Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (355)

Search Parameters:
Keywords = filtering antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 25651 KB  
Article
Performance of Multi-Antenna GNSS Buoy and Co-Located Mooring Array Deployed Around Qianliyan Islet for Altimetry Satellite Calibration
by Bin Guan, Zhongmiao Sun, He Huang, Zhenhe Zhai, Xiaogang Liu, Jian Ma, Lingyong Huang, Zhiyong Huang, Mingda Ouyang, Mimi Zhang, Xiyu Xu and Lei Yang
Remote Sens. 2025, 17(20), 3436; https://doi.org/10.3390/rs17203436 - 15 Oct 2025
Viewed by 238
Abstract
To evaluate the prospects of multi-antenna GNSS buoy and mooring array in ocean altimetry satellite calibration, experiments are conducted in the ocean around Qianliyan islet in China’s Yellow Sea. The trials aim to validate the feasibility of establishing an ocean altimetry satellite calibration [...] Read more.
To evaluate the prospects of multi-antenna GNSS buoy and mooring array in ocean altimetry satellite calibration, experiments are conducted in the ocean around Qianliyan islet in China’s Yellow Sea. The trials aim to validate the feasibility of establishing an ocean altimetry satellite calibration site while assessing the performance of relevant calibration equipment. Utilizing one multi-antenna GNSS buoy system and one mooring array operating for over 20 days, the experiment incorporates continuous GNSS observation data from Qianliyan islet’s permanent station. Results reveal that high-frequency sea surface height (SSH) signals exhibit periods approaching or below 10 s, with the designed low-pass filter effectively attenuating these high-frequency components. Significant differences emerge in the power spectra of filtered SSH measurements between instruments: high-frequency signals detected by the mooring array demonstrate greater spectral concentration and lower signal intensity than those recorded by the GNSS buoy. Through multi-day synchronized observations, the height datum for mooring array SSH measurements is obtained, revealing average standard deviation of 2.76 cm in filtered SSH differences between platforms—validating both the system design and data processing methodology. This experiment successfully demonstrates the performance of calibration equipment, preliminarily verifies the effectiveness of ground-based calibration data processing techniques, and further confirms the technical viability of establishing an ocean altimetry satellite calibration site around Qianliyan islet. Full article
Show Figures

Figure 1

17 pages, 3854 KB  
Article
Denoising and Mosaicking Methods for Radar Images of Road Interiors
by Changrong Li, Zhiyong Huang, Bo Zang and Huayang Yu
Appl. Sci. 2025, 15(19), 10485; https://doi.org/10.3390/app151910485 - 28 Sep 2025
Viewed by 327
Abstract
Three-dimensional ground-penetrating radar can quickly visualize the internal condition of the road; however, it faces challenges such as data splicing difficulties and image noise interference. Scanning antenna and lane size differences, as well as equipment and environmental interference, make the radar image difficult [...] Read more.
Three-dimensional ground-penetrating radar can quickly visualize the internal condition of the road; however, it faces challenges such as data splicing difficulties and image noise interference. Scanning antenna and lane size differences, as well as equipment and environmental interference, make the radar image difficult to interpret, which affects disease identification accuracy. For this reason, this paper focuses on road radar image splicing and noise reduction. The primary research includes the following: (1) We make use of backward projection imaging algorithms to visualize the internal information of the road, combined with a high-precision positioning system, splicing of multi-lane data, and the use of bilinear interpolation algorithms to make the three-dimensional radar data uniformly distributed. (2) Aiming at the defects of the low computational efficiency of the traditional adaptive median filter sliding window, a Deep Q-learning algorithm is introduced to construct a reward and punishment mechanism, and the feedback reward function quickly determines the filter window size. The results show that the method is outstanding in improving the peak signal-to-noise ratio, compared with the traditional algorithm, improving the denoising performance by 2–7 times. It effectively suppresses multiple noise types while precisely preserving fine details such as 0.1–0.5 mm microcrack edges, significantly enhancing image clarity. After processing, images were automatically recognized using YOLOv8x. The detection rate for transverse cracks in images improved significantly from being undetectable in mixed noise and original images to exceeding 90% in damage detection. This effectively validates the critical role of denoising in enhancing the automatic interpretation capability of internal road cracks. Full article
Show Figures

Figure 1

23 pages, 13530 KB  
Article
Use of the Generalized Vector Addition Theorem for Antenna Position Translation for Spherical Mode-Filtering-Based Reflection Suppression
by Marc Dirix, Stuart F. Gregson and Rostyslav F. Dubrovka
Sensors 2025, 25(17), 5557; https://doi.org/10.3390/s25175557 - 5 Sep 2025
Viewed by 1114
Abstract
Monochromatic mode-filtering-based scattering suppression techniques have been shown to be applicable to all commonly used forms of far- and near-field antenna and RCS measurement techniques. Traditionally, the frequency-domain mode-filtering technique takes a far-field pattern, either measured directly or obtained using a suitable near-field [...] Read more.
Monochromatic mode-filtering-based scattering suppression techniques have been shown to be applicable to all commonly used forms of far- and near-field antenna and RCS measurement techniques. Traditionally, the frequency-domain mode-filtering technique takes a far-field pattern, either measured directly or obtained using a suitable near-field to far-field transformation, as its starting point. The measurement is required to be conducted such that the antenna under test (AUT) is positioned offset from the origin of the measurement coordinate system. This physical offset introduces a phase taper across the AUT pattern and results in far greater interference occurring between the direct and indirect parasitically coupled spurious scattered signals. The method is very general and can be applied to all forms of near- or far-field measurements. However, for the case of a spherical near-field measurement (SNF) approach, it is somewhat cumbersome and tedious as first we must perform a probe-corrected spherical near-field to far-field transformation, which itself involves the computation of a complete set of spherical mode coefficients, and then after the displacement has been applied to the far-electric-fields, a second spherical wave expansion and summation is required to implement the mode-filtering procedure. While this data processing chain has been widely deployed and exhaustively validated, it requires passing through the asymptotic far-field, which inevitably results in additional computational effort, as well as incurring some loss of information, which can impose limitations on further near-field applications. This paper introduces an alternative, novel, rigorous algorithm that applies the displacement of the AUT directly using the vector addition theorem for spherical waves. An efficient implementation has been developed, and it is shown that the new, rigorous algorithm for the translation and filtering can be easily implemented directly within the data processing chain of any standard spherical near-field transformation algorithm, avoiding the need to first transform to the asymptotic far-field and also removing the need for a secondary spherical mode expansion and secondary spherical mode summation. While the vector addition theorem required for the spherical near-field to far-field transformation (SNFFFT) algorithm has been described in detail in the open literature, its implementation has been limited to the case of impinging waves and positive z-directed translations where the magnitude of the displacement is necessarily larger than the minimum sphere radius (MRE). In the current paper, the addition theorem will be derived in a new form that allows the translation to be applied in any desired direction, without the need for additional rotations, as well as being valid for solutions for waves transitioning through the sphere and applicable for the case where the magnitude of the translation is smaller or larger than the radius of the minimum sphere. Full article
(This article belongs to the Special Issue Recent Advances in Antenna Measurement Techniques)
Show Figures

Figure 1

28 pages, 6366 KB  
Article
Integrated Ultra-Wideband Microwave System to Measure Composition Ratio Between Fat and Muscle in Multi-Species Tissue Types
by Lixiao Zhou, Van Doi Truong and Jonghun Yoon
Sensors 2025, 25(17), 5547; https://doi.org/10.3390/s25175547 - 5 Sep 2025
Viewed by 1123
Abstract
Accurate and non-invasive assessment of fat and muscle composition is crucial for biomedical monitoring to track health conditions in humans and pets, as well as for classifying meats in the meat industry. This study introduces a cost-effective, multifunctional ultra-wideband microwave system operating from [...] Read more.
Accurate and non-invasive assessment of fat and muscle composition is crucial for biomedical monitoring to track health conditions in humans and pets, as well as for classifying meats in the meat industry. This study introduces a cost-effective, multifunctional ultra-wideband microwave system operating from 2.4 to 4.4 GHz, designed for rapid and non-destructive quantification of fat thickness, muscle thickness, and fat-to-muscle ratio in diverse ex vivo samples, including pork, beef, and oil–water mixtures. The compact handheld device integrates essential RF components such as a frequency synthesizer, directional coupler, logarithmic power detector, and a dual-polarized Vivaldi antenna. Bluetooth telemetry enables seamless real-time data transmission to mobile- or PC-based platforms, with each measurement completed in a few seconds. To enhance signal quality, a two-stage denoising pipeline combining low-pass filtering and Savitzky–Golay smoothing was applied, effectively suppressing noise while preserving key spectral features. Using a random forest regression model trained on resonance frequency and signal-loss features, the system demonstrates high predictive performance even under limited sample conditions. Correlation coefficients for fat thickness, muscle thickness, and fat-to-muscle ratio consistently exceeded 0.90 across all sample types, while mean absolute errors remained below 3.5 mm. The highest prediction accuracy was achieved in homogeneous oil–water samples, whereas biologically complex tissues like pork and beef introduced greater variability, particularly in muscle-related measurements. The proposed microwave system is highlighted as a highly portable and time-efficient solution, with measurements completed within seconds. Its low cost, ability to analyze multiple tissue types using a single device, and non-invasive nature without the need for sample pre-treatment or anesthesia make it well suited for applications in agri-food quality control, point-of-care diagnostics, and broader biomedical fields. Full article
(This article belongs to the Section Biomedical Sensors)
Show Figures

Figure 1

13 pages, 2454 KB  
Article
Accuracy of 3D Ground Radio Station Location by a Single Unmanned Aerial Vehicle (UAV) as a Function of an Increasing Number of Received Signal Strength Indicator (RSSI) Measurements
by Jaroslaw Michalak
Sensors 2025, 25(17), 5452; https://doi.org/10.3390/s25175452 - 3 Sep 2025
Viewed by 643
Abstract
The article presents the results of simulation studies assessing the potential value of increasing the accuracy of radio signal source localization as a function of the increasing number of measures performed by a simple UAV (omnidirectional antenna, low flight altitude) in the Rice [...] Read more.
The article presents the results of simulation studies assessing the potential value of increasing the accuracy of radio signal source localization as a function of the increasing number of measures performed by a simple UAV (omnidirectional antenna, low flight altitude) in the Rice channel conditions and 3D space. The comparison was made for Range-Based localization methods such as Min–Max, Multilateration, and Nonlinear Regression with an additional assessment of the impact of Kalman filtering. It is estimated that, depending on the adopted localization method, thanks to the use of a large number of measurements performed by the UAV, one can count on a 2 to 6 times increase in localization accuracy in relation to the variant limited by measurements. The above is a good prognosis for the multi-task use of COTS UAV. Full article
Show Figures

Figure 1

9 pages, 1664 KB  
Article
Quantized Nuclear Recoil in the Search for Sterile Neutrinos in Tritium Beta Decay with PTOLEMY
by Wonyong Chung, Mark Farino, Andi Tan, Christopher G. Tully and Shiran Zhang
Universe 2025, 11(9), 297; https://doi.org/10.3390/universe11090297 - 2 Sep 2025
Viewed by 600
Abstract
The search for keV-scale sterile neutrinos in tritium beta decay is made possible through the theoretically allowed small admixture of electron flavor in right-handed, singlet, massive neutrino states. A distinctive feature of keV-scale sterile-neutrino–induced threshold distortions in the tritium beta spectrum is the [...] Read more.
The search for keV-scale sterile neutrinos in tritium beta decay is made possible through the theoretically allowed small admixture of electron flavor in right-handed, singlet, massive neutrino states. A distinctive feature of keV-scale sterile-neutrino–induced threshold distortions in the tritium beta spectrum is the presence of quantized nuclear-recoil effects, as predicted for atomic tritium bound to two-dimension materials such as graphene. The sensitivities to the sterile neutrino mass and electron-flavor mixing are considered in the context of the PTOLEMY detector simulation with tritiated graphene substrates. The ability to scan the entire tritium energy spectrum with a narrow energy window, low backgrounds, and high-resolution differential energy measurements provides the opportunity to pinpoint the quantized nuclear-recoil effects. providing an additional tool for identifying the kinematics of the production of sterile neutrinos. Background suppression is achieved by transversely accelerating electrons into a high magnetic field, where semi-relativistic electron tagging can be performed with cyclotron resonance emission RF antennas followed by deceleration through the PTOLEMY filter into a high-resolution differential energy detector operating in a zero-magnetic-field region. The PTOLEMY-based approach to keV-scale searches for sterile neutrinos involves a novel precision apparatus utilizing two-dimensional materials to yield high-resolution, sub-eV mass determination for electron-flavor mixing fractions of |Ue4|2105 and smaller. Full article
Show Figures

Figure 1

17 pages, 2728 KB  
Article
High-Pass Noise Suppression in the Mosquito Auditory System
by Dmitry N. Lapshin and Dmitry D. Vorontsov
Insects 2025, 16(8), 840; https://doi.org/10.3390/insects16080840 - 14 Aug 2025
Viewed by 573
Abstract
Mosquitoes detect sound with their antennae, which transmit vibrations to mechanosensory neurons in Johnston’s organ. However, their auditory system is exposed to low-frequency noise such as convective and thermal noise, as well as noise induced by flight, which could impair sensitivity. High-pass filters [...] Read more.
Mosquitoes detect sound with their antennae, which transmit vibrations to mechanosensory neurons in Johnston’s organ. However, their auditory system is exposed to low-frequency noise such as convective and thermal noise, as well as noise induced by flight, which could impair sensitivity. High-pass filters (HPFs) may mitigate this issue by suppressing low-frequency interference before it is transformed into neuronal signals. We investigated HPF mechanisms in Culex pipiens mosquitoes by analyzing the phase–frequency characteristics of the primary sensory neurons in the Johnston’s organ. Electrophysiological recordings from male and female mosquitoes revealed phase shifts consistent with high-pass filtering. Initial modeling suggested a single HPF; however, experimentally obtained phase shifts exceeding –90° required revising the model to include two serially connected HPFs. The results showed that male mosquitoes exhibit stronger low-frequency suppression (~32 dB at 10 Hz) compared to females (~21 dB), with some female neurons showing negligible filtering. The estimated delay in signal transmission was ~7 ms for both sexes. These findings suggest that HPFs enhance noise immunity, particularly in males, whose auditory sensitivity is critical for mating. The diversity in female neuronal tuning may reflect broader auditory functions in addition to mating, such as host detection. This study provides indirect evidence for HPFs in mosquito hearing and highlights sex-specific adaptations in auditory processing. The proposed dual-HPF model improves our understanding of how mosquitoes maintain high auditory sensitivity in noisy environments. Full article
(This article belongs to the Collection Insect Sensory Biology)
Show Figures

Figure 1

14 pages, 2652 KB  
Article
Optimized Multi-Antenna MRC for 16-QAM Transmission in a Photonics-Aided Millimeter-Wave System
by Rahim Uddin, Weiping Li and Jianjun Yu
Sensors 2025, 25(16), 5010; https://doi.org/10.3390/s25165010 - 13 Aug 2025
Cited by 1 | Viewed by 756
Abstract
This work presents an 80 Gbps photonics-aided millimeter-wave (mm Wave) wireless communication system employing 16-Quadrature Amplitude Modulation (16-QAM) and a 1 × 2 single-input multiple-output (SIMO) architecture with maximum ratio combining (MRC) to achieve robust 87.5 GHz transmission over 4.6 km. By utilizing [...] Read more.
This work presents an 80 Gbps photonics-aided millimeter-wave (mm Wave) wireless communication system employing 16-Quadrature Amplitude Modulation (16-QAM) and a 1 × 2 single-input multiple-output (SIMO) architecture with maximum ratio combining (MRC) to achieve robust 87.5 GHz transmission over 4.6 km. By utilizing polarization-diverse optical heterodyne generation and spatial diversity reception, the system enhances spectral efficiency while addressing the low signal-to-noise ratio (SNR) and channel distortions inherent in long-haul links. A blind equalization scheme combining the constant modulus algorithm (CMA) and decision-directed least mean squares (DD-LMS) filtering enables rapid convergence and suppresses residual inter-symbol interference, effectively mitigating polarization drift and phase noise. The experimental results demonstrate an SNR gain of approximately 3 dB and a significant bit error rate (BER) reduction with MRC compared to single-antenna reception, along with improved SNR performance in multi-antenna configurations. The synergy of photonic mm Wave generation, adaptive spatial diversity, and pilot-free digital signal processing (DSP) establishes a robust framework for high-capacity wireless fronthaul, overcoming atmospheric attenuation and dynamic impairments. This approach highlights the viability of 16-QAM in next-generation ultra-high-speed networks (6G/7G), balancing high data rates with resilient performance under channel degradation. Full article
Show Figures

Figure 1

16 pages, 8452 KB  
Article
Self-Diplexing SIW Rectangular Cavity-Backed Antenna Featuring TE210 and TE220 Modes with a Modified Inverted Z-Shaped Radiating Slot
by Ravindiran Asaithambi and Rajkishor Kumar
Electronics 2025, 14(16), 3198; https://doi.org/10.3390/electronics14163198 - 11 Aug 2025
Viewed by 438
Abstract
A self-diplexing, full-mode, substrate-integrated waveguide (SIW) rectangular cavity-backed antenna based on an inverted Z-shaped radiating slot with filtering characteristics is investigated in this work. The proposed design allows for individual control through the loading of four different slots, namely, a combination of [...] Read more.
A self-diplexing, full-mode, substrate-integrated waveguide (SIW) rectangular cavity-backed antenna based on an inverted Z-shaped radiating slot with filtering characteristics is investigated in this work. The proposed design allows for individual control through the loading of four different slots, namely, a combination of horizontal and diagonal slots, called inverted Z-shaped slots. The two diagonal slots make 45° angles between them, and this flexible rotation gives the design flexibility regarding control of the bands. By combining these slots into a modified inverted Z-shaped slot, a SIW rectangular cavity is configured and energized with two separate 50 Ω microstrip feed lines to resonate at two different frequencies—11.63 GHz and 13.27 GHz—and TE210 and TE220 modes are obtained for X- and Ku-band wireless purposes. In an experimental analysis, reflection coefficients of S11 < −10 dB were noted for both operating frequencies of 7.4% (11.23–12.09 GHz) and 3.0% (13.15–13.55 GHz), respectively. The average gain of the proposed antenna design in the two different operating conditions is 6.14 and 6.16 dBi, respectively. In addition, the proposed self-diplexing antenna attained high isolation, greater than 28 dB between both operating channels, and showed overall measured efficiency of 87.32%. Moreover, it features a single-layer structure, operates in dual bands, provides broadside linear polarization, and exhibits filtering capabilities. Full article
(This article belongs to the Special Issue Advanced Antennas and Propagation for Next-Gen Wireless)
Show Figures

Figure 1

13 pages, 3394 KB  
Article
Design of a Wideband Loaded Sleeve Monopole Embedded with Filtering High–Low Impedance Structure
by Jiansen Ma, Weiping Cao and Xinhua Yu
Electronics 2025, 14(15), 3137; https://doi.org/10.3390/electronics14153137 - 6 Aug 2025
Viewed by 500
Abstract
In this paper, a compact wideband filtering monopole is presented for remote terrestrial omnidirectional communication systems. The presented antenna features a sleeve monopole structure integrating with two key components: the lumped parallel RLC circuits and an embedded high–low impedance structure within the sleeve [...] Read more.
In this paper, a compact wideband filtering monopole is presented for remote terrestrial omnidirectional communication systems. The presented antenna features a sleeve monopole structure integrating with two key components: the lumped parallel RLC circuits and an embedded high–low impedance structure within the sleeve section. The integrated high–low impedance structure enables the monopole to achieve excellent filtering characteristics while maintaining the monopole compactly. Meanwhile, the combination of the RLC loads and the sleeve monopole ensures wideband omnidirectional radiation performance. To validate the design, a prototype operating from 200 to 1500 MHz is fabricated and tested. The measurement results demonstrate that the monopole achieves a VSWR below 3 across the entire operating band and a measured gain exceeding 0 dB. Furthermore, the monopole exhibits satisfactory out-of-band rejection from 1700 to 4000 MHz, confirming its effective filtering capability. Full article
Show Figures

Figure 1

24 pages, 3172 KB  
Article
A DDPG-LSTM Framework for Optimizing UAV-Enabled Integrated Sensing and Communication
by Xuan-Toan Dang, Joon-Soo Eom, Binh-Minh Vu and Oh-Soon Shin
Drones 2025, 9(8), 548; https://doi.org/10.3390/drones9080548 - 1 Aug 2025
Viewed by 1020
Abstract
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users [...] Read more.
This paper proposes a novel dual-functional radar-communication (DFRC) framework that integrates unmanned aerial vehicle (UAV) communications into an integrated sensing and communication (ISAC) system, termed the ISAC-UAV architecture. In this system, the UAV’s mobility is leveraged to simultaneously serve multiple single-antenna uplink users (UEs) and perform radar-based sensing tasks. A key challenge stems from the target position uncertainty due to movement, which impairs matched filtering and beamforming, thereby degrading both uplink reception and sensing performance. Moreover, UAV energy consumption associated with mobility must be considered to ensure energy-efficient operation. We aim to jointly maximize radar sensing accuracy and minimize UAV movement energy over multiple time steps, while maintaining reliable uplink communications. To address this multi-objective optimization, we propose a deep reinforcement learning (DRL) framework based on a long short-term memory (LSTM)-enhanced deep deterministic policy gradient (DDPG) network. By leveraging historical target trajectory data, the model improves prediction of target positions, enhancing sensing accuracy. The proposed DRL-based approach enables joint optimization of UAV trajectory and uplink power control over time. Extensive simulations validate that our method significantly improves communication quality and sensing performance, while ensuring energy-efficient UAV operation. Comparative results further confirm the model’s adaptability and robustness in dynamic environments, outperforming existing UAV trajectory planning and resource allocation benchmarks. Full article
Show Figures

Figure 1

21 pages, 4522 KB  
Article
A Method Integrating the Matching Field Algorithm for the Three-Dimensional Positioning and Search of Underwater Wrecked Targets
by Huapeng Cao, Tingting Yang and Ka-Fai Cedric Yiu
Sensors 2025, 25(15), 4762; https://doi.org/10.3390/s25154762 - 1 Aug 2025
Cited by 1 | Viewed by 439
Abstract
In this paper, a joint Matching Field Processing (MFP) Algorithm based on horizontal uniform circular array (UCA) is proposed for three-dimensional position of underwater wrecked targets. Firstly, a Marine search and rescue position model based on Minimum Variance Distortionless Response (MVDR) and matching [...] Read more.
In this paper, a joint Matching Field Processing (MFP) Algorithm based on horizontal uniform circular array (UCA) is proposed for three-dimensional position of underwater wrecked targets. Firstly, a Marine search and rescue position model based on Minimum Variance Distortionless Response (MVDR) and matching field quadratic joint Algorithm was proposed. Secondly, an MVDR beamforming method based on pre-Kalman filtering is designed to refine the real-time DOA estimation of the desired signal and the interference source, and the sound source azimuth is determined for prepositioning. The antenna array weights are dynamically adjusted according to the filtered DOA information. Finally, the Adaptive Matching Field Algorithm (AMFP) used the DOA information to calculate the range and depth of the lost target, and obtained the range and depth estimates. Thus, the 3D position of the lost underwater target is jointly estimated. This method alleviates the angle ambiguity problem and does not require a computationally intensive 2D spectral search. The simulation results show that the proposed method can better realise underwater three-dimensional positioning under certain signal-to-noise ratio conditions. When there is no error in the sensor coordinates, the positioning error is smaller than that of the baseline method as the SNR increases. When the SNR is 0 dB, with the increase in the sensor coordinate error, the target location error increases but is smaller than the error amplitude of the benchmark Algorithm. The experimental results verify the robustness of the proposed framework in the hierarchical ocean environment, which provides a practical basis for the deployment of rapid response underwater positioning systems in maritime search and rescue scenarios. Full article
(This article belongs to the Special Issue Sensor Fusion in Positioning and Navigation)
Show Figures

Figure 1

11 pages, 6279 KB  
Communication
Low-Profile Broadband Filtering Antennas for Vehicle-to-Vehicle Applications
by Shengtao Chen and Wang Ren
Sensors 2025, 25(15), 4747; https://doi.org/10.3390/s25154747 - 1 Aug 2025
Viewed by 427
Abstract
This paper proposes a compact, broadband, and low-profile filtering antenna designed for Sub-6 GHz communication. By applying characteristic mode analysis to the radiating elements, the operational mechanism of the antenna is clearly elucidated. The current cancellation among different radiating elements results in two [...] Read more.
This paper proposes a compact, broadband, and low-profile filtering antenna designed for Sub-6 GHz communication. By applying characteristic mode analysis to the radiating elements, the operational mechanism of the antenna is clearly elucidated. The current cancellation among different radiating elements results in two radiation nulls in the primary radiation direction, effectively enhancing the filtering effect. The antenna achieves a wide operational bandwidth (S1110 dB) of 35.9% (4.3–6.4 GHz), making it highly suitable for Sub-6 GHz communication systems. Despite its compact size of 25 × 25 mm2, the antenna consistently maintains stable broadside radiation patterns, with a peak gain of 6.14 dBi and a minimal gain fluctuation of less than 1 dBi at 4.6–6.45 GHz. This design ensures reliable and robust communication performance for V2V systems operating in the designated frequency band. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

13 pages, 256 KB  
Article
Attempt to Quantify Molecules of Host Plant Volatiles Evoking an Electroantennographic Response in Anoplophora glabripennis Antennae
by Rui Zhang, Jian-Ming Shi, Yi-Bei Jiang, Hui-Quan Sun, Dan-Dan Cao, Hui-Ling Hao and Jian-Rong Wei
Insects 2025, 16(8), 781; https://doi.org/10.3390/insects16080781 - 30 Jul 2025
Viewed by 607
Abstract
Anoplophora glabripennis, is one of the most devastating wood borers of many broad leaf trees. Our previous results indicated that antennae of A. glabripennis showed electroantennogram (EAG) responses to several host plant volatiles. However, the quantities of active compounds necessary to trigger [...] Read more.
Anoplophora glabripennis, is one of the most devastating wood borers of many broad leaf trees. Our previous results indicated that antennae of A. glabripennis showed electroantennogram (EAG) responses to several host plant volatiles. However, the quantities of active compounds necessary to trigger an EAG response remains unclear. To relate EAG responses with quantities of active molecules, we quantified the level of molecular triggering in the EAG response of A. glabripennis by a series of procedures. First, we used the EAG apparatus to measure EAG responses of A. glabripennis to five concentrations of eight chemicals and obtained dose–response curves. Second, volatiles released after blowing air over filter paper loaded with volatiles for different numbers of times (purging) were collected by solid-phase microextraction (SPME) and quantified by gas chromatography (GC), so we obtained the quantity of chemical released from each purge; the minimum number of molecules in each purge in the EAG was calculated by the molar mass for different compounds. For instance, the number of molecules of (Z)-3-hexenol reaching the female antennal segment in EAG was 8.68 × 108 at 0.01 ng/μL concentration, and 1.39 × 105 at 0.01 mV potential value. Finally, by comparing sensilla numbers on tested antennal segments with the entire antennae, the minimum number of molecules, or molecular flow, of tested compounds required to elicit an electrophysiological response from two antennae of ALB could be estimated either at a minimum concentration (2.49 × 108 at 0.01 ng/μL concentration of (Z)-3-Hexenol, for female) or at a minimum potentiometric response value (3.99 × 104 at 0.01 mV potential value). Full article
(This article belongs to the Section Insect Pest and Vector Management)
14 pages, 3371 KB  
Article
A Symmetry-Driven Broadband Circularly Polarized Magnetoelectric Dipole Antenna with Bandpass Filtering Response
by Xianjing Lin, Zuhao Jiang, Miaowang Zeng and Zengpei Zhong
Symmetry 2025, 17(7), 1145; https://doi.org/10.3390/sym17071145 - 17 Jul 2025
Viewed by 405
Abstract
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally [...] Read more.
This paper presents a symmetry-driven broadband circularly polarized magnetoelectric dipole antenna with bandpass filtering response, where the principle of symmetry is strategically employed to enhance both radiation and filtering performance. The antenna’s circular polarization is achieved through a symmetrical arrangement of two orthogonally placed metallic ME dipoles combined with a phase delay line, creating balanced current distributions for optimal CP characteristics. The design further incorporates symmetrical parasitic elements—a pair of identical inverted L-shaped metallic structures placed perpendicular to the ground plane at −45° relative to the ME dipoles—which introduce an additional CP resonance through their mirror-symmetric configuration, thereby significantly broadening the axial ratio bandwidth. The filtering functionality is realized through a combination of symmetrical modifications: grid slots etched in the metallic ground plane and an open-circuited stub loaded on the microstrip feed line work in tandem to create two radiation nulls in the upper stopband, while the inherent symmetrical properties of the ME dipoles naturally produce a radiation null in the lower stopband. This comprehensive symmetry-based approach results in a well-balanced bandpass filtering response across a wide operating bandwidth. Experimental validation through prototype measurement confirms the effectiveness of the symmetric design with compact dimensions of 0.96λ0 × 0.55λ0 × 0.17λ0 (λ0 is the wavelength at the lowest operating frequency), demonstrating an impedance bandwidth of 66.4% (2.87–5.05 GHz), an AR bandwidth of 31.9% (3.32–4.58 GHz), an average passband gain of 5.5 dBi, and out-of-band suppression levels of 11.5 dB and 26.8 dB at the lower and upper stopbands, respectively, along with good filtering performance characterized by a gain-suppression index (GSI) of 0.93 and radiation skirt index (RSI) of 0.58. The proposed antenna is suitable for satellite communication terminals requiring wide AR bandwidth and strong interference rejection in L/S-bands. Full article
(This article belongs to the Special Issue Symmetry Study in Electromagnetism: Topics and Advances)
Show Figures

Figure 1

Back to TopTop