Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,831)

Search Parameters:
Keywords = field emission scanning electron microscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4524 KB  
Article
Short- and Long-Term Effects of Ca(OH)2/ZnO Heteronanostructure on Photosystem II Function and ROS Generation in Tomato
by Panagiota Tryfon, Julietta Moustaka, Ilektra Sperdouli, Chrysanthi Papoulia, Eleni Pavlidou, George Vourlias, Ioannis-Dimosthenis S. Adamakis, Michael Moustakas and Catherine Dendrinou-Samara
Materials 2025, 18(17), 4078; https://doi.org/10.3390/ma18174078 (registering DOI) - 31 Aug 2025
Abstract
Among different formations, inorganic/inorganic assemblies can be considered “two in one” systems offering collective and/or new physical-chemical properties and substantial activity. Herein, a post-synthetic approach involving the assembly through Van der Waals forces and/or hydrogen bonding of the preformed ZnO@OAm NPs and Ca(OH) [...] Read more.
Among different formations, inorganic/inorganic assemblies can be considered “two in one” systems offering collective and/or new physical-chemical properties and substantial activity. Herein, a post-synthetic approach involving the assembly through Van der Waals forces and/or hydrogen bonding of the preformed ZnO@OAm NPs and Ca(OH)2@OAm NPs of non-uniform sizes (9 nm and 27 nm, respectively), albeit coated with the same surfactant (oleylamine-OAm), is reported. The resulting semiconductor hetero-nanostructure (named CaZnO) has been physicochemically characterized. The X-ray diffraction (XRD) peaks correspond to both ZnO and Ca(OH)2, confirming the successful formation of a dual-phase system. Field emission scanning electron microscopy coupled with energy-dispersive spectroscopy (FESEM-EDS) of CaZnO indicated the formation of Ca(OH)2 NPs decorated with irregular-shaped ZnO NPs. The synthesized hetero-nanostructure was evaluated by assessing any negative effects on the photosynthetic function of tomato plants as well as for the generation of reactive oxygen species (ROS). The impact of the CaZnO hetero-nanostructure on photosystem II (PSII) photochemistry was evaluated under both the growth light intensity (GLI) and a high light intensity (HLI) at a short (90 min) and long (96 h) duration exposure. An enhancement of photosystem II (PSII) function of tomato plants by 15 mg L−1 CaZnO hetero-nanostructure right after 90 min was evidenced, indicating its potential to be used as a photosynthetic biostimulant, improving photosynthetic efficiency and crop yield, but pending further testing across various plant species and cultivation conditions. Full article
(This article belongs to the Special Issue Synthesis, Assembly and Applications of Nanomaterials)
Show Figures

Graphical abstract

15 pages, 4096 KB  
Article
Surface Roughness, Residual Stress, and Optical and Structural Properties of Evaporated VO2 Thin Films Prepared with Different Tungsten Doping Amounts
by Chuen-Lin Tien, Chun-Yu Chiang, Yi-Lin Wang, Ching-Chiun Wang and Shih-Chin Lin
Appl. Sci. 2025, 15(17), 9457; https://doi.org/10.3390/app15179457 - 28 Aug 2025
Viewed by 101
Abstract
This study investigates the effects of different tungsten (W) doping contents on the optical transmittance, surface roughness, residual stress, and microstructure of evaporated vanadium dioxide (VO2) thin films. W-doped VO2 thin films with varying tungsten concentrations were fabricated using electron [...] Read more.
This study investigates the effects of different tungsten (W) doping contents on the optical transmittance, surface roughness, residual stress, and microstructure of evaporated vanadium dioxide (VO2) thin films. W-doped VO2 thin films with varying tungsten concentrations were fabricated using electron beam evaporation combined with ion-assisted deposition techniques, and deposited on silicon wafers and glass substrates. The optical transmittances of undoped and W-doped VO2 thin films were measured by UV/VIS/NIR spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The root mean square surface roughness was measured using a Linnik microscopic interferometer. The residual stress in various W-doped VO2 films was evaluated using a modified Twyman–Green interferometer. The surface morphological and structural characterization of the W-doped VO2 thin films were performed by field-emission scanning electron microscopy (FE-SEM) and X-ray diffraction (XRD). Raman spectroscopy was used to analyze the structure and vibrational modes of different W-doped VO2 thin films. These results show that the addition of tungsten significantly alters the structural, optical, and mechanical properties of VO2 thin films. Full article
Show Figures

Figure 1

13 pages, 2442 KB  
Article
Sustainable Green Synthesis of Fe3O4 Nanocatalysts for Efficient Oxygen Evolution Reaction
by Erico R. Carmona, Anandhakumar Sukeri, Ronald Nelson, Cynthia Rojo, Arnoldo Vizcarra, Aliro Villacorta, Felipe Carevic, Ricard Marcos, Bernardo Arriaza, Nelson Lara, Tamara Martinez and Lucas Patricio Hernández-Saravia
Nanomaterials 2025, 15(17), 1317; https://doi.org/10.3390/nano15171317 - 27 Aug 2025
Viewed by 357
Abstract
This work focuses on the sustainable green synthesis of magnetic iron oxide nanoparticles (Fe3O4NPs) using bioreductants derived from orange peel extracts for application in the efficient oxygen evolution reactions (OER). The synthesized catalysts were characterized using X-ray diffraction analysis, [...] Read more.
This work focuses on the sustainable green synthesis of magnetic iron oxide nanoparticles (Fe3O4NPs) using bioreductants derived from orange peel extracts for application in the efficient oxygen evolution reactions (OER). The synthesized catalysts were characterized using X-ray diffraction analysis, field emission scanning electron microscopy (FESEM), energy dispersive X-ray analysis (EDS), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and UV–visible spectroscopy. The Fe3O4NPs exhibit a well-defined spherical morphology with a larger Brunauer–Emmett–Teller surface area and a significant electrochemically active surface area. The green synthesis using orange peel extracts leads to an excellent electrocatalytic activity of the apparent spherical Fe3O4NPs (diameter of 9.62 ± 0.07 nm), which is explored for OER in an alkaline medium (1.0 M KOH) using linear-sweep and cyclic voltammetry techniques. These nanoparticles achieved a benchmark current density of 10 mA cm−2 at a low overpotential of 0.3 V versus RHE, along with notable durability and stability. The outstanding OER electrocatalytic activity is attributed to their unique morphology, which offers large surface area and an ideal porous structure that enhances the adsorption and activation of reactive species. Furthermore, structural defects within the nanoparticles facilitate efficient electron transfer and migration of these species, further accelerating the OER process. Full article
(This article belongs to the Special Issue Hydrogen Production and Evolution Based on Nanocatalysts)
Show Figures

Figure 1

21 pages, 6437 KB  
Article
Assessment of the Surface Characteristics of ISO 5832-1 Stainless Steel for Biomaterial Applications
by Eurico Felix Pieretti, Davide Piaggio and Isolda Costa
Materials 2025, 18(17), 4020; https://doi.org/10.3390/ma18174020 - 27 Aug 2025
Viewed by 282
Abstract
Marking techniques are employed to guarantee the identification and traceability of biomedical materials. This study investigated the impact of laser and mechanical marking processes on the tribological performance of ISO 5832-1 austenitic stainless steel (SS), specifically examining corrosion resistance, the coefficient of friction, [...] Read more.
Marking techniques are employed to guarantee the identification and traceability of biomedical materials. This study investigated the impact of laser and mechanical marking processes on the tribological performance of ISO 5832-1 austenitic stainless steel (SS), specifically examining corrosion resistance, the coefficient of friction, and wear volume in ball-cratering wear tests. The laser marking was performed using a nanosecond Q-switched Nd:YAG laser. Cytotoxicity tests assessed the biocompatibility of the biomaterial. Non-marked surfaces were also evaluated for comparison. A phosphate-buffered saline solution (PBS) served as both the lubricant and corrosion medium. The surface finishing was analyzed using optical microscopy and scanning electron microscopy coupled with a field-emission gun (SEM-FEG), combined with an energy-dispersive X-ray spectrometer. The oxide film was examined through X-ray photoelectron spectroscopy (XPS). Wear tests lasted 10 min, with PBS drops applied every 10 s at 75 rpm; solid balls of AISI 316L stainless steel (SS) and polypropylene (PP), each 1 inch in diameter, were used as counter-bodies. Corrosion resistance was assessed using electrochemical methods. Results showed variations in roughness and microstructure due to laser marking. The tribological behaviour was influenced by the type of marking process, and the wear amount depended on the normal force and ball nature. None of the samples was considered cytotoxic, although laser-marked surfaces exhibited the lowest cellular viability among the tested surfaces and the lowest corrosion resistance. Full article
(This article belongs to the Section Biomaterials)
Show Figures

Figure 1

17 pages, 2874 KB  
Article
Determination of the Degree of Penetration of Glass Ionomer Cements in the Healthy and Decayed Dentine of Permanent Molars
by Pilar Valverde-Rubio, Pilar Cereceda-Villaescusa, Inmaculada Cabello, Andrea Poza-Pascual, Clara Serna-Muñoz and Antonio José Ortiz-Ruiz
Materials 2025, 18(17), 3984; https://doi.org/10.3390/ma18173984 - 25 Aug 2025
Viewed by 450
Abstract
This study aimed to evaluate the penetration and bonding performance of three restorative materials—high-viscosity glass ionomer cement (Riva Self Cure HV), resin-modified glass ionomer cement (Riva Light Cure) and a bioactive resin (Activa BioActive Restorative™)—in the healthy and carious dentine of permanent molars. [...] Read more.
This study aimed to evaluate the penetration and bonding performance of three restorative materials—high-viscosity glass ionomer cement (Riva Self Cure HV), resin-modified glass ionomer cement (Riva Light Cure) and a bioactive resin (Activa BioActive Restorative™)—in the healthy and carious dentine of permanent molars. Forty extracted human molars with sound or decayed dentine were restored following standardised protocols and subsequently divided into slices. So, twenty-four samples were used for each group (sound and carious dentine) for interface analysis using confocal laser scanning microscopy, field emission scanning electron microscopy and energy dispersive X-ray spectroscopy, and another eight simples were used for each group (sound and carious dentine) for Vickers microhardness testing. Results showed that both glass ionomer cements achieved consistent chemical bonding in healthy dentine and demonstrated better interfacial adaptation compared to carious dentine, where partially demineralised areas showed weaker bonding. The bioactive resin exhibited good adhesion in sound dentine due to the adhesive system but showed poorer interaction in decayed dentine with signs of interfacial separation. Elemental analysis revealed similar compositions among materials, with no significant differences in material concentrations among the ionomers, while there were significant differences with the other materials. On the other hand, some variations were observed in the sulphur, fluoride and strontium content depending on dentine condition. Microhardness values were higher in healthy dentine than in carious dentine for all materials (p < 0.001), except the high-viscosity glass ionomer, which maintained stable hardness in both substrates (36.33 ± 6.23 VHN vs. 34.56 ± 4.31 VHN; p = 0.605). These findings highlight the relevance of material selection and dentine condition in minimally invasive restorative dentistry. Full article
(This article belongs to the Special Issue 3D Tissue Models and Biomaterials for Oral Soft Tissue Regeneration)
Show Figures

Figure 1

27 pages, 5754 KB  
Article
Use of Abandoned Copper Tailings as a Precursor to the Synthesis of Fly-Ash-Based Alkali Activated Materials
by Arturo Reyes-Román, Tatiana Samarina, Daniza Castillo-Godoy, Esther Takaluoma, Giuseppe Campo, Gerardo Araya-Letelier and Yimmy Fernando Silva
Materials 2025, 18(17), 3926; https://doi.org/10.3390/ma18173926 - 22 Aug 2025
Viewed by 449
Abstract
This study evaluated the feasibility of reusing abandoned copper mine tailings (Cu tailings) as a precursor in the production of fly-ash-based alkali-activated materials (FA-AAMs). Two formulations were developed by combining FA and Cu tailings with a mixture of sodium silicate and sodium hydroxide [...] Read more.
This study evaluated the feasibility of reusing abandoned copper mine tailings (Cu tailings) as a precursor in the production of fly-ash-based alkali-activated materials (FA-AAMs). Two formulations were developed by combining FA and Cu tailings with a mixture of sodium silicate and sodium hydroxide as alkaline activators at room temperature (20 °C). Formulation G1 consisted of 70% Cu tailings and 30% fly ash (FA), whereas G2 included the same composition with an additional 15% ordinary Portland cement (OPC). The materials were characterized using X-ray fluorescence (XRF), -X-ray diffraction (XRD), field emission scanning electron microscopy with energy-dispersive spectroscopy (FESEM-EDS), and particle size analysis. While FA exhibited a high amorphous content (64.4%), Cu tailings were largely crystalline and acted as inert fillers. After 120 days of curing, average compressive strength reached 24 MPa for G1 and 41 MPa for G2, with the latter showing improved performance due to synergistic effects of geopolymerization and OPC hydration. Porosity measurements revealed a denser microstructure in G2 (35%) compared to G1 (52%). Leaching tests confirmed the immobilization of hazardous elements, with arsenic concentrations decreasing over time and remaining below regulatory limits. Despite extended setting times (24 h for G1 and 18 h for G2) and the appearance of surface efflorescence, both systems demonstrated good chemical stability and long-term performance. The results support the use of Cu tailings in FA-AAMs as a sustainable strategy for waste valorization, enabling their application in non-structural and moderate-load-bearing construction components or waste encapsulation units. This approach contributes to circular economy goals while reducing the environmental footprint associated with traditional cementitious systems. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Figure 1

13 pages, 2880 KB  
Article
Temperature-Induced Structural Changes in Muscle Proteins from Giant Squid (Dosidicus gigas) Mantle: FT-IR, Circular Dichroism, and FE-SEM Analysis
by Miguel A. León-Heredia, Enrique Marquez-Rios, Francisco Cadena-Cadena, Hisila Santacruz-Ortega, Ignacio Alfredo Rivero-Espejel, Nathaly Montoya-Camacho and Iván J. Tolano-Villaverde
Foods 2025, 14(17), 2922; https://doi.org/10.3390/foods14172922 - 22 Aug 2025
Viewed by 419
Abstract
The giant squid (Dosidicus gigas) is an abundant marine species with high protein content, making it a promising resource for the food and biomaterial industries. This study aimed to investigate the effect of temperature (25–100 °C) on the structural changes in [...] Read more.
The giant squid (Dosidicus gigas) is an abundant marine species with high protein content, making it a promising resource for the food and biomaterial industries. This study aimed to investigate the effect of temperature (25–100 °C) on the structural changes in sarcoplasmic, myofibrillar, and stromal proteins isolated from squid mantle. Fourier-transform infrared spectroscopy (FT-IR) and circular dichroism (CD) were employed to monitor modifications in secondary structure, while field emission scanning electron microscopy (FE-SEM) was used to examine morphological characteristics. The FT-IR analysis revealed temperature-induced transitions in amide I, II, and A bands, indicating unfolding and aggregation processes, particularly in myofibrillar and stromal proteins. CD results confirmed a loss of α-helix content and an increase in β-sheet structures with rising temperature, especially above 60 °C, suggesting progressive denaturation. FE-SEM micrographs illustrated clear morphological differences: sarcoplasmic proteins displayed smooth, amorphous structures; myofibrillar proteins exhibited fibrous, porous networks; and stromal proteins presented dense and layered morphologies. These findings highlight the different thermal sensitivities and structural behaviors of squid muscle proteins and provide insight into their potential functional applications in thermally processed foods and bio-based materials. Full article
(This article belongs to the Special Issue Food Proteins: Extraction, Functions and Applications)
Show Figures

Figure 1

18 pages, 4073 KB  
Article
Development of Biopolymer Polylactic Acid–Cellulose Acetate–Silicon Dioxide Nanocomposite Membranes for Multifunctional Protective Textiles
by Irfan Farooq, Abdulhamid Al-Abduljabbar and Ibrahim A. Alnaser
Polymers 2025, 17(16), 2237; https://doi.org/10.3390/polym17162237 - 17 Aug 2025
Viewed by 697
Abstract
In this study, multifunctional nanocomposite membranes were fabricated using biopolymeric polylactic acid (PLA) and cellulose acetate (CA) composites via electrospinning. The hydrophobic nanocomposite membranes were reinforced with varying concentrations of silicon dioxide (silica/SiO2) nanoparticles. The developed PLA–CA–SiO2 nanofibrous membranes are [...] Read more.
In this study, multifunctional nanocomposite membranes were fabricated using biopolymeric polylactic acid (PLA) and cellulose acetate (CA) composites via electrospinning. The hydrophobic nanocomposite membranes were reinforced with varying concentrations of silicon dioxide (silica/SiO2) nanoparticles. The developed PLA–CA–SiO2 nanofibrous membranes are characterized using field emission scanning electron microscopy (FE- energy-dispersive SEM), energy-dispersive X-ray (EDX), elemental mapping, X-ray diffraction analysis (XRD), Fourier-transform infrared spectroscopy (FT–IR), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC) techniques. Various physical and mechanical properties of the bio-nanocomposite membrane, such as tensile testing, infrared thermal imaging, ultraviolet–visible spectroscopy (UV–Vis), water contact angle, hydrostatic pressure resistance, and breathability are also investigated. The analysis revealed that a small concentration of silica nanoparticles improves the morphological, mechanical, and thermal characteristics of nanocomposite membranes. The addition of silica nanoparticles improves the UV (A & B), visible and infrared blocking efficiency while also enhancing the waterproofness of protective textiles. The PLA–CA–SiO2 biopolymer nanocomposite membrane has a fibrous microstructure and demonstrated the tensile strength of 11.2 MPa, a Young’s modulus of 329 MPa, an elongation at break of 98.5%, a hydrostatic pressure resistance of 27 kPa, and a water contact angle of 143.7°. The developed electrospun composite membranes with improved properties provide strong potential to replace petroleum-based membranes with biopolymer-based alternatives, promising improved and wider usage for bio-related applications. Full article
(This article belongs to the Special Issue Silicon-Based Polymers: From Synthesis to Applications)
Show Figures

Figure 1

10 pages, 1917 KB  
Article
Semi-Industrial Preparation of Versatile Panel Rolls from Micronized Hemp Stalks
by Lorenzo Gallina, Salah Chaji, Luca Querci, Maela Manzoli and Giancarlo Cravotto
J. Compos. Sci. 2025, 9(8), 440; https://doi.org/10.3390/jcs9080440 - 15 Aug 2025
Viewed by 393
Abstract
In recent years, agricultural biomass-filled materials have been increasingly explored as sustainable alternatives to fossil-based polymers and for the development of biocomposites. In this study, micronized hemp stalks, a byproduct of the cannabis industry, were loaded into 10–20% of polypropylene/polyethylene bicomponent fibers in [...] Read more.
In recent years, agricultural biomass-filled materials have been increasingly explored as sustainable alternatives to fossil-based polymers and for the development of biocomposites. In this study, micronized hemp stalks, a byproduct of the cannabis industry, were loaded into 10–20% of polypropylene/polyethylene bicomponent fibers in a cost-effective original airlaying process. The production process was developed to achieve high hemp content (up to 80%), while maintaining suitable structural and mechanical properties. Experimental analyses confirmed that the hemp-based biocomposite exhibited promising thermal conductivity values (0.068 ± 0.002 W/mK) and effective sound-attenuation capabilities that are comparable to commonly used insulating materials, such as stone wool. Furthermore, X-ray diffraction and field emission scanning electron microscopy measurements analyzed the insulation features of the hemp-based biocomposite prepared with its morphological and structural properties, revealing its high internal porosity and polymeric crystallinity. These results highlight the potential of hemp biocomposites as sustainable, economically viable alternatives for thermal and acoustic insulation applications. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Graphical abstract

15 pages, 2582 KB  
Article
Investigation of Composition, Structure, Electrical Properties, and Ageing Resistance of Conductive Flocked Fabric for Automotive Applications
by Matilde Arese, Elio Sarotto, Antonino Domenico Veca, Vito Guido Lambertini, Daniele Nardi, Martina Sandigliano, Federico Cesano and Valentina Brunella
Polymers 2025, 17(16), 2212; https://doi.org/10.3390/polym17162212 - 13 Aug 2025
Viewed by 484
Abstract
The growing development of conductive functionalised textiles has attracted the interest of the automotive industry, which is seeking innovative solutions for seamless and futuristic interior design aimed at improving both vehicle aesthetics and user experience. In line with this trend, the present work [...] Read more.
The growing development of conductive functionalised textiles has attracted the interest of the automotive industry, which is seeking innovative solutions for seamless and futuristic interior design aimed at improving both vehicle aesthetics and user experience. In line with this trend, the present work investigates the electrical performances of two conductive flocked yarns, one incorporating silver-coated fibres and the other carbon black-based fibres, for potential application in smart automotive interiors. The stability of their electrical properties was also evaluated under thermal ageing and mechanical stress conditions. Thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and field emission scanning electron microscopy (FE-SEM) investigations provided information about the composition and structural properties of the yarns. Silver-based yarns demonstrated superior conductivity and thermal stability. In contrast, carbon-black yarns exhibited lower electrical performance and increased sensitivity to ageing due to filler agglomeration. A multitouch capacitive sensor prototype was also developed using the silver-based fabric and successfully integrated into a microcontroller platform. The results demonstrate the suitability of conductive flocked textiles for durable, low-voltage human–machine interfaces requiring robust, flexible, and responsive textile-based control surfaces, such as automotive applications, consumer electronics, and wearable technology. Full article
(This article belongs to the Section Smart and Functional Polymers)
Show Figures

Figure 1

10 pages, 1885 KB  
Article
Plasma-Induced Amino HBP/Ag Nanoparticle-Grafted PP Melt-Blown Nonwoven Fabric and Its Antibacterial Performance
by Hongxia Chen, Wei Zhang, Weidong Gao and Guangyu Zhang
Coatings 2025, 15(8), 947; https://doi.org/10.3390/coatings15080947 - 13 Aug 2025
Viewed by 388
Abstract
In this work, polypropylene (PP) melt-blown nonwoven fabric was used as a raw material, which was plasma-treated and grafted with HBP/Ag nanoparticle (NP) solution. The surface wettability, surface morphology, and surface element composition after the treatment were evaluated through a contact angle test, [...] Read more.
In this work, polypropylene (PP) melt-blown nonwoven fabric was used as a raw material, which was plasma-treated and grafted with HBP/Ag nanoparticle (NP) solution. The surface wettability, surface morphology, and surface element composition after the treatment were evaluated through a contact angle test, field emission scanning electron microscopy (FE-SEM), energy-dispersive spectrometer (EDS), and Fourier transform infrared spectroscopy (FTIR), respectively. The antibacterial activity of PP fabrics treated with Ag NPs against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) was measured. SEM and EDS results showed that Ag NPs were evenly dispersed on the surface of the PP fabrics. The PP fabrics treated with Ag NPs exhibited excellent antibacterial performance. Full article
(This article belongs to the Special Issue Recent Progress on Functional Films and Surface Science)
Show Figures

Graphical abstract

22 pages, 4428 KB  
Article
Pore Structure Characteristics and Controlling Factors of the Lower Cambrian Niutitang Formation Shale in Northern Guizhou: A Case Study of Well QX1
by Yuanyan Yin, Niuniu Zou, Daquan Zhang, Yi Chen, Zhilong Ye, Xia Feng and Wei Du
Fractal Fract. 2025, 9(8), 524; https://doi.org/10.3390/fractalfract9080524 - 13 Aug 2025
Viewed by 299
Abstract
Shale pore architecture governs gas storage capacity, permeability, and production potential in reservoirs. Therefore, this study systematically investigates the pore structure features and influencing factors of the Niutitang Formation shale from the QX1 well in northern Guizhou using field emission scanning electron microscopy [...] Read more.
Shale pore architecture governs gas storage capacity, permeability, and production potential in reservoirs. Therefore, this study systematically investigates the pore structure features and influencing factors of the Niutitang Formation shale from the QX1 well in northern Guizhou using field emission scanning electron microscopy (FE-SEM), high-pressure mercury intrusion (HPMI), low-temperature nitrogen adsorption (LTNA), and nuclear magnetic resonance (NMR) experiments. The results show that ① The pore size of the QX1 well’s Niutitang Formation shale is primarily in the nanometer range, with pore types including intragranular pores, intergranular pores, organic matter pores, and microfractures, with the former two types constituting the primary pore network. ② Pore shapes are plate-shaped intersecting conical microfractures or plate-shaped intersecting ink bottles, ellipsoidal, and beaded pores. ③ The pore size distribution showed a multi-peak distribution, predominantly mesopores, followed by micropores, with the fewest macropores. ④ The fractal dimension D1 > D2 indicates that the shale pore system is characterized by a rough surface and some connectivity of the pore network. ⑤ Carbonate mineral abundances are the main controlling factors affecting the pore structure of shales in the study area, and total organic carbon (TOC) content also has some influence, while clay mineral content shows negligible statistical correlation. Full article
(This article belongs to the Special Issue Multiscale Fractal Analysis in Unconventional Reservoirs)
Show Figures

Figure 1

25 pages, 4215 KB  
Article
Seed Priming with Phytofabricated Silver Nanoparticles: A Physicochemical and Physiological Investigation in Wheat
by Saubhagya Subhadarsini Sahoo, Dwipak Prasad Sahu and Rajendra Kumar Behera
J. Exp. Theor. Anal. 2025, 3(3), 22; https://doi.org/10.3390/jeta3030022 - 11 Aug 2025
Viewed by 357
Abstract
Seed priming is an innovative pre-planting technique to improve germination and accelerate early seedling growth, offering a sustainable and eco-friendly alternative to chemical treatments. In this study, silver nanoparticles (AgNPs) were synthesized using flower extracts of neem plants for the first time, alongside [...] Read more.
Seed priming is an innovative pre-planting technique to improve germination and accelerate early seedling growth, offering a sustainable and eco-friendly alternative to chemical treatments. In this study, silver nanoparticles (AgNPs) were synthesized using flower extracts of neem plants for the first time, alongside the conventional neem leaf extract-based AgNPs, and their comparative efficacy was evaluated in wheat seed priming. The biosynthesized AgNPs were characterized through UV–Vis spectroscopy, Fourier Transform Infrared Spectroscopy (FTIR), X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Energy-Dispersive Spectroscopy (EDS), Dynamic Light Scattering (DLS), and zeta potential analysis to confirm their formation, stability, and surface functionality. Wheat seeds were primed with varying concentrations (25, 50, 75, 100 mg/L) of flower-mediated nanoparticles (F-AgNPs) and leaf-mediated nanoparticles (L-AgNPs). Effects on seed germination, seedling growth, plant pigments, secondary metabolites, and antioxidant enzyme activities were systematically investigated. The results indicated that F-AgNP priming treatment significantly enhanced wheat seedlings’ performances in comparison to L-AgNPs, which could be attributed to the difference in phytochemical profiles in the extracts. This study contributes a comparative experimental analysis highlighting the potential of biogenic AgNPs—particularly those derived from neem flower extract—offering a promising strategy for enhancing seedling establishment in wheat through seed priming. Full article
Show Figures

Graphical abstract

20 pages, 5638 KB  
Article
Influence of Heat Treatment on Precipitate and Microstructure of 38CrMoAl Steel
by Guofang Xu, Shiheng Liang, Bo Chen, Jiangtao Chen, Yabing Zhang, Xiaotan Zuo, Zihan Li, Bo Song and Wei Liu
Materials 2025, 18(15), 3703; https://doi.org/10.3390/ma18153703 - 6 Aug 2025
Viewed by 415
Abstract
To address the central cracking problem in continuous casting slabs of 38CrMoAl steel, high-temperature tensile tests were performed using a Gleeble-3800 thermal simulator to characterize the hot ductility of the steel within the temperature range of 600–1200 °C. The phase transformation behavior was [...] Read more.
To address the central cracking problem in continuous casting slabs of 38CrMoAl steel, high-temperature tensile tests were performed using a Gleeble-3800 thermal simulator to characterize the hot ductility of the steel within the temperature range of 600–1200 °C. The phase transformation behavior was computationally analyzed via the Thermo-Calc software, while the microstructure, fracture morphology, and precipitate characteristics were systematically investigated using a metallographic microscope (MM), a field-emission scanning electron microscope (FE-SEM), and transmission electron microscopy (TEM). Additionally, the effects of different holding times and cooling rates on the microstructure and precipitates of 38CrMoAl steel were also studied. The results show that the third brittle temperature region of 38CrMoAl steel is 645–1009 °C, and the fracture mechanisms can be classified into three types: (I) in the α single-phase region, the thickness of intergranular proeutectoid ferrite increases with rising temperature, leading to reduced hot ductility; (II) in the γ single-phase region, the average size of precipitates increases while the number density decreases with increasing temperature, thereby improving hot ductility; and (III) in the α + γ two-phase region, the precipitation of proeutectoid ferrite promotes crack propagation and the dense distribution of precipitates at grain boundaries causes stress concentration, further deteriorating hot ductility. Heat treatment experiments indicate that the microstructures of the specimen transformed under water cooling, air cooling, and furnace cooling conditions as follows: martensite + proeutectoid ferrite → bainite + ferrite → ferrite. The average size of precipitates first decreased, then increased, and finally decreased again with increasing holding time, while the number density exhibited the opposite trend. Therefore, when the holding time was the same, reducing the cooling rate could increase the average size of the precipitates and decrease their number density, thereby improving the hot ductility of 38CrMoAl steel. Full article
(This article belongs to the Special Issue Microstructure Engineering of Metals and Alloys, 3rd Edition)
Show Figures

Figure 1

17 pages, 1647 KB  
Article
Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries
by Lara K. Ribeiro, Matheus G. Guardiano, Lucia H. Mascaro, Monica Calatayud and Amanda F. Gouveia
Appl. Sci. 2025, 15(15), 8594; https://doi.org/10.3390/app15158594 - 2 Aug 2025
Viewed by 367
Abstract
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides [...] Read more.
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides were synthesized via a co-precipitation method in an aqueous medium, followed by microwave-assisted hydrothermal treatment. Structural and morphological characterizations were performed using X-ray diffraction, field-emission scanning electron microscopy, Raman spectroscopy, ultraviolet–visible (UV–vis), and photoluminescence (PL) spectroscopies. The effluent was characterized by means of ionic chromatography, total organic carbon (TOC) analysis, physicochemical parameters (pH and conductivity), and UV–vis spectroscopy. Both materials exhibited well-crystallized structures with distinct morphologies: Fe2(MoO4)3 presented well-defined exposed (001) and (110) surfaces, while FeWO4 showed a highly porous, fluffy texture with irregularly shaped particles. In addition to morphology, both materials exhibited narrow bandgaps—2.11 eV for Fe2(MoO4)3 and 2.03 eV for FeWO4. PL analysis revealed deep defects in Fe2(MoO4)3 and shallow defects in FeWO4, which can influence the generation and lifetime of reactive oxygen species. These combined structural, electronic, and morphological features significantly affected their photocatalytic performance. TOC measurements revealed degradation efficiencies of 32.2% for Fe2(MoO4)3 and 45.3% for FeWO4 after 120 min of irradiation. The results highlight the critical role of morphology, optical properties, and defect structures in governing photocatalytic activity and reinforce the potential of these simple iron-based oxides for real wastewater treatment applications. Full article
(This article belongs to the Special Issue Application of Nanomaterials in the Field of Photocatalysis)
Show Figures

Graphical abstract

Back to TopTop