Article
Flaxseed Fiber-Structured Nanoemulgels for Salad Dressing Applications: Processing and Stability
by María-Carmen Alfaro-Rodríguez, Fátima Vela, María-Carmen García-González and José Muñoz
Gels 2025, 11(9), 678; https://doi.org/10.3390/gels11090678 - 24 Aug 2025
Viewed by 190
Abstract
This study aimed to investigate the production of nanoemulgels structured with flaxseed fiber, designed to simulate salad dressings. For this purpose, the influence of microfluidizer passes (from one to four) on physicochemical and rheological properties was determined, followed by an assessment of thermal [...] Read more.
This study aimed to investigate the production of nanoemulgels structured with flaxseed fiber, designed to simulate salad dressings. For this purpose, the influence of microfluidizer passes (from one to four) on physicochemical and rheological properties was determined, followed by an assessment of thermal behavior. Rotor–stator homogenization followed by microfluidization were employed to produce nanoemulgels, which were characterized using laser diffraction, multiple light scattering, and rheological measurements. The resulting systems exhibited monomodal particle size distributions with mean diameters below 220 nm. Increasing the number of microfluidizer passes from one to four led to slight reductions in particle size, although they were not statistically significant. The formulation with two passes demonstrated superior physical stability during aging studies. Rheological evaluation indicated enhanced gel-like behavior with up to three passes, whereas excessive energy input (four passes) slightly compromised structural integrity. The linear viscoelastic region decreased notably after the first pass but remained relatively stable thereafter. The two-pass nanoemulgel, identified as the optimal formulation, was further tested for thermal stability. Temperature increases (5–20 °C) led to minor decreases in viscosity and firmness, yet the structure remained thermally stable. These findings support microfluidization as an effective strategy for developing stable flaxseed fiber-based nanoemulgels, with potential applications in functional food systems. Full article
(This article belongs to the Special Issue Food Gel-Based Systems: Gel-Forming and Food Applications)
Show Figures

Figure 1

11 pages, 1849 KB  
Article
Miniaturized Multicolor Femtosecond Laser Based on Quartz-Encapsulated Nonlinear Frequency Conversion
by Bosong Yu, Siying Wang, Aimin Wang, Yizhou Liu and Lishuang Feng
Photonics 2025, 12(9), 836; https://doi.org/10.3390/photonics12090836 - 22 Aug 2025
Viewed by 158
Abstract
Ultrafast lasers operating at 740 nm and 820 nm have attracted widespread attention as two-photon light sources for the detection of biological metabolism. Here, we report on a solid-like quartz-encapsulated femtosecond laser with a repetition rate of 80 MHz, delivering 740 nm and [...] Read more.
Ultrafast lasers operating at 740 nm and 820 nm have attracted widespread attention as two-photon light sources for the detection of biological metabolism. Here, we report on a solid-like quartz-encapsulated femtosecond laser with a repetition rate of 80 MHz, delivering 740 nm and 820 nm femtosecond laser pulses. This home-built laser system was realized by employing an erbium-doped 1560 nm fiber laser as the fundamental laser source. A quartz-encapsulated nonlinear frequency conversion stage, consisting of a second-harmonic generation (SHG) stage and self-phase modulation (SPM)-based nonlinear spectral broadening stage, was utilized to deliver 30 mW, 53.7 fs, 740 nm laser pulses and the 15 mW, 60.8 fs, 820 nm laser pulses. Further imaging capabilities of both wavelengths were validated using a custom-built inverted two-photon microscope. Clear imaging results were obtained from mouse kidney sections and pollen samples by collecting the corresponding fluorescence signals. The achieved results demonstrate the great potential of this laser source for advanced two-photon microscopy in metabolic detection. Full article
(This article belongs to the Special Issue Advances in Solid-State Laser Technology and Applications)
Show Figures

Figure 1

19 pages, 3530 KB  
Review
Direct Analysis of Solid-Phase Carbohydrate Polymers by Infrared Multiphoton Dissociation Reaction Combined with Synchrotron Radiation Infrared Microscopy and Electrospray Ionization Mass Spectrometry
by Takayasu Kawasaki, Heishun Zen, Kyoko Nogami, Ken Hayakawa, Takeshi Sakai and Yasushi Hayakawa
Polymers 2025, 17(17), 2273; https://doi.org/10.3390/polym17172273 - 22 Aug 2025
Viewed by 309
Abstract
To determine the structure of carbohydrate polymers using conventional analytical technology, several complicated steps are required. We instead adopted a direct approach without the need for pretreatments, using an intense infrared (IR) laser for carbohydrate analysis. IR free-electron lasers (FELs) driven by a [...] Read more.
To determine the structure of carbohydrate polymers using conventional analytical technology, several complicated steps are required. We instead adopted a direct approach without the need for pretreatments, using an intense infrared (IR) laser for carbohydrate analysis. IR free-electron lasers (FELs) driven by a linear accelerator possess unique spectroscopic features, including extensive wavelength tunability and high laser energy in the IR region from 1000 cm−1 (10 μm) to 4000 cm−1 (2.5 μm). FELs can induce IR multiphoton dissociation reactions against various molecules by supplying vibrational excitation energy to the corresponding chemical bonds. Chitin from crayfish and cellulose fiber were irradiated by FELs tuned to νC–O (9.1–9.8 μm), νC–H (3.5 μm), and δH–C–O (7.2 μm) in glycosidic bonds, and their low-molecular-weight sugars were separated, which were revealed by combining synchrotron radiation IR spectroscopy and electrospray ionization mass spectrometry. An intense IR laser can be viewed as a “molecular scalpel” for dissecting and directly analyzing the internal components in rigid biopolymers. This method is simple and rapid compared with general analytical techniques. Full article
(This article belongs to the Special Issue Advanced Spectroscopy for Polymers: Design and Characterization)
Show Figures

Graphical abstract

10 pages, 3663 KB  
Article
Compact All-Fiber SERS Probe Sensor Based on the MMF-NCF Structure with Self-Assembled Gold Nanoparticles
by Peng Cai, Tiantian Xu, Hangan Wei, Huili He and Fu Li
Sensors 2025, 25(17), 5221; https://doi.org/10.3390/s25175221 - 22 Aug 2025
Viewed by 312
Abstract
Brain natriuretic peptide (BNP) is an important biomarker for the diagnosis and prediction of chronic heart failure (CHF). Aiming at the problems of the low sensitivity and poor portability of traditional BNP detection methods, this study proposes a Surface-enhanced Raman-scattering (SERS) fiber-optic sensor [...] Read more.
Brain natriuretic peptide (BNP) is an important biomarker for the diagnosis and prediction of chronic heart failure (CHF). Aiming at the problems of the low sensitivity and poor portability of traditional BNP detection methods, this study proposes a Surface-enhanced Raman-scattering (SERS) fiber-optic sensor based on a multimode fiber (MMF)–no core fiber (NCF) structure. The sensor achieves BNP detection by significantly amplifying the Raman signal of the toluidine blue (TB) marker through the synergistic effect of NCF’s unique optical transmission modes and localized surface plasmon resonance (LSPR). To optimize the sensor performance, we first investigated the effect of the NCF length on the Raman signal, using Rhodamine 6G (R6G), and determined the optimal structural parameters. Combined with the microfluidic chip integration technology, the antibody–BNP–antibody sandwich structure was adopted, and TB was used as the Raman label to realize the quantitative detection of BNP. Experimental results demonstrate that the detection limit of the sensor is lower than the clinical diagnostic threshold and exhibits stability. The sensor sensitivity can be adjusted by regulating the laser power. With its stability and high portability, this sensor provides a new solution for the early diagnosis of heart failure and demonstrates broad application prospects in biomarker detection. Full article
(This article belongs to the Special Issue Novel Optical Sensors for Biomedical Applications—2nd Edition)
Show Figures

Figure 1

23 pages, 5532 KB  
Article
Pulsed CO2 Laser-Fabricated Cascades of Double Resonance Long Period Gratings for Sensing Applications
by Tinko Eftimov, Sanaz Shoar Ghaffari, Georgi Dyankov, Veselin Vladev and Alla Arapova
Micromachines 2025, 16(8), 959; https://doi.org/10.3390/mi16080959 - 20 Aug 2025
Viewed by 190
Abstract
We present a detailed theoretical and experimental study of cascaded double resonance long period gratings (C DR LPGs) for fabricated sensing applications. The matrix description of cascaded LPGs is presented, and several important particular cases are considered related to the regular and turn [...] Read more.
We present a detailed theoretical and experimental study of cascaded double resonance long period gratings (C DR LPGs) for fabricated sensing applications. The matrix description of cascaded LPGs is presented, and several important particular cases are considered related to the regular and turn around point (TAP) gratings. A pulsed CO2 laser was used to fabricate ordinary and cascaded DR LPGs in a photosensitive optical fiber. The responses of the fabricated C DR LPGs to surrounding refractive index (SRI) temperature as well to longitudinal strain have been studied. A statistical comparison of the SRI sensitivities of ordinary and cascaded DR LPGs is presented to outline the capabilities and advantages of cascaded DR gratings. It was experimentally established that the temperature dependence of the wavelength split at the TAP follows a logarithmic dependence and the sensitivity to temperature is inversely proportional to the temperature itself. We evaluate the temperature stability needed for SRI-based sensing application and the importance of fine-tuning to the operational point slightly after the TAP to ensure maximum sensitivity of the sensor. Full article
Show Figures

Figure 1

13 pages, 690 KB  
Article
Design and Optimization of Polarization-Maintaining Low-Loss Hollow-Core Anti-Resonant Fibers Based on a Multi-Objective Genetic Algorithm
by Zhiling Li, Yingwei Qin, Jingjing Ren, Xiaodong Huang and Yanan Bao
Photonics 2025, 12(8), 826; https://doi.org/10.3390/photonics12080826 - 20 Aug 2025
Viewed by 293
Abstract
In this work, a novel polarization-maintaining hollow-core fiber structure featuring a semi-circular nested dual-ring geometry is proposed. To simultaneously optimize two inherently conflicting performance metrics, namely, birefringence and confinement loss, a multi objective genetic algorithm is employed for geometric parameter tuning, resulting in [...] Read more.
In this work, a novel polarization-maintaining hollow-core fiber structure featuring a semi-circular nested dual-ring geometry is proposed. To simultaneously optimize two inherently conflicting performance metrics, namely, birefringence and confinement loss, a multi objective genetic algorithm is employed for geometric parameter tuning, resulting in a set of Pareto-optimal solutions. At the target wavelength of 1550 nm, the first optimal design achieves birefringence exceeding 1×104 over a 1275 nm bandwidth while maintaining confinement loss around 100 dB/m; the second design maintains birefringence above 1×104 across a 1000 nm spectral range, with confinement loss on the order of 101 dB/m. These optimized designs offer a promising approach for improving the performance of polarization-sensitive applications such as interferometric sensing and high coherence laser systems. The results confirm the suitability of multi-objective genetic algorithms for integrated multi-objective fiber optimization and provide a new strategy for designing low-loss and high-birefringence fiber devices. Full article
Show Figures

Figure 1

17 pages, 2406 KB  
Article
Microscopic and Crystallographic Analysis of Increased Acid Resistance of Melted Dental Enamel Using 445 nm Diode Laser: An Ex-Vivo Study
by Samir Nammour, Marwan El Mobadder, Aldo Brugnera, Praveen Arany, Mireille El Feghali, Paul Nahas and Alain Vanheusden
Dent. J. 2025, 13(8), 376; https://doi.org/10.3390/dj13080376 - 19 Aug 2025
Viewed by 206
Abstract
Background/Objectives: This study aimed to evaluate the efficacy of a 445 nm diode laser in enhancing enamel resistance to acid-induced demineralization and to investigate the associated compositional and structural modifications using scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA), and [...] Read more.
Background/Objectives: This study aimed to evaluate the efficacy of a 445 nm diode laser in enhancing enamel resistance to acid-induced demineralization and to investigate the associated compositional and structural modifications using scanning electron microscopy (SEM), electron spectroscopy for chemical analysis (ESCA), and X-ray diffraction (XRD) crystallographic analysis. Methods: A total of 126 extracted human teeth were used. A total of 135 (n = 135) enamel discs (4 × 4 mm) from 90 teeth were assigned to either a laser-irradiated group or an untreated control group for SEM, ESCA, and XRD analyses. Additionally, 24 mono-rooted teeth were used to measure pulp temperature changes during laser application. Laser irradiation was performed using a 445 nm diode laser with a pulse width of 200 ms, a repetition rate of 1 Hz, power of 1.25 W, an energy density of 800 J/cm2, a power density of 3980 W/cm2, and a 200 µm activated fiber. Following acid etching, SEM was conducted to assess microstructural and ionic alterations. The ESCA was used to evaluate the Ca/P ratio, and XRD analyses were performed on enamel powders to determine changes in phase composition and crystal lattice parameters. Results: The laser protocol demonstrated thermal safety, with minimal pulp chamber temperature elevation (0.05667 ± 0.04131 °C). SEM showed that laser-treated enamel had a smoother surface morphology and reduced acid-induced erosion compared with controls. Results of the ESCA revealed no significant difference in the Ca/P ratio between groups. XRD confirmed the presence of hydroxyapatite structure in laser-treated enamel and detected an additional diffraction peak corresponding to a pyrophosphate phase, potentially enhancing acid resistance. Results of the spectral analysis showed the absence of α-TCP and β-TCP phases and a reduction in the carbonate content in the laser group. Furthermore, a significant decrease in the a-axis lattice parameter suggested lattice compaction in laser-treated enamel. Conclusions: Irradiation with a 445 nm diode laser effectively enhances enamel resistance to acid demineralization. This improvement may be attributed to chemical modifications, particularly pyrophosphate phase formation, and structural changes including prism-less enamel formation, surface fusion, and decreased permeability. These findings provide novel insights into the mechanisms of laser-induced enhancement of acid resistance in enamel. Full article
(This article belongs to the Special Issue Laser Dentistry: The Current Status and Developments)
Show Figures

Figure 1

22 pages, 8553 KB  
Article
Research on Laser Cladding Single-Pass Continuous Carbon Fiber-Reinforced Aluminum Matrix Composite Process Based on Abaqus
by Pengtao Zhang, Xiaole Cheng, Yuanyuan Deng, Yao Peng, Meijiao Qu, Peng Ren and Teng Wang
Materials 2025, 18(16), 3859; https://doi.org/10.3390/ma18163859 - 18 Aug 2025
Viewed by 392
Abstract
This study addresses the critical challenges of interfacial stress mismatch, fiber degradation, and unstable clad geometry in manufacturing continuous carbon fiber-reinforced aluminum composites (Cf/Al) via laser cladding, driven by rapid thermal gradients. A dual-ellipsoid heat source-based thermoelastic–plastic finite element model was developed in [...] Read more.
This study addresses the critical challenges of interfacial stress mismatch, fiber degradation, and unstable clad geometry in manufacturing continuous carbon fiber-reinforced aluminum composites (Cf/Al) via laser cladding, driven by rapid thermal gradients. A dual-ellipsoid heat source-based thermoelastic–plastic finite element model was developed in Abaqus, integrating phase-dependent material properties and latent heat effects to simulate multi-physics interactions during single-track deposition, resolving transient temperature fields peaking at 1265 °C, and residual stresses across uncoated and Ni-coated fiber configurations. The work identifies an optimal parameter window characterized by laser power ranging from 700 to 800 W, scan speed of 2 mm/s, and spot radius of 3 mm that minimizes thermal distortion below 5% through gradient-controlled energy delivery, while quantitatively demonstrating nickel interlayers’ dual protective role in achieving 42% reduction in fiber degradation at 1200 °C compared to uncoated systems and enhancing interfacial load transfer efficiency by 34.7%, thereby reducing matrix tensile stresses to 159 MPa at fiber interfaces. Experimental validation confirms the model’s predictive capability, revealing nickel-coated systems exhibit superior thermal stability with temperature differentials below 12.6 °C across interfaces and mechanical interlocking, achieving interfacial void fractions under 8%. These results establish a process–structure linkage framework, advancing defect-controlled composite fabrication and providing a digital twin methodology for aerospace-grade manufacturing. Full article
Show Figures

Figure 1

7 pages, 1290 KB  
Communication
Direct Nanoparticle Sensing in Liquids with Free-Space Excited Optical Whispering-Gallery-Mode Microresonators
by Davide D’Ambrosio, Saverio Avino and Gianluca Gagliardi
Sensors 2025, 25(16), 5111; https://doi.org/10.3390/s25165111 - 18 Aug 2025
Viewed by 303
Abstract
Whispering-gallery-mode (WGM) microresonators are amongst the most promising optical sensors for detecting bio-chemical targets. A number of laser interrogation methods have been proposed and demonstrated over the last decade, based on scattering and absorption losses or resonance splitting and shift, harnessing the high-quality [...] Read more.
Whispering-gallery-mode (WGM) microresonators are amongst the most promising optical sensors for detecting bio-chemical targets. A number of laser interrogation methods have been proposed and demonstrated over the last decade, based on scattering and absorption losses or resonance splitting and shift, harnessing the high-quality factor and ultra-small volume of WGMs. Actually, regardless of the sensitivity enhancement, their practical sensing operation may be hampered by the complexity of coupling devices as well as the signalprocessing required to extract the WGM response. Here, we use a silica microsphere immersed in an aqueous environment and efficiently excite optical WGMs with a free-space visible laser, thus collecting the relevant information from the transmitted and back-scattered light without any optical coupler, fiber, or waveguide. We show that a 640-nm diode laser, actively frequency-locked on resonance, provides real-time, fast sensing of dielectric nanoparticles approaching the surface with direct analog readout. Thanks to our illumination scheme, the sensor can be kept in water and operate for days without degradation or loss of sensitivity. Diverse noise contributions are carefully considered and quantified in our system, showing a minimum detectable particle size below 1 nm essentially limited by the residual laser microcavity jitter. Further analysis reveals that the inherent laserfrequency instability in the short, -mid-term operation regime sets an ultimate bound of 0.3 nm. Based on this work, we envisage the possibility to extend our method in view of developing new viable approaches for detection of nanoplastics in natural water without resorting to complex chemical laboratory methods. Full article
(This article belongs to the Section Communications)
Show Figures

Graphical abstract

18 pages, 4144 KB  
Article
Towards Woven Fabrics with Integrated Stainless Steel-Nickel-Carbon Thermopile for Sensing and Cooling Applications
by Magdalena Georgievska, Benny Malengier, Lucas Roelofs, Sufiyan Derbew Tiku and Lieva Van Langenhove
Appl. Sci. 2025, 15(16), 9002; https://doi.org/10.3390/app15169002 - 14 Aug 2025
Viewed by 330
Abstract
Thermocouples can be combined into thermopiles to sense heat differences or achieve localized heating and cooling. However, integrating them into textiles using yarns is not straightforward, and chemical methods face challenges like complex processing, poor scalability, and voltage non-uniformity. This study employs conventional [...] Read more.
Thermocouples can be combined into thermopiles to sense heat differences or achieve localized heating and cooling. However, integrating them into textiles using yarns is not straightforward, and chemical methods face challenges like complex processing, poor scalability, and voltage non-uniformity. This study employs conventional weaving to fabricate textile-based thermocouples and thermopiles for wearable sensing and potential cooling applications, with a focus on protective clothing. Using stainless steel and nickel-coated carbon yarns, we demonstrate a more stable thermocouple than those made with chemical or welded methods, with minimal fabric damage. Four conductive yarns, stainless steel, carbon fiber (CF), and nickel-coated carbon fiber (NiFC), were woven and laser-cut to form thermocouples using three different binding types to connect them. Inox1–NiFC was the most efficient thermocouple, achieving the highest Seebeck coefficient of 21.87 µV/K with Binding 3. Binding 3 also reduced contact resistance by 66% across all configurations. Slightly lower but comparable performance was seen with Inox1–NiFC/Binding 2 (21.83 µV/K) and Inox2–NiFC/Binding 1 (15.79 µV/K). In contrast, FC-based thermocouples showed significantly lower Seebeck values: 5.67 µV/K (Inox2–FC/Binding 2), 5.43 µV/K (Inox1–FC/Binding 3), and 5.06 µV/K (Inox2–FC/Binding 1). A woven thermopile with three junctions made with the optimal binding and thermocouple combination generated an average of 55.54 µV/K and about 500 µV at small temperature differences (4–5 °C), with a linear voltage response suitable for sensing. While thermal sensing proved effective, Peltier cooling needs further optimization. This method offers a stable, low-cost, and scalable platform for textile-integrated thermoelectric systems, with strong potential for use in uniforms and other protective garments. Full article
Show Figures

Figure 1

11 pages, 1072 KB  
Article
Design and Characteristic Simulation of Polarization-Maintaining Anti-Resonant Hollow-Core Fiber for 2.79 μm Er, Cr: YSGG Laser Transmission
by Lei Huang and Yinze Wang
Optics 2025, 6(3), 37; https://doi.org/10.3390/opt6030037 - 14 Aug 2025
Viewed by 160
Abstract
Anti-resonant hollow-core fibers have exhibited excellent performance in applications such as high-power pulse transmission, network communication, space exploration, and precise sensing. Employing anti-resonant hollow-core fibers instead of light guiding arms for transmitting laser energy at the 2.79 μm band can significantly enhance the [...] Read more.
Anti-resonant hollow-core fibers have exhibited excellent performance in applications such as high-power pulse transmission, network communication, space exploration, and precise sensing. Employing anti-resonant hollow-core fibers instead of light guiding arms for transmitting laser energy at the 2.79 μm band can significantly enhance the flexibility of medical laser handles, reduce system complexity, and increase laser transmission efficiency. Nevertheless, common anti-resonant hollow-core fibers do not have the ability to maintain the polarization state of light during laser transmission, which greatly affects their practical applications. In this paper, we propose a polarization-maintaining anti-resonant hollow-core fiber applicable for transmission at the mid-infrared 2.79 μm band. This fiber features a symmetrical geometric structure and an asymmetric refractive index cladding composed of quartz and a type of mid-infrared glass with a higher refractive index. Through optimizing the fiber structure at the wavelength scale, single-polarization transmission can be achieved at the 2.79 μm wavelength, with a polarization extinction ratio exceeding 1.01 × 105, indicating its stable polarization-maintaining performance. Simultaneously, it possesses low-loss transmission characteristics, with the loss in the x-polarized fundamental mode being less than 9.8 × 10−3 dB/m at the 2.79 µm wavelength. This polarization-maintaining anti-resonant hollow-core fiber provides a more reliable option for the light guiding system of the 2.79 μm Er; Cr: YSGG laser therapy device. Full article
Show Figures

Figure 1

11 pages, 5491 KB  
Article
A 5 kW Near-Single-Mode Oscillating–Amplifying Fiber Laser Employing a Broadband Output Coupler with Simultaneous Raman Suppression and Spectral Narrowing
by Jiazheng Wu, Miao Yu, Yi Cao, Shiqi Jiang, Shihao Sun and Junlong Wang
Photonics 2025, 12(8), 813; https://doi.org/10.3390/photonics12080813 - 14 Aug 2025
Viewed by 342
Abstract
In this work, we propose and demonstrate a novel approach to suppressing stimulated Raman scattering in an oscillating–amplifying integrated fiber laser (OAIFL) by changing the spectral bandwidth of the output-coupler fiber Bragg gratings (OC-FBGs). The reflectance bandwidth of the fiber Bragg grating (FBG) [...] Read more.
In this work, we propose and demonstrate a novel approach to suppressing stimulated Raman scattering in an oscillating–amplifying integrated fiber laser (OAIFL) by changing the spectral bandwidth of the output-coupler fiber Bragg gratings (OC-FBGs). The reflectance bandwidth of the fiber Bragg grating (FBG) in the oscillating section was systematically investigated as a critical parameter for SRS mitigation. Three types of long-period FBGs with distinct reflectance bandwidths (1.2 nm, 1.3 nm, and 2 nm) were comparatively studied as output couplers. The experimental results demonstrated a direct correlation between FBG bandwidth and SRS suppression efficiency, with the configuration of the OC-FBG with a 2 nm bandwidth achieving optimal suppression performance. Concurrently, the output power was enhanced to 5.02 kW with improved power scalability. And excellent beam quality was obtained with M2 < 1.3. Remarkably, in the architecture of this laser, increasing the bandwidth of the output couplers in the oscillating section had a relatively minor effect on the optical-to-optical (O-O) efficiency, which reached up to 78%. Additionally, this modification also reduced the 3 dB bandwidth of the laser output, thereby achieving a beam output with enhanced monochromaticity. Full article
(This article belongs to the Special Issue High-Power Fiber Lasers)
Show Figures

Figure 1

10 pages, 2113 KB  
Article
Generation of 27 nm Spectral Bandwidth, Two-Port Output Pulses Directly from a Yb-Doped Fiber Laser
by Junyu Chen, Mengyun Hu, Jianing Chen, Chixuan Zou, Zichen Zhao, Gantong Zhong and Shuai Yuan
Photonics 2025, 12(8), 812; https://doi.org/10.3390/photonics12080812 - 14 Aug 2025
Viewed by 312
Abstract
We reported on a generation of 27 nm spectral bandwidth, two-port output ultrashort pulses directly from an all-normal-dispersion passively mode-locked Yb-fiber laser. Based on the nonlinear polarization rotation (NPR) mode-locking technique, high pump power and optical devices with high damage thresholds were introduced [...] Read more.
We reported on a generation of 27 nm spectral bandwidth, two-port output ultrashort pulses directly from an all-normal-dispersion passively mode-locked Yb-fiber laser. Based on the nonlinear polarization rotation (NPR) mode-locking technique, high pump power and optical devices with high damage thresholds were introduced to achieve broad spectral bandwidth and strong output power. The dual wavelengths were emitted from the clockwise and counterclockwise ports, respectively, and self-started mode-locking was achieved. The bidirectional output laser generates stable pulses with up to 223.5 mW average power at a 46.04 MHz repetition rate, corresponding to a pulse energy of 5 nJ. The bidirectional ultrashort outputs of the laser provide potential applications in supercontinuum generation and medical and biological applications. Full article
(This article belongs to the Special Issue Advances in Ultrafast Laser Science and Applications)
Show Figures

Figure 1

Back to TopTop