Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,068)

Search Parameters:
Keywords = finite soil

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 6614 KB  
Article
Prediction of the Bearing Capacity Envelope for Spudcan Foundations of Jack-Up Rigs in Hard Clay with Varying Strengths
by Mingyuan Wang, Xing Yang, Yangbin Chen, Dong Wang and Huimin Sun
J. Mar. Sci. Eng. 2025, 13(10), 1899; https://doi.org/10.3390/jmse13101899 - 3 Oct 2025
Abstract
In offshore drilling and geological exploration, the stability of jack-up rigs is predominantly determined by the bearing capacities of spudcan foundations during seabed penetration. The penetration depth of spudcans is relatively shallow in hard clay. The formation of a cavity on the top [...] Read more.
In offshore drilling and geological exploration, the stability of jack-up rigs is predominantly determined by the bearing capacities of spudcan foundations during seabed penetration. The penetration depth of spudcans is relatively shallow in hard clay. The formation of a cavity on the top surface of a spudcan often complicates accurate estimation of its capacity. This study employs the finite element method, in conjunction with the Swipe and Probe loading techniques, to examine the failure surfaces of soils of varying strengths. Numerical simulations that consider different gradients of undrained shear strength and cavity depths demonstrate that cavity depth significantly influences the failure envelope. The findings indicate that higher soil strength increases the bearing capacity and reduces the area of soil displacement at failure. Moreover, an enhanced theoretical equation for predicting the vertical-horizontal-moment (V-H-M) failure envelope in hard clay strata is proposed. The equation’s accuracy has been verified against numerical simulation results, revealing an error margin of 3–10% under high vertical loads. This model serves as a practical and valuable tool for assessing the stability of jack-up rigs in hard clay, providing critical insights for engineering design safety and risk assessment. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

30 pages, 10609 KB  
Article
Study on Seismic Performance of Asymmetric Rectangular Prefabricated Subway Station Structures in Soft Soil
by Yi Zhang, Tongwei Zhang, Shudong Zhou, Tao Du, Jinsheng Huang, Ming Zhang and Xun Cheng
Buildings 2025, 15(19), 3537; https://doi.org/10.3390/buildings15193537 - 1 Oct 2025
Abstract
With the continuous improvement of the prefabricated modular technology system, the prefabricated subway station structures are widely used in underground engineering projects. However, prefabricated subway stations in soft soil can suffer significant adverse effects under seismic action. In order to study the seismic [...] Read more.
With the continuous improvement of the prefabricated modular technology system, the prefabricated subway station structures are widely used in underground engineering projects. However, prefabricated subway stations in soft soil can suffer significant adverse effects under seismic action. In order to study the seismic performance of a prefabricated subway station, this work is based on an actual project of a subway station in soft soil. And the nonlinear static and dynamic coupling two-dimensional finite element models of cast-in-place structures (CIPs), assembly splicing structures (ASSs), and assembly monolithic structures (AMSs) are established, respectively. The soil-structure interaction is considered, and different peak ground accelerations (PGA) are selected for incremental dynamic analysis. The displacement response, internal force characteristics, and structural damage distribution for three structural forms are compared. The research results show that the inter-story displacement of the AMS is slightly greater than that of the CIP, while the inter-story displacement of the ASS is the largest. The CIP has the highest internal force in the middle column, the ASS has the lowest internal force in the middle column, and the AMS is between the two. The damage to the CIP is concentrated at the bottom of the middle column and sidewall. The AMS compression damage moves upward, but the tensile damage mode is similar to the CIP. The ASS can effectively reduce damage to the middle column and achieve redistribution of internal force. Further analysis shows that the joint splicing interface between cast-in-place and prefabricated components is the key to controlling the overall deformation and seismic performance of the structure. The research results can provide a theoretical basis for the seismic design optimization of subway stations in earthquake-prone areas. Full article
(This article belongs to the Section Building Structures)
27 pages, 3454 KB  
Article
Analysis and Design of Anchored Sheet-Pile Walls: Theoretical Comparisons, Experimental Validation, and Practical Procedures
by Eltayeb H. Onsa Elsadig, Tareg Abdalla Abdalla, Turki S. Alahmari, Dafalla A. El Turabi and Ahmed H. A. Yassin
Buildings 2025, 15(19), 3527; https://doi.org/10.3390/buildings15193527 - 1 Oct 2025
Abstract
Anchored sheet-pile walls (ASPWs) are widely used as earth-retaining structures in engineering practice. The difficulty in analyzing sheet piles arises because the loading on the wall is a function of the deformation of the soil and the sheet-pile configuration. This paper discusses the [...] Read more.
Anchored sheet-pile walls (ASPWs) are widely used as earth-retaining structures in engineering practice. The difficulty in analyzing sheet piles arises because the loading on the wall is a function of the deformation of the soil and the sheet-pile configuration. This paper discusses the predictions of different theoretical solutions for ASPWs, and it briefly presents and discusses four main theories of ASPWs: the two distribution theories, the finite element method, and Rowe’s theory. The effect of different influencing factors on the behavior and design of ASPWs is also examined. The above theoretical solutions are evaluated experimentally through measurements of strains, deflections, tie-rod force, and tie-rod yield on a small-scale sheet-pile model tested in a sandbox. The four theories provide an acceptable analytical solution for the ASPW problem under the given conditions. However, no theory fully predicts the behavior of ASPWs over the entire range of the different design parameters: soil conditions, sheet-pile flexibility, dredge depth, anchor location, and anchor yield. This paper proposes simple charts and tables for SPW design based on extrapolation between distribution theories while accounting for sheet pile flexibility and other influencing parameters. Illustrating examples for the proposed design procedure are provided. Full article
Show Figures

Figure 1

17 pages, 3143 KB  
Article
Investigation on Dewatering Scheme Optimization, Water Levels, and Support Layout Influences for Steel Sheet Pile Cofferdams
by Meng Xiao, Da-Shu Guan, Wen-Feng Zhang, Wei Chen, Xing-Ke Lin and Ming-Yang Zeng
Buildings 2025, 15(19), 3526; https://doi.org/10.3390/buildings15193526 - 1 Oct 2025
Abstract
Based on the steel sheet pile cofferdam project for the main bridge piers of a cross-sea bridge, finite element numerical simulations were conducted to analyze the influence of construction sequences in marine environments, as well as the effects of initial water levels and [...] Read more.
Based on the steel sheet pile cofferdam project for the main bridge piers of a cross-sea bridge, finite element numerical simulations were conducted to analyze the influence of construction sequences in marine environments, as well as the effects of initial water levels and support positions under various construction conditions on the stress and deformation behavior of steel sheet piles. Using a staged construction simulation with a Mohr–Coulomb soil model and stepwise activation of loads/excavation, this study delivers practically relevant trends: staged dewatering halves the sheet pile head displacement (top lateral movement <0.08 m vs. ~0.16 m in the original scheme) and mobilizes the support system earlier, while slightly increasing peak bending demand (~1800 kN·m) at the bracing elevation; the interaction between water head and brace elevation is explored through fitted response curves and summarized in figures/tables, and soil/structural properties are tabulated for reproducibility. The results indicate that a well-designed dewatering process, along with the coordination between water levels and internal support positions, plays a critical role in controlling deformation. The findings offer valuable references for the design and construction of sheet pile cofferdams in marine engineering under varying construction methods and water level conditions. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

18 pages, 4069 KB  
Article
Dynamic Response of Adjacent Tunnels to Deep Foundation Pit Excavation: A Numerical and Monitoring Data-Driven Case Study
by Shangyou Jiang, Wensheng Chen, Rulong Ma, Xinlei Lv, Fuqiang Sun and Zengle Ren
Appl. Sci. 2025, 15(19), 10570; https://doi.org/10.3390/app151910570 - 30 Sep 2025
Abstract
Urban deep excavations conducted near operational tunnels necessitate stringent deformation control. This study investigates the Baiyun Station excavation by employing a three-dimensional finite-element model based on the Hardening Soil Small-strain (HSS) constitutive law, calibrated using Phase I field monitoring data on wall deflection, [...] Read more.
Urban deep excavations conducted near operational tunnels necessitate stringent deformation control. This study investigates the Baiyun Station excavation by employing a three-dimensional finite-element model based on the Hardening Soil Small-strain (HSS) constitutive law, calibrated using Phase I field monitoring data on wall deflection, ground settlement, and tunnel displacement. Material parameters for the HSS model derived from the prior Phase I numerical simulation were held fixed and used to simulate the Phase II excavation, with peak errors of less than 5.8% for wall deflection and less than 2.9% for ground settlement. The model was subsequently applied to evaluate the impacts of Phase II excavation. The key contribution of this study is a monitoring-driven HSS modeling framework that integrates staged excavation simulation with field-based calibration, enabling quantitative assessment of tunnel responses—including settlement troughs, bow-shaped wall deflection patterns, and the distance-decay characteristics of lining displacement—to support structural safety evaluations and protective design measures. The results demonstrate that the predicted deformations and lining stresses in adjacent power and metro tunnels remain within permissible limits, offering practical guidance for excavation control in densely populated urban areas. Full article
Show Figures

Figure 1

25 pages, 11496 KB  
Article
Axial Force Analysis and Geometric Nonlinear Beam-Spring Finite Element Calculation of Micro Anti-Slide Piles
by Guoping Lei, Dongmei Yuan, Zexiong Wu and Feifan Liu
Buildings 2025, 15(19), 3498; https://doi.org/10.3390/buildings15193498 - 28 Sep 2025
Abstract
This study investigates the development of axial force in micro anti-slide piles under soil movement during slope stabilization. Axial force arises from two primary mechanisms: axial soil displacement (zs) and pile kinematics. The former plays a dominant role, producing either [...] Read more.
This study investigates the development of axial force in micro anti-slide piles under soil movement during slope stabilization. Axial force arises from two primary mechanisms: axial soil displacement (zs) and pile kinematics. The former plays a dominant role, producing either tensile or compressive axial force depending on the direction of zs, while the kinematically induced component remains consistently tensile. A sliding angle of α=5° represents an approximate transition point where these two effects balance each other. Furthermore, the two mechanisms exhibit distinct mobilization behaviors: zs-induced axial force mobilizes earlier than both bending moment and shear force, whereas kinematically induced axial force mobilizes significantly later. The study reveals two distinct pile–soil interaction mechanisms depending on proximity to the slip surface: away from the slip surface, axial soil resistance is governed by rigid cross-section translation, whereas near the slip surface, rotation-dominated displacement accompanied by soil–pile separation introduces significant complexity in predicting both the magnitude and direction of axial friction. A hyperbolic formulation was adopted to model both the lateral soil resistance relative to lateral pile–soil displacement (p-y behavior) and the axial frictional resistance relative to axial pile–soil displacement (t-z behavior). Soil resistance equations were derived to explicitly incorporate the effects of cross-sectional rotation and pile–soil separation. A novel beam-spring finite element method (BSFEM) that incorporates both geometric and material nonlinearities of the pile behavior was developed, using a soil displacement-driven solution algorithm. Validation against both numerical simulations and field monitoring data from an engineering application demonstrates the model’s effectiveness in capturing the distribution and evolution of axial deformation and axial force in micropiles under varying soil movement conditions. Full article
Show Figures

Figure 1

24 pages, 4922 KB  
Article
Spring-Based Soil–Structure Interaction Modeling of Pile–Abutment Joints in Short-Span Integral Abutment Bridges with LR and RSM
by Erkan Polat and Elifcan Göçmen Polat
Buildings 2025, 15(19), 3493; https://doi.org/10.3390/buildings15193493 - 27 Sep 2025
Abstract
Integral abutment bridges (IABs) are increasingly adopted in transportation infrastructure due to their durability, reduced maintenance needs, and cost-effectiveness compared to conventional bridges. However, their reliable performance under live loads is strongly influenced by the nonlinear soil–structure interaction (SSI) at the pile–abutment joint, [...] Read more.
Integral abutment bridges (IABs) are increasingly adopted in transportation infrastructure due to their durability, reduced maintenance needs, and cost-effectiveness compared to conventional bridges. However, their reliable performance under live loads is strongly influenced by the nonlinear soil–structure interaction (SSI) at the pile–abutment joint, which remains challenging to quantify using conventional analysis methods. This study develops simplified spring-based models to capture the SSI behavior of pile–abutment joints in short-span IABs. Predictive equations for joint rotation, deflection, moment, and shear are formulated using Linear Regression (LR) and Response Surface Methodology (RSM). Unlike prior studies relying solely on FEM or traditional p–y curves, the novelty of this work lies in deriving regression-based spring constants calibrated against FEM analyses, which can be directly implemented in standard structural software. This approach significantly reduces computational demands while maintaining predictive accuracy, enabling efficient assessment of pile contributions and global bridge response. Validation against finite element method (FEM) results confirms the reliability of the simplified models, with RSM outperforming LR in representing nonlinear parameter interactions. Full article
(This article belongs to the Special Issue Research on Soil–Structure Interaction for Civil Structures)
Show Figures

Figure 1

29 pages, 3536 KB  
Article
Water Demand and Conservation in Arid Urban Environments: Numerical Analysis of Evapotranspiration in Arizona
by Jaden Lu and Zbigniew J. Kabala
Water 2025, 17(19), 2835; https://doi.org/10.3390/w17192835 - 27 Sep 2025
Abstract
Water management in arid regions, such as Arizona, is critical due to increasing demands from the urban, agricultural, and recreational sectors. In this study, Finite element analysis software COMSOL Multiphysics (COMSOL 6.3) is used to quantify water demands in Chandler, Arizona. Evapotranspiration from [...] Read more.
Water management in arid regions, such as Arizona, is critical due to increasing demands from the urban, agricultural, and recreational sectors. In this study, Finite element analysis software COMSOL Multiphysics (COMSOL 6.3) is used to quantify water demands in Chandler, Arizona. Evapotranspiration from vegetation and pools is studied. Factors are divided into environmental (temperature, humidity, wind speed) and soil-related properties (moisture content, hydraulic conductivity), which are modeled and used to estimate annual water losses. This study represents the first comprehensive investigation of the usage across several main categories at Arizona. Results indicate that pools contribute 61% of surface water evaporation. Annual water demand in Chandler for 2024 peaks at 425,000 m3 in June, with irrigation for vegetation dominating consumption. Validation against experimental data confirms model accuracy. This simulation work aims to provide scalable insights for water management in arid urban environments. Based on the simulation, various solutions were proposed to reduce water consumption and minimize water loss. Some active measures include the optimization of irrigation time and frequency based on dynamic and real-time environmental conditions. The proposed solution can help minimize the water consumption while maintaining the water demands for plant life sustenance. Other passive measures include the modification of localized environmental conditions to reduce water evaporation. In particular, it was found that fence installation can significantly change the water vapor flow and distribution close to the water surface and suppress the water evaporation by simply lowering the wind speed right above the water surface. A logical takeaway is that evaporation would also decrease when pools are built with deeper water surfaces. Full article
Show Figures

Figure 1

28 pages, 3682 KB  
Article
Development of an Integrated 3D Simulation Model for Metro-Induced Ground Vibrations
by Omrane Abdallah, Mohammed Hussein and Jamil Renno
Infrastructures 2025, 10(9), 253; https://doi.org/10.3390/infrastructures10090253 - 21 Sep 2025
Viewed by 264
Abstract
This paper introduces a novel 3D simulation framework that integrates the Pipe-in-Pipe (PiP) model with Finite Element Analysis (FEA) using Ansys Parametric Design Language (APDL). This framework is designed to incorporate a 3D building model directly, assessing ground-borne vibrations from metro tunnels and [...] Read more.
This paper introduces a novel 3D simulation framework that integrates the Pipe-in-Pipe (PiP) model with Finite Element Analysis (FEA) using Ansys Parametric Design Language (APDL). This framework is designed to incorporate a 3D building model directly, assessing ground-borne vibrations from metro tunnels and their impact on surrounding structures. The PiP model efficiently calculates displacement fields around tunnels in full-space, applying the resulting fictitious forces to the FEA model, which includes a directly coupled 3D building model. This integration allows for precise simulation of vibration propagation through soil into buildings. A comprehensive verification test confirmed the model’s accuracy and reliability, demonstrating that the hybrid PiP-FEA model achieves significant computational savings-approximately 40% in time and 65% in memory usage-compared to the traditional full 3D FEA model. The results exhibit strong agreement between the PiP-FEA and full FEA models across a frequency range of 1–250 Hz, with less than 1% deviation, highlighting the effectiveness of the PiP-FEA approach in capturing the dynamic behavior of ground-borne vibrations. Additionally, the methodology developed in this paper extends beyond the specific case study presented and shows potential for application to various urban vibration scenarios. While the current validation is limited to numerical comparisons, future work will incorporate field data to further support the framework’s applicability under real metro-induced vibration conditions. Full article
(This article belongs to the Section Infrastructures and Structural Engineering)
Show Figures

Figure 1

16 pages, 2293 KB  
Article
Influence of Gas Explosions in Utility Tunnels on the Structural Safety of Overhead Pipelines
by Dai Wang, Jian Dong, Xuan Chen, Jianmei Du, Dawei Shu and Julita Krassowska
Buildings 2025, 15(18), 3391; https://doi.org/10.3390/buildings15183391 - 19 Sep 2025
Viewed by 300
Abstract
For the possible damage to overhead pipelines caused by gas explosions in utility tunnels, an overall three-dimensional finite-element model of utility tunnel–soil–pipeline is established, the overpressure loads are applied to the inner wall of the gas chamber in the utility tunnel, the dynamic [...] Read more.
For the possible damage to overhead pipelines caused by gas explosions in utility tunnels, an overall three-dimensional finite-element model of utility tunnel–soil–pipeline is established, the overpressure loads are applied to the inner wall of the gas chamber in the utility tunnel, the dynamic response laws of the utility tunnel and the pipeline are calculated and analyzed, and anti-explosion protection measures are proposed. The results show that the degree of damage to the pipe wall is determined by both the explosion-impacted area and the soil constraint. Under the same explosion-impacted area, the peak horizontal displacement of the monitoring point without soil constraint is 1.64 times that with soil constraint, and 1.29 times for the peak vertical displacement. The damage to the lower part of the pipeline is significantly greater than that to the upper part of the pipeline, and the damage to the pipeline decreases with an increase in the horizontal angle between the utility tunnel and the pipeline. The diameter deformation rates were 49% at α = 0° and 84% at α = 45°, with α = 90° showing the least damage. Therefore, it is suggested that the overhead pipeline is perpendicular to the utility tunnel. As the vertical distance between the utility tunnel and the pipeline increases, the diameter deformation rate and displacement of the pipeline both decrease, and when this distance is greater than 3 m, the influence on the pipeline significantly decreases. Therefore, it is recommended that the distance between the pipeline and the utility tunnel should be at least 3 m. In addition, the damage caused by gas explosions to the overhead pipeline can be reduced by reinforcing the gas chamber, using energy-absorbing materials around the utility tunnel, and setting up hollow piles between the utility tunnel and pipelines. Full article
Show Figures

Figure 1

23 pages, 3446 KB  
Article
Seismic Performance Evaluation of Low-Rise Reinforced Concrete Framed Buildings with Ready-to-Use Guidelines (RUD-NBC 205:2024) in Nepal
by Jhabindra Poudel, Prashidha Khatiwada and Subash Adhikari
CivilEng 2025, 6(3), 50; https://doi.org/10.3390/civileng6030050 - 18 Sep 2025
Viewed by 330
Abstract
Earthquakes remain among the most destructive natural hazards, causing severe loss of life and property in seismically active regions such as Nepal. Major events such as the 1934 Nepal–Bihar earthquake (Mw 8.2), the 2015 Gorkha earthquake (Mw 7.8), and the 2023 [...] Read more.
Earthquakes remain among the most destructive natural hazards, causing severe loss of life and property in seismically active regions such as Nepal. Major events such as the 1934 Nepal–Bihar earthquake (Mw 8.2), the 2015 Gorkha earthquake (Mw 7.8), and the 2023 Jajarkot earthquake (ML 6.4) have repeatedly exposed the vulnerability of Nepal’s built environment. In response, the Ready-to-Use Detailing (RUD) guideline (NBC 205:2024) was introduced to provide standardized structural detailing for low-rise reinforced concrete buildings without masonry infill, particularly for use in areas where access to professional engineering services is limited. This study was motivated by the need to critically assess the structural performance of buildings designed according to such rule-of-thumb detailing, which is widely applied through owner–builder practices. Nonlinear pushover analyses were carried out using finite element modelling for typical configurations on soil types C and D, under peak ground accelerations of 0.25 g, 0.30 g, 0.35 g, and 0.40 g. The response spectrum from NBC 105:2020 was adopted to determine performance points. The analysis focused on global response, capacity curves, storey drift, and hinge formation to evaluate structural resilience. The maximum story drift for the linear static analysis is found to be 0.56% and 0.86% for peak ground acceleration of 0.40 g, for both three and four-storied buildings. Also, from non-linear static analysis, it is found that almost all hinges formed in the beams and columns are in the Immediate Occupancy (IO) level. The findings suggest that the RUD guidelines are capable of providing adequate seismic performance for low-rise reinforced concrete buildings, given that the recommended material quality and construction standards are satisfied. Full article
Show Figures

Figure 1

20 pages, 2963 KB  
Article
Stability Enhancement of Road Embankments Using Geogrid and Jet Grouting: A Finite Element Approach for Sustainable Infrastructure
by Gultekin Aktas, Mehmet Salih Keskin, Senem Yılmaz Cetin, Mehmet Hayrullah Akyildiz and Veysel Saybak
Processes 2025, 13(9), 2965; https://doi.org/10.3390/pr13092965 - 17 Sep 2025
Viewed by 275
Abstract
This study presents a numerical analysis of a road embankment constructed over soft subsoil and reinforced with geogrids and jet grout columns to enhance stability and reduce deformation. The two-dimensional finite element software PLAXIS (PLAXIS 2D Version 2023.2) was employed to simulate both [...] Read more.
This study presents a numerical analysis of a road embankment constructed over soft subsoil and reinforced with geogrids and jet grout columns to enhance stability and reduce deformation. The two-dimensional finite element software PLAXIS (PLAXIS 2D Version 2023.2) was employed to simulate both the static and dynamic behavior of the system under real field conditions, utilizing geotechnical parameters obtained from in situ and laboratory tests. The unreinforced embankment exhibited significant vertical and lateral displacements, attributed to inadequate compaction and insufficient bearing capacity of the foundation soil. Finite element simulations were first used to replicate the observed field performance, confirming the accuracy of the modeling approach. Subsequently, reinforcement strategies involving the integration of jet grout columns and geogrid layers were analyzed to assess their effectiveness. The jet grout columns significantly improved subsoil stiffness, while the geogrid reinforcement contributed to the stabilization of embankment slopes. The results demonstrated a 220% increase in the safety factor and a 65% reduction in total settlement compared to the unreinforced case. Additionally, dynamic analysis revealed that while the embankment maintained marginal stability at a horizontal acceleration of 0.30 g, it failed under a 0.40 g seismic load. These findings highlight the critical role of combined reinforcement techniques and process-based modeling in ensuring not only the stability of road embankments on weak soils but also their contribution to sustainable infrastructure development through improved durability, resource efficiency, and extended service life. Full article
Show Figures

Figure 1

20 pages, 5389 KB  
Article
Diffusion Behavior of Polyurethane Slurry for Simultaneous Enhancement of Reservoir Strength and Permeability Through Splitting Grouting Technology
by Xiangzeng Wang, Fengsan Zhang, Jinqiao Wu, Siqi Qiang, Bing Li and Guobiao Zhang
Polymers 2025, 17(18), 2513; https://doi.org/10.3390/polym17182513 - 17 Sep 2025
Viewed by 274
Abstract
A polyurethane slurry was developed to simultaneously enhance the strength and permeability of geological formations, differing from the conventional fracture grouting used for soft-soil reinforcement. Injected via splitting grouting, the slurry cures to form high-strength, highly permeable channels that increase reservoir permeability while [...] Read more.
A polyurethane slurry was developed to simultaneously enhance the strength and permeability of geological formations, differing from the conventional fracture grouting used for soft-soil reinforcement. Injected via splitting grouting, the slurry cures to form high-strength, highly permeable channels that increase reservoir permeability while improving mechanical stability (dual-enhanced stimulation). To quantify its diffusion behavior and guide field application, we built a splitting-grouting model using the finite–discrete element method (FDEM), parameterized with the reservoir properties of coalbed methane (CBM) formations in the Ordos Basin and the slurry’s measured rheology and filtration characteristics. Considering the stratified structures within coal rock formed by geological deposition, this study utilizes Python code interacting with Abaqus to divide the coal seam into coal rock and natural bedding. We analyzed the effects of engineering parameters, geological factors, and bedding characteristics on slurry–vein propagation patterns, the stimulation extent, and fracturing pressure. The findings reveal that increasing the grouting rate from 1.2 to 3.6 m3/min enlarges the stimulated volume and the maximum fracture width and raises the fracturing pressure from 26.28 to 31.44 MPa. A lower slurry viscosity of 100 mPa·s promotes the propagation of slurry veins, making it easier to develop multiple veins. The bedding-to-coal rock strength ratio controls crossing versus layer-parallel growth: at 0.3, veins more readily penetrate bedding planes, whereas at 0.1 they preferentially spread along them. Raising the lateral pressure coefficient from 0.6 to 0.8 increases the likelihood of the slurry expanding along the beddings. Natural bedding structures guide directional flow; a higher bedding density (225 lines per 10,000 m3) yields greater directional deflection and a more intricate fracture network. As the angle of bedding increases from 10° to 60°, the slurry veins are more susceptible to directional changes. Throughout the grouting process, the slurry veins can undergo varying degrees of directional alteration. Under the studied conditions, both fracturing and compaction grouting modes are present, with fracturing grouting dominating in the initial stages, while compaction grouting becomes more prominent later on. These results provide quantitative guidance for designing dual-enhanced stimulation to jointly improve permeability and mechanical stability. Full article
(This article belongs to the Special Issue Polymer Fluids in Geology and Geotechnical Engineering)
Show Figures

Graphical abstract

25 pages, 1221 KB  
Article
Simulations of Drainage Flows with Topographic Shading and Surface Physics Inform Analytical Models
by Alex Connolly and Fotini Katopodes Chow
Atmosphere 2025, 16(9), 1091; https://doi.org/10.3390/atmos16091091 - 17 Sep 2025
Viewed by 192
Abstract
We perform large-eddy simulations (LESs) with realistic radiation, including topographic shading, and an advanced land surface model to investigate drainage flow dynamics in an idealized compound-slope mountain geometry. This allows an analysis not only of fully developed profiles in steady state—the subject of [...] Read more.
We perform large-eddy simulations (LESs) with realistic radiation, including topographic shading, and an advanced land surface model to investigate drainage flow dynamics in an idealized compound-slope mountain geometry. This allows an analysis not only of fully developed profiles in steady state—the subject of existing analytical solutions—but also of transient two- and three-dimensional dynamics. The evening onset of downslope flow is related to the duration of shadow front propagation along the eastern slopes, for which an analytic form is derived. We demonstrate that the flow response to this radiation pattern is mediated by the thermal inertia of the land through sensitivity to soil moisture. Onset timing differences on opposite sides of the peak are explained by convective structures that persist after sunset over the western slopes when topographic shading is considered. Although these preceding convective systems, as well as the presence of neighboring terrain, inhibit the initial development of drainage flows, the LES develops an approximately steady-state, fully developed flow over the finite slopes and finite nocturnal period. This allows a comparison to analytical models restricted to such cases. New analytical solutions based on surface heat flux boundary conditions, which can be estimated by the coupled land surface model, suggest the need for improved representation of the eddy diffusivity for analytical models of drainage flows. Full article
Show Figures

Graphical abstract

17 pages, 6085 KB  
Article
Experimental and Finite Element Investigation of Bond Strength of Earthen Mortar–Brick Interfaces in Historic Masonry Structures
by Tian Zhang, Jianyang Xue, Chenwei Wu, Yan Sui and Yuanshen Feng
Buildings 2025, 15(18), 3278; https://doi.org/10.3390/buildings15183278 - 11 Sep 2025
Viewed by 344
Abstract
This study aims to investigate the bond behavior at earthen mortar–brick interfaces in historic masonry structures. To that end, a series of combined compression–shear tests were conducted to systematically assess the influence of varying water–soil ratios and applied lateral compression on interfacial bond [...] Read more.
This study aims to investigate the bond behavior at earthen mortar–brick interfaces in historic masonry structures. To that end, a series of combined compression–shear tests were conducted to systematically assess the influence of varying water–soil ratios and applied lateral compression on interfacial bond behavior. A fully decoupled microscopic finite element (FE) framework employing cohesive elements was developed to simulate the bond strength of earthen mortar–brick interfaces and validated using Spearman correlation analysis. The results indicate that increasing lateral compression markedly enhances both the peak displacement and shear strength, although it also reduces inter-specimen correlation by 18%. Notably, even under high lateral compression, the finite element predictions maintained a strong correlation with experimental data (R = 0.86), with a maximum deviation of less than 5%, demonstrating the model’s capability to accurately simulate the bond behavior of loess earthen mortar in masonry. These findings provide essential data and a robust computational framework for the preventive conservation of historic masonry structures. Full article
(This article belongs to the Special Issue Structural Assessment and Strengthening of Masonry Structures)
Show Figures

Figure 1

Back to TopTop