Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (727)

Search Parameters:
Keywords = fiber scaffolds

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3696 KB  
Article
Engineering 3D Heterostructured NiCo2S4/Co9S8-CNFs via Electrospinning and Hydrothermal Strategies for Efficient Bifunctional Energy Conversion
by Dhananjaya Merum, Rama Krishna Chava and Misook Kang
Nanomaterials 2025, 15(20), 1559; https://doi.org/10.3390/nano15201559 - 13 Oct 2025
Abstract
The rational design of multifunctional electrocatalysts requires synergistic integration of conductive scaffolds with redox-active components. Here, a hierarchical core–shell NiCo2S4 grown/anchored on Co9S8-loaded carbon nanofibers (NCS/CS/CNFs) was synthesized via an electrospinning and hydrothermal approach and systematically [...] Read more.
The rational design of multifunctional electrocatalysts requires synergistic integration of conductive scaffolds with redox-active components. Here, a hierarchical core–shell NiCo2S4 grown/anchored on Co9S8-loaded carbon nanofibers (NCS/CS/CNFs) was synthesized via an electrospinning and hydrothermal approach and systematically characterized. FESEM/TEM confirmed a core-shell nanofiber structure with a NiCo2S4 shell thickness of ~30–70 nm, increasing the fiber diameter to ~290 ± 30 nm, while BET analysis revealed a surface area of 24.84 m2 g−1 and pore volume of 0.042 cm3 g−1, surpassing CS/CNFs (6.12 m2 g−1) and NCS (4.85 m2 g−1). XRD confirmed crystalline NiCo2S4 and Co9S8 phases, while XPS identified mixed Ni2+/Ni3+ and Co2+/Co3+ states with strong Ni-S/Co-S bonding, indicating enhanced electron delocalization. Electrochemical measurements in 1 M KOH demonstrated outstanding OER activity, with NCS/CS/CNFs requiring only 324 mV overpotential at 10 mA cm−2, a Tafel slope of 125.7 mV dec−1, and low charge-transfer resistance (0.33 Ω cm2). They also achieved a high areal capacitance of 1412.5 μF cm−2 and maintained a stable current density for >5 h. For methanol oxidation, the composite delivered 150 mA cm−2 at 0.1 M methanol, ~1.6 times that of CS and 1.3 times that of NCS, while maintaining stability for 18,000 s. This bifunctional activity underscores the synergy between conductive CNFs and hierarchical sulfides, offering a scalable route to durable electrocatalysts for water splitting and direct methanol fuel cells. Full article
(This article belongs to the Special Issue Design and Application of Nanomaterials in Photoenergy Conversions)
Show Figures

Graphical abstract

19 pages, 5979 KB  
Article
Improving the Biocompatibility of Plant-Derived Scaffolds for Tissue Engineering Using Heat Treatment
by Arvind Ramsamooj, Nicole Gorbenko, Cristian Olivares, Sashane John and Nick Merna
J. Funct. Biomater. 2025, 16(10), 380; https://doi.org/10.3390/jfb16100380 - 10 Oct 2025
Viewed by 391
Abstract
Small-diameter vascular grafts often fail due to thrombosis and compliance mismatch. Decellularized plant scaffolds are a biocompatible, sustainable alternative. Leatherleaf viburnum leaves provide natural architecture and mechanical integrity suitable for tissue-engineered vessels. However, the persistence of immunogenic plant biomolecules and limited degradability remain [...] Read more.
Small-diameter vascular grafts often fail due to thrombosis and compliance mismatch. Decellularized plant scaffolds are a biocompatible, sustainable alternative. Leatherleaf viburnum leaves provide natural architecture and mechanical integrity suitable for tissue-engineered vessels. However, the persistence of immunogenic plant biomolecules and limited degradability remain barriers to clinical use. This study tested whether mild heat treatment improves scaffold biocompatibility without compromising mechanical performance. Decellularized leatherleaf viburnum scaffolds were treated at 30–40 °C in 5% NaOH for 15–60 min and then evaluated via tensile testing, burst pressure analysis, scanning electron microscopy, histology, and in vitro assays with white blood cells and endothelial cells. Scaffold properties were compared to those of untreated controls. Heat treatment did not significantly affect scaffold thickness but decreased fiber area fraction and diameter across all anatomical layers. Scaffolds treated at 30–35 °C for ≤30 min retained >90% of tensile strength and achieved burst pressures ≥820 mmHg, exceeding physiological arterial pressures. Heat treatment reduced surface fractal dimension while increasing entropy and lacunarity, producing a smoother but more heterogeneous microarchitecture. White blood cell viability increased up to 2.5-fold and endothelial cell seeding efficiency improved with treatment duration, with 60 min producing near-confluent monolayers. Mild alkaline heat treatment therefore improved immune compatibility and endothelialization while preserving mechanical integrity, offering a simple, scalable modification to advance plant-derived scaffolds for grafting. Full article
Show Figures

Graphical abstract

18 pages, 4920 KB  
Article
Electrospray Beta-Glucan Particle Coated PVP/CA Electrospun Mat as a Potential Scaffold for Dental Tissue Regeneration
by Thanutham Somboonchokephisal, Pratchaya Tipduangta, Sarawut Kumphune and Tanida Srisuwan
Polymers 2025, 17(19), 2693; https://doi.org/10.3390/polym17192693 - 5 Oct 2025
Viewed by 372
Abstract
Regenerative endodontic procedures (REPs) are a promising treatment for immature teeth with pulpal necrosis. However, the outcomes remain unpredictable, partly due to scaffold limitations. Beta-glucan (BG), a bioactive polysaccharide with regenerative properties, may enhance scaffold performance. This study aimed to fabricate BG-coated polyvinylpyrrolidone/cellulose [...] Read more.
Regenerative endodontic procedures (REPs) are a promising treatment for immature teeth with pulpal necrosis. However, the outcomes remain unpredictable, partly due to scaffold limitations. Beta-glucan (BG), a bioactive polysaccharide with regenerative properties, may enhance scaffold performance. This study aimed to fabricate BG-coated polyvinylpyrrolidone/cellulose acetate (PVP/CA) electrospun scaffolds and evaluate their physicochemical properties and cell attachment. Electrospun scaffolds were fabricated by electrospinning a 10% w/v PVP/CA (70:30) solution in acetone and N,N-dimethylacetamide (2:1) (PC). BG (8% w/v in 1 M NaOH) was electrosprayed onto the scaffold at 0.1, 0.2, and 0.4 mL volumes, generating PC-BG01, PC-BG02, and PC-BG04, respectively. Scaffold characterization included SEM, FTIR, BG enzymatic assay, water absorbance, degradation, and cell adhesion assays. SEM images of the scaffolds exhibited smooth cylindrical fibers (547.3–585.9 nm diameter) with high porosity (42.37–49.91%). BG particles were confirmed by elemental analysis and BG enzymatic assay. At 28 days, the PC group showed significant fiber diameter and porosity reduction. BG particle degradation was observed at 14 and 28 days. Notably, BG-coated scaffolds significantly enhanced initial apical papilla cell adhesion at 1 and 24 h. These findings highlight the potential of BG-coated scaffolds as bioactive scaffolds for REPs. Full article
(This article belongs to the Special Issue Latest Research on Polysaccharides: Structure and Applications)
Show Figures

Figure 1

14 pages, 5396 KB  
Article
Hypoxia-Induced Extracellular Matrix Deposition in Human Mesenchymal Stem Cells: Insights from Atomic Force, Scanning Electron, and Confocal Laser Microscopy
by Agata Nowak-Stępniowska, Paulina Natalia Osuchowska, Henryk Fiedorowicz and Elżbieta Anna Trafny
Appl. Sci. 2025, 15(19), 10701; https://doi.org/10.3390/app151910701 - 3 Oct 2025
Viewed by 421
Abstract
(1) Background: The extracellular matrix (ECM) is a natural scaffold for cells, creating a three-dimensional architecture composed of fibrous proteins (mainly collagen) and proteoglycans, which are synthesized by resident cells. In this study, a physiological hypoxic environment was utilized to enhance ECM production [...] Read more.
(1) Background: The extracellular matrix (ECM) is a natural scaffold for cells, creating a three-dimensional architecture composed of fibrous proteins (mainly collagen) and proteoglycans, which are synthesized by resident cells. In this study, a physiological hypoxic environment was utilized to enhance ECM production by human mesenchymal stem cells (hMSCs), a process relevant to tissue engineering and regenerative medicine. (2) Methods: hMSCs were treated with deferoxamine (DFO), a pharmaceutical hypoxia-mimetic agent that induces cellular responses similar to low-oxygen conditions through stabilization of hypoxia inducible factor-1α (HIF-1α). The time points 0 h 24 h, 3 h 24 h, and 24 h 24 h refer to DFO being added immediately after cell seeding (before cells adhesion), 3 h after cell seeding (during initial cells attachment), and 24 h after cell seeding (after focal adhesions formation and actin organization), respectively, to evaluate the influence of cell adhesion on ECM deposition. hMSCs incubated in culture media were subsequently exposed to DFO for 24 h. Samples were then subjected to cell viability tests, scanning electron microscopy (SEM), atomic force microscopy (AFM) and laser scanning confocal microscopy (CLSM) assessments. (3) Results: Viability tests indicated that DFO concentrations in the range of 0–300 µM were non-toxic over 24 h. The presence of collagen fibers in the DFO-derived ECM was confirmed with anti-collagen antibodies under CLSM. Increased ECM secretion was observed under the following conditions: 3 μM DFO (24 h 24 h), 100 μM DFO (0 h 24 h) and 300 μM DFO (3 h 24 h). SEM and AFM images revealed the morphology of various stages of collagen formation with both collagen fibrils and fibers identified. (4) Conclusions: Our preliminary study demonstrated enhanced ECM secretion by hMSC treated with DFO at concentrations of 3, 100, and 300 µM within a short cultivation period of 24–48 h without significant affecting cell viability. By mimicking physiological processes, it may be possible to stimulate endogenous tissue regeneration, for example, at an injury site. Full article
(This article belongs to the Special Issue Modern Trends and Applications in Cell Imaging)
Show Figures

Figure 1

27 pages, 8152 KB  
Article
Experimental Study on the Degradation Mechanism of BFRP Under the Coupling Effect of Chloride Freeze-Thaw Cycles
by Zhigang Gao, Tao He, Qing Qin, Chenghua Zhang, Zhe Wang, Qi Lin and Yuhao Hei
Polymers 2025, 17(19), 2654; https://doi.org/10.3390/polym17192654 - 30 Sep 2025
Viewed by 168
Abstract
Basalt fiber reinforced polymer (BFRP) is one of the new materials that can be used for making photovoltaic scaffolds, which can effectively solve the problem of the rapid deterioration of complex environmental performance and high maintenance cost of traditional scaffold materials. This paper [...] Read more.
Basalt fiber reinforced polymer (BFRP) is one of the new materials that can be used for making photovoltaic scaffolds, which can effectively solve the problem of the rapid deterioration of complex environmental performance and high maintenance cost of traditional scaffold materials. This paper focuses on the BFRP photovoltaic support in the cold and arid irrigation area of northwest China, carries out the durability test under the action of chloride salt, freeze-thaw cycle, and chloride salt freeze-thaw environment coupling, and it compares and analyzes the degradation law of the mechanical properties of BFRP sheets under different environmental effects. The performance degradation mechanism of BFRP materials under different environmental effects was revealed by SEM scanning electron microscopy and EDS energy spectrum analysis. The main conclusions are as follows: (1) Under the action of chloride salt, the tensile strength, elastic modulus and elongation at break of the specimen decreased by 11.46%, 7.02%, and 10.27%, respectively. Under the freeze-thaw cycle, the tensile strength and elongation at break of the specimen decreased by 9.62% and 6.85%, while the elastic modulus first increased and then decreased, with a maximum decrease of 12.95%. The degradation of mechanical properties is the most serious under the coupling effect of chloride salt and the freeze-thaw environment. The tensile strength, elastic modulus, and elongation at break of the specimens decreased by 25.73%, 9.55%, and 24.81%, respectively. (2) In the chloride environment, the distribution of elements on the surface of the specimen changed, the metal ions of the fibers precipitated, and ‘black spots‘ and corrosion pits appeared. The resin matrix forms ‘sponge-like‘ pores; under the freeze-thaw cycle, the fiber–resin interface cracks and fiber shedding intensifies; under the coupling effect of chloride freeze-thaw, ‘black spots‘, pits, resin holes, and interface cracks increased, and chloride penetration corrosion accelerated. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Graphical abstract

16 pages, 4234 KB  
Article
Protein-Based Electrospun Nanofibers Doped with Selenium Nanoparticles for Wound Repair
by Marco Ruggeri, Simone Marsani, Amedeo Ungolo, Barbara Vigani, Eleonora Bianchi, Cèsar Viseras, Silvia Rossi and Giuseppina Sandri
Pharmaceutics 2025, 17(10), 1276; https://doi.org/10.3390/pharmaceutics17101276 - 30 Sep 2025
Viewed by 355
Abstract
Background/Objectives: The design of scaffolds that mimic the extracellular matrix has gained increasing attention in regenerative medicine. This study aims to develop and characterize electrospun nanofibrous scaffolds based on pullulan blended with either gelatin or gliadin and doped with selenium nanoparticles (Se [...] Read more.
Background/Objectives: The design of scaffolds that mimic the extracellular matrix has gained increasing attention in regenerative medicine. This study aims to develop and characterize electrospun nanofibrous scaffolds based on pullulan blended with either gelatin or gliadin and doped with selenium nanoparticles (Se NPs), to assess the influence of protein type and Se NP doping on scaffold performance and regenerative potential. Methods: Se NPs were synthesized via redox reaction and stabilized using pullulan. Electrospun scaffolds were then prepared by blending pullulan-stabilized Se NPs with either gelatin or gliadin. The resulting fibers were characterized using a multidisciplinary approach, including physicochemical (morphology, fiber dimension, swelling capacity, surface zeta potential, mechanical properties) and preclinical properties (antioxidant properties, fibroblast adhesion and proliferation, collagen expression). Results: Protein type influenced fiber morphology and dimensions, as well as mechanical behavior, with gelatin-based scaffolds demonstrating smaller fiber diameters and higher mechanical properties. The doping with Se NPs enhanced scaffold antioxidant properties without affecting fiber formation. Moreover, all scaffolds supported fibroblast proliferation, but those containing Se NPs showed enhanced modulation of ECM gene expression. Conclusions: The results show that scaffolds doped with Se NPs exhibited superior performance compared to the undoped counterparts, offering promising platforms for chronic wound reparation. Full article
Show Figures

Graphical abstract

30 pages, 1346 KB  
Review
Electrospun Bio-Scaffolds for Mesenchymal Stem Cell-Mediated Neural Differentiation: Systematic Review of Advances and Future Directions
by Luigi Ruccolo, Aleksandra Evangelista, Marco Benazzo, Bice Conti and Silvia Pisani
Int. J. Mol. Sci. 2025, 26(19), 9528; https://doi.org/10.3390/ijms26199528 - 29 Sep 2025
Viewed by 585
Abstract
Neural tissue injuries, including spinal cord damage and neurodegenerative diseases, pose a major clinical challenge due to the central nervous system’s limited regenerative capacity. Current treatments focus on stabilization and symptom management rather than functional restoration. Tissue engineering offers new therapeutic perspectives, particularly [...] Read more.
Neural tissue injuries, including spinal cord damage and neurodegenerative diseases, pose a major clinical challenge due to the central nervous system’s limited regenerative capacity. Current treatments focus on stabilization and symptom management rather than functional restoration. Tissue engineering offers new therapeutic perspectives, particularly through the combination of electrospun nanofibrous scaffolds and mesenchymal stem cells (MSCs). Electrospun fibers mimic the neural extracellular matrix, providing topographical and mechanical cues that enhance MSC adhesion, viability, and neural differentiation. MSCs are multipotent stem cells with robust paracrine and immunomodulatory activity, capable of supporting regeneration and, under proper stimuli, acquiring neural-like phenotypes. This systematic review, following the PRISMA 2020 method, analyzes 77 selected articles from the last ten years to assess the potential of electrospun biopolymer scaffolds for MSC-mediated neural repair. We critically examine the scaffold’s composition (synthetic and natural polymers), fiber architecture (alignment and diameter), structural and mechanical properties (porosity and stiffness), and biofunctionalization strategies. The influence of MSC tissue sources (bone marrow, adipose, and dental pulp) on neural differentiation outcomes is also discussed. The results of a literature search show both in vitro and in vivo enhanced neural marker expression, neurite extension, and functional recovery when MSCs are seeded onto optimized electrospun scaffolds. Therefore, integrating stem cell therapy with advanced biomaterials offers a promising route to bridge the gap between neural injury and functional regeneration. Full article
(This article belongs to the Special Issue Tissue Engineering Related Biomaterials: Progress and Challenges)
Show Figures

Figure 1

19 pages, 1781 KB  
Article
Physiopathological Features in a Three-Dimensional In Vitro Model of Hepatocellular Carcinoma: Hypoxia-Driven Oxidative Stress and ECM Remodeling
by Maria Giovanna Rizzo, Enza Fazio, Claudia De Pasquale, Emanuele Luigi Sciuto, Giorgia Cannatà, Cristiana Roberta Multisanti, Federica Impellitteri, Federica Gilda D’Agostino, Salvatore Pietro Paolo Guglielmino, Caterina Faggio and Sabrina Conoci
Cancers 2025, 17(18), 3082; https://doi.org/10.3390/cancers17183082 - 21 Sep 2025
Viewed by 495
Abstract
Background: Hypoxia is a hallmark of solid tumors, including hepatocellular carcinoma (HCC), where it drives oxidative stress and extracellular matrix (ECM) remodeling, promoting tumor invasion and metastasis. Investigating these mechanisms in patients remains challenging due to the complexity of the tumor microenvironment. [...] Read more.
Background: Hypoxia is a hallmark of solid tumors, including hepatocellular carcinoma (HCC), where it drives oxidative stress and extracellular matrix (ECM) remodeling, promoting tumor invasion and metastasis. Investigating these mechanisms in patients remains challenging due to the complexity of the tumor microenvironment. Methods: We developed a scaffold-free three-dimensional (3D) spheroid model of HCC using human hepatocellular carcinoma HepG2 cells (ATCC HB-8065). To characterize hypoxia-driven processes, a multiparametric approach combining MTT assays for metabolic activity, confocal microscopy for viability and ECM organization, flow cytometry for apoptosis and ROS detection, qRT-PCR for gene expression, and FTIR spectroscopy for biochemical profiling were performed. Results: The 3D model exhibited progressive ROS accumulation, stabilization of HIF-1α, and metabolic reprogramming toward aerobic glycolysis. In parallel, ECM remodeling was evident, with increased expression of SPARC and FN1 and collagen fiber alignment, reflecting an invasive tumor phenotype. Conclusions: This scaffold-free 3D HCC model recapitulates key physiopathological features of tumor progression, providing a robust and physiologically relevant platform to investigate the hypoxia–ROS–ECM relationship and to support preclinical evaluation of targeted therapeutic strategies. Full article
(This article belongs to the Special Issue Extracellular Matrix Proteins in Cancer)
Show Figures

Figure 1

28 pages, 4294 KB  
Article
Engineering Poly(L-Lactic Acid)/Hydroxyapatite Scaffolds via Melt-Electrowriting: Enhancement of Osteochondral Cell Response in Human Nasal Chondrocytes
by Valentina Basoli, Vittorio Barbano, Cecilia Bärtschi, Cosimo Loffreda, Matteo Zanocco, Alfredo Rondinella, Alex Lanzutti, Wenliang Zhu, Stefania Specchia, Andrea Barbero, Florian Markus Thieringer, Huaizhong Xu and Elia Marin
Polymers 2025, 17(18), 2455; https://doi.org/10.3390/polym17182455 - 10 Sep 2025
Viewed by 636
Abstract
Osteochondral repair remains challenging due to cartilage’s limited self-healing capacity and the structural complexity of the osteochondral interface, particularly the hypertrophic layer anchoring cartilage to bone. We fabricated melt electrowritten (MEW) poly(L-lactic acid) (PLLA) scaffolds incorporating 1%, 5%, and 10% hydroxyapatite (HAp) to [...] Read more.
Osteochondral repair remains challenging due to cartilage’s limited self-healing capacity and the structural complexity of the osteochondral interface, particularly the hypertrophic layer anchoring cartilage to bone. We fabricated melt electrowritten (MEW) poly(L-lactic acid) (PLLA) scaffolds incorporating 1%, 5%, and 10% hydroxyapatite (HAp) to provide a precise fiber architecture (~200 μm pores) and bone-mimetic biochemical cues. Human nasal chondrocytes (hNCs), currently in clinical trials for knee cartilage repair, were selected for their phenotypic plasticity and established safety profile, facilitating translational potential. HAp–PLLA scaffolds, especially at higher HAp contents, enhanced hNC adhesion, proliferation, mineralization, and maintenance of cartilage-specific ECM compared to PLLA alone. This work demonstrates the first high-HAp MEW-printed PLLA scaffold for osteochondral repair, integrating architectural precision with bioactivity in a clinically relevant cell–material system. Full article
Show Figures

Graphical abstract

25 pages, 5803 KB  
Review
Application of Textile Technology in Vascular Tissue Engineering
by Hua Ji, Hongjun Yang and Zehao Li
Textiles 2025, 5(3), 38; https://doi.org/10.3390/textiles5030038 - 3 Sep 2025
Viewed by 677
Abstract
Cardiovascular diseases pose a significant global health burden, driving the need for artificial vascular grafts to address limitations of autologous and allogeneic vessels. This review examines the integration of fiber materials and textile technologies in vascular tissue engineering, focusing on structural mimicry and [...] Read more.
Cardiovascular diseases pose a significant global health burden, driving the need for artificial vascular grafts to address limitations of autologous and allogeneic vessels. This review examines the integration of fiber materials and textile technologies in vascular tissue engineering, focusing on structural mimicry and functional regeneration of native blood vessels. Traditional textile techniques (weaving, knitting, and braiding) and advanced methods (electrospinning, melt electrowriting, wet spinning, and gel spinning) enable the fabrication of fibrous scaffolds with hierarchical architectures resembling the extracellular matrix. The convergence of textile technology and fiber materials holds promise for next-generation grafts that integrate seamlessly with host tissue, addressing unmet clinical needs in vascular tissue regeneration. Full article
Show Figures

Figure 1

39 pages, 27477 KB  
Review
Three-Dimensional Printing and Bioprinting Strategies for Cardiovascular Constructs: From Printing Inks to Vascularization
by Min Suk Kim, Yuri Choi and Keel Yong Lee
Polymers 2025, 17(17), 2337; https://doi.org/10.3390/polym17172337 - 28 Aug 2025
Cited by 1 | Viewed by 1497
Abstract
Advancements in bioinks and three-dimensional (3D) printing and bioprinting have significantly advanced cardiovascular tissue engineering by enabling the fabrication of biomimetic cardiac and vascular constructs. Traditional 3D printing has contributed to the development of acellular scaffolds, vascular grafts, and patient-specific cardiovascular models that [...] Read more.
Advancements in bioinks and three-dimensional (3D) printing and bioprinting have significantly advanced cardiovascular tissue engineering by enabling the fabrication of biomimetic cardiac and vascular constructs. Traditional 3D printing has contributed to the development of acellular scaffolds, vascular grafts, and patient-specific cardiovascular models that support surgical planning and biomedical applications. In contrast, 3D bioprinting has emerged as a transformative biofabrication technology that allows for the spatially controlled deposition of living cells and biomaterials to construct functional tissues in vitro. Bioinks—derived from natural biomaterials such as collagen and decellularized matrix, synthetic polymers such as polyethylene glycol (PEG) and polycaprolactone (PCL), or hybrid combinations—have been engineered to replicate extracellular environments while offering tunable mechanical properties. These formulations ensure biocompatibility, appropriate mechanical strength, and high printing fidelity, thereby maintaining cell viability, structural integrity, and precise architectural resolution in the printed constructs. Advanced bioprinting modalities, including extrusion-based bioprinting (such as the FRESH technique), droplet/inkjet bioprinting, digital light processing (DLP), two-photon polymerization (TPP), and melt electrowriting (MEW), enable the fabrication of complex cardiovascular structures such as vascular patches, ventricle-like heart pumps, and perfusable vascular networks, demonstrating the feasibility of constructing functional cardiac tissues in vitro. This review highlights the respective strengths of these technologies—for example, extrusion’s ability to print high-cell-density bioinks and MEW’s ultrafine fiber resolution—as well as their limitations, including shear-induced cell stress in extrusion and limited throughput in TPP. The integration of optimized bioink formulations with appropriate printing and bioprinting platforms has significantly enhanced the replication of native cardiac and vascular architectures, thereby advancing the functional maturation of engineered cardiovascular constructs. Full article
(This article belongs to the Section Innovation of Polymer Science and Technology)
Show Figures

Graphical abstract

18 pages, 5749 KB  
Article
The Role of Collagen Rheology in Human Keratinocyte Differentiation: Implications for Skin Substitute Development
by Mirna Rodríguez-Aguilar, Blanca Segura-Pacheco, Bernardo Campillo-Illanes, María Soledad Córdova-Aguilar, Horacio Merchant-Larios, Sergio Alcalá-Alcalá and Angélica Meneses-Acosta
Polymers 2025, 17(17), 2325; https://doi.org/10.3390/polym17172325 - 28 Aug 2025
Viewed by 1088
Abstract
Type I collagen hydrogels are widely employed as scaffolds in tissue engineering due to their biocompatibility and ability to mimic the extracellular matrix (ECM). ECM viscoelasticity plays a critical role in regulating key cellular functions such as adhesion, proliferation, and differentiation. This study [...] Read more.
Type I collagen hydrogels are widely employed as scaffolds in tissue engineering due to their biocompatibility and ability to mimic the extracellular matrix (ECM). ECM viscoelasticity plays a critical role in regulating key cellular functions such as adhesion, proliferation, and differentiation. This study evaluates how collagen source and quality influence hydrogel architecture, mechanical properties, and keratinocyte behavior. Hydrogels were prepared at a concentration of 2.3 mg/mL using collagen from Advanced Biomatrix (AB, GLP grade) and Collagen Solutions (CS, GMP grade), and assessed for fibrillogenesis, rheological performance, and their ability to support stratified HaCaT keratinocyte cultures. AB-derived hydrogels exhibited higher porosity but lower mechanical resilience, characterized by a linear viscoelastic region (LVER) of 2.54%. In contrast, CS-derived hydrogels showed reduced porosity, denser fiber networks, and a higher LVER of 9.96%, indicating enhanced strain tolerance. HaCaT cells cultured on AB hydrogels showed diminished proliferation, metabolic activity, stratification, and expression of differentiation markers compared to those on CS hydrogels, which supported a more robust epidermal architecture. These findings highlight the critical role of collagen quality and mechanical characteristics on scaffold performance and epidermal tissue formation, emphasizing the need to optimize biomaterial properties for effective regenerative outcomes. Full article
Show Figures

Graphical abstract

14 pages, 1955 KB  
Article
Dynamic Behavior of the Stenting & Shielding Hernia System Fosters Neomyogenesis in Experimental Porcine Model
by Giuseppe Amato, Roberto Puleio, Antonino Agrusa, Vito Rodolico, Luca Cicero, Giovanni Cassata, Giuseppe Di Buono, Emanuele Battaglia, Claudia Neto, Giorgio Romano, William Ra and Giorgio Romano
Bioengineering 2025, 12(8), 883; https://doi.org/10.3390/bioengineering12080883 - 19 Aug 2025
Viewed by 443
Abstract
Despite significant advancements, prosthetic hernia repair continues to face unacceptably high complication rates. These likely stem from poor biological responses, such as stiff scar tissue leading to mesh shrinkage. To overcome these issues, the Stenting and Shielding (S&S) Hernia System, a newly designed [...] Read more.
Despite significant advancements, prosthetic hernia repair continues to face unacceptably high complication rates. These likely stem from poor biological responses, such as stiff scar tissue leading to mesh shrinkage. To overcome these issues, the Stenting and Shielding (S&S) Hernia System, a newly designed 3D dynamic device, has been developed for dissection-free laparoscopic placement to permanently obliterate hernia defects. Unlike conventional meshes, this device induces a regenerative biological response, promoting viable tissue growth rather than fibrotic plaque formation. In a porcine experimental model, the S&S device demonstrated the development of a great amount of muscle fibers, alongside nervous and vascular structures, within well-perfused connective tissue. Histological analysis of biopsy specimens excised from the experimental animals revealed progressive muscle fiber maturation from early myocyte development in the short term to fully developed muscle bundles in the long term. The enhanced biological response observed with the S&S device suggests a promising shift in hernia repair, potentially reversing the degenerative processes of hernia formation and promoting tissue regeneration. The S&S Hernia System described here can be classified not merely as a conventional hernia implant, but as part of a new category of hernia devices: the dynamic regenerative scaffold. Full article
(This article belongs to the Section Nanobiotechnology and Biofabrication)
Show Figures

Figure 1

37 pages, 5147 KB  
Review
Next-Generation Wound Healing Materials: Role of Biopolymers and Their Composites
by Jonghyuk Park and Ranjit De
Polymers 2025, 17(16), 2244; https://doi.org/10.3390/polym17162244 - 19 Aug 2025
Viewed by 2308
Abstract
The progress in biopolymers and their composites as advanced materials for wound healing has revolutionized therapeutic approaches for skin regeneration. These materials can effectively integrate their inherent biocompatibility and biodegradability with the enhanced mechanical strength and customizable properties of polymers and functional additives. [...] Read more.
The progress in biopolymers and their composites as advanced materials for wound healing has revolutionized therapeutic approaches for skin regeneration. These materials can effectively integrate their inherent biocompatibility and biodegradability with the enhanced mechanical strength and customizable properties of polymers and functional additives. This review presents a detailed investigation of the design principles, classifications, and biomedical applications of biopolymeric composites, focusing on their capabilities to promote angiogenesis, exhibit antimicrobial activities, and facilitate controlled drug delivery. By overcoming the challenges of conventional wound dressings, such as inadequate exudate management, mechanical fragility, and cytotoxicity, these composites provide dynamic, stimuli-responsive platforms that can adapt to the wound microenvironment. This study further highlights innovative advances in nanoparticle-assisted reinforcement, fiber-based scaffolds, and multi-stimuli responsive smart delivery systems. Finally, the future perspective illustrates how the challenges related to long-term physiological stability, scalable manufacturing, and clinical implementation can be addressed. Overall, this article delivers a comprehensive framework for understanding the transformative impact of biopolymeric composites in next-generation wound care. Full article
(This article belongs to the Special Issue Advanced Polymeric Composite for Drug Delivery Application)
Show Figures

Graphical abstract

16 pages, 10388 KB  
Article
Highly-Oriented Polylactic Acid Fiber Reinforced Polycaprolactone Composite Produced by Infused Fiber Mat Process for 3D Printed Tissue Engineering Technology
by Zhipeng Deng, Chen Rao, Simin Han, Qungui Wei, Yichen Liang, Jialong Liu and Dazhi Jiang
Polymers 2025, 17(15), 2138; https://doi.org/10.3390/polym17152138 - 5 Aug 2025
Viewed by 770
Abstract
Three-dimensional printed polycaprolactone (PCL) tissue engineering scaffolds have drawn increasing interest from the medical industry due to their excellent biocompatibility and biodegradability, yet PCL’s poor mechanical performance has limited their applications. This study introduces a biocompatible and biodegradable polylactic acid (PLA) fiber reinforced [...] Read more.
Three-dimensional printed polycaprolactone (PCL) tissue engineering scaffolds have drawn increasing interest from the medical industry due to their excellent biocompatibility and biodegradability, yet PCL’s poor mechanical performance has limited their applications. This study introduces a biocompatible and biodegradable polylactic acid (PLA) fiber reinforced PCL (PLA/PCL) composite as the filament for 3D printed scaffolds to significantly enhance their mechanical performance: Special-made PLA short fiber mat was infused with PCL matrix and rolled into PLA/PCL filaments through a “Vacuum Assisted Resin Infusion” (VARI) process. The investigation revealed that the PLA fibers are highly oriented along the printing direction when using this filament for 3D printing due to the unique microstructure formed during the VARI process. At the same PLA fiber content, the percentage increase in Young’s modulus of the 3D printed strands using the filaments produced by the VARI process is 127.6% higher than the 3D printed strands using the filaments produced by the conventional melt blending process. The 3D printed tissue engineering scaffolds using the PLA/PCL composite filament with 11 wt% PLA fiber content also achieved an exceptional 84.2% and 143.3% increase in peak load and stiffness compared to the neat PCL counterpart. Full article
Show Figures

Graphical abstract

Back to TopTop