Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (930)

Search Parameters:
Keywords = flexible display

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 6259 KB  
Article
Wind-Induced Bending Characteristics of Crop Leaves and Their Potential Applications in Air-Assisted Spray Optimization
by Zhouming Gao, Jing Ma, Wei Hu, Kaiyuan Wang, Kuan Liu, Jian Chen, Tao Wang, Xiaoya Dong and Baijing Qiu
Horticulturae 2025, 11(9), 1002; https://doi.org/10.3390/horticulturae11091002 - 23 Aug 2025
Viewed by 96
Abstract
Crop leaves naturally exhibit a curved morphology and primarily display bending deformation and vibrational responses under wind load. The curved surface structure of leaves plays a critical role in the deposition and retention of pesticide droplets. In this study, wind tunnel experiments combined [...] Read more.
Crop leaves naturally exhibit a curved morphology and primarily display bending deformation and vibrational responses under wind load. The curved surface structure of leaves plays a critical role in the deposition and retention of pesticide droplets. In this study, wind tunnel experiments combined with high-speed photography and digital image analysis were conducted to systematically investigate the curvature and flexibility distributions of three typical crop leaves: walnut, peach, and pepper, across a range of wind speeds. The results indicate that with increasing wind speed, all three types of leaves gradually transition from smooth, uniform bending to a multi-peak pattern of pronounced local curvature, with increasingly prominent nonlinear deformation characteristics. Moreover, once the wind speed exceeds the critical threshold of 6 m/s, the primary deformation region generally shifts from the leaf base to the tip. For example, the maximum curvature of walnut leaves increased from 0.018 mm−1 to 0.047 mm−1, and that of pepper leaves from 0.031 mm−1 to 0.101 mm−1, both more than double their original values. In addition, all three types of leaves demonstrated a distinct structural gradient characterized by strong basal rigidity and high apical flexibility. The tip flexibility values exceeded 1.5 × 10−5, 4 × 10−4, and 5.6 × 10−4 mm−2·mN−1 for walnut, peach, and pepper leaves, respectively. These findings elucidate the mechanical response mechanisms of non-uniform flexible crop leaves under wind-induced bending and provide a theoretical basis and data support for the optimization of air-assisted spraying parameters. Full article
(This article belongs to the Special Issue New Technologies Applied in Horticultural Crop Protection)
Show Figures

Figure 1

33 pages, 6314 KB  
Review
Gel-Type Electrofluorochromic Devices for Advanced Optoelectronic Applications
by Xuecheng Wang, Lijing Wen, Jinxia Ren, Yonghen Wen, Yonghua Li, Yizhou Zhang and Kenneth Yin Zhang
Gels 2025, 11(8), 673; https://doi.org/10.3390/gels11080673 - 21 Aug 2025
Viewed by 267
Abstract
Gel-type electrofluorochromic (EFC) devices, which reversibly modulate photoluminescence under electrical stimuli, have emerged as versatile platforms for advanced optoelectronic applications. By integrating redox-active luminophores with soft, ion-conductive gel matrices, these systems combine the structural robustness of solids with the ionic mobility of liquids, [...] Read more.
Gel-type electrofluorochromic (EFC) devices, which reversibly modulate photoluminescence under electrical stimuli, have emerged as versatile platforms for advanced optoelectronic applications. By integrating redox-active luminophores with soft, ion-conductive gel matrices, these systems combine the structural robustness of solids with the ionic mobility of liquids, enabling a high-contrast, flexible, and multifunctional operation. This review provides a comprehensive overview of gel-based EFC technologies, outlining fundamental working principles, device architectures, and key performance metrics such as contrast ratio, switching time, and cycling stability. Gel matrices are categorized into ionogels, organogels, and hydrogels, and their physicochemical properties are discussed in relation to EFC device performance. Recent advances are highlighted across applications ranging from flexible displays and rewritable electronic paper to strain and biosensors, data encryption, smart windows, and hybrid energy-interactive systems. Finally, current challenges and emerging strategies are analyzed to guide the design of next-generation adaptive, intelligent, and energy-efficient optoelectronic platforms. Full article
Show Figures

Graphical abstract

16 pages, 9656 KB  
Article
Diurnal Analysis of Nor’westers over Gangetic West Bengal as Observed from Weather Radar
by Bibraj Raj, Swaroop Sahoo, N. Puviarasan and V. Chandrasekar
Atmosphere 2025, 16(8), 989; https://doi.org/10.3390/atmos16080989 - 20 Aug 2025
Viewed by 168
Abstract
Intense thunderstorms known as Nor’westers develop in the Eastern and North Eastern parts of India and Bangladesh before the monsoon season (March to May). The associated severe weather can cause extensive damage to property and livestock. This study uses the pre-monsoon volumetric data [...] Read more.
Intense thunderstorms known as Nor’westers develop in the Eastern and North Eastern parts of India and Bangladesh before the monsoon season (March to May). The associated severe weather can cause extensive damage to property and livestock. This study uses the pre-monsoon volumetric data of S-band radar from 2013 to 2018 located in Kolkata to investigate the diurnal variation in the characteristics of the storms over Gangetic West Bengal. The cell initiation, echo top heights, maximum reflectivity, and core convective area are determined by using a flexible feature tracking algorithm (PyFLEXTRKR). The variation of the parameters in diurnal scale is examined from 211,503 individual cell tracks. The distribution of the severe weather phenomena based on radar based thresholds in spatial and temporal scale is also determined. The results show that new cell initiation peaks in the late evening and early morning, displaying bimodal variability. Most of these cells have a short lifespan of 0 to 3 h, with fewer than 5 percent of storms lasting beyond 3 h. The occurrence of hail is much greater in the afternoon due to intense surface heating than at other times. In contrast, the occurrence of lightning is higher in the late evening hours when the cell initiation reaches its peak. The convective rains are generally accompanied by lightning, exhibiting a similar diurnal temporal variability but are more widespread. The findings will assist operational weather forecasters in identifying locations that need targeted observation at certain times of the day to enhance the accuracy of severe weather nowcasting. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

27 pages, 4201 KB  
Article
Design and Kinematic and Dynamic Analysis Simulation of a Biomimetic Parallel Mechanism for Lumbar Rehabilitation Exoskeleton
by Chao Hou, Zhicheng Yin, Di Wu, Rui Qian, Yu Tian and Hongbo Wang
Machines 2025, 13(8), 728; https://doi.org/10.3390/machines13080728 - 16 Aug 2025
Viewed by 192
Abstract
Lumbar disc herniation is one of the primary causes of lower back pain, and its incidence has significantly increased with the development of industrialization. To assist in rehabilitation therapy, this paper proposes a flexible exoskeleton for active lumbar rehabilitation based on a 4-SPU/SP [...] Read more.
Lumbar disc herniation is one of the primary causes of lower back pain, and its incidence has significantly increased with the development of industrialization. To assist in rehabilitation therapy, this paper proposes a flexible exoskeleton for active lumbar rehabilitation based on a 4-SPU/SP biomimetic parallel mechanism. By analyzing the anatomical structure and movement mechanisms of the lumbar spine, a four degree of freedom parallel mechanism was designed to mimic the three-axis rotation of the lumbar spine around the coronal, sagittal, and vertical axes, as well as movement along the z-axis. Using a 3D motion capture system, data on the range of motion of the lumbar spine was obtained to guide the structural design of the exoskeleton. Using the vector chain method, the display equations for the drive joints of the mechanism were derived, and forward and inverse kinematic models were established and simulated to verify their accuracy. The dynamic characteristics of the biomimetic parallel mechanism were analyzed and simulated to provide a theoretical basis for the design of the exoskeleton control system. A prototype was fabricated and tested to evaluate its maximum range of motion and workspace. Experimental results showed that after wearing the exoskeleton, the lumbar spine’s range of motion could still reach over 83.5% of the state without the exoskeleton, and its workspace could meet the lumbar spine movement requirements for daily life, verifying the rationality and feasibility of the proposed 4-SPU/SP biomimetic parallel mechanism design. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

19 pages, 3620 KB  
Article
Multifaceted Nanocomposites Combining Phosphorylated PVA, MXene, and Cholesteric Liquid Crystal: Design and Application Insights
by Tăchiță Vlad-Bubulac, Diana Serbezeanu, Elena Perju, Dana Mihaela Suflet, Daniela Rusu, Gabriela Lisa, Tudor-Alexandru Filip and Marius-Andrei Olariu
Nanomaterials 2025, 15(16), 1251; https://doi.org/10.3390/nano15161251 - 14 Aug 2025
Viewed by 338
Abstract
In this study, composite films based on phosphorylated polyvinyl alcohol (PVA-P), Ti3C2Tx MXene, and cholesteryl acetate (ChLC) were designed and characterized to explore their potential in flexible electronic applications. The incorporation of phosphate groups and ChLC enhanced intermolecular [...] Read more.
In this study, composite films based on phosphorylated polyvinyl alcohol (PVA-P), Ti3C2Tx MXene, and cholesteryl acetate (ChLC) were designed and characterized to explore their potential in flexible electronic applications. The incorporation of phosphate groups and ChLC enhanced intermolecular interactions, as confirmed with FTIR spectroscopy. Morphological and optical analyses revealed a transition from homogeneous to phase-separated structures with birefringent textures in ChLC-rich films. Thermal studies demonstrated improved stability and increased glass transition and melting temperatures, particularly in samples with higher ChLC content. Mechanical and dielectric evaluations highlighted the tunability of stiffness, flexibility, permittivity, and dielectric losses depending on MXene and ChLC ratios. These multifunctional films exhibit flame-retardant behavior and show promise for use in stimuli-responsive, sustainable electronic devices such as flexible displays and sensors. Full article
Show Figures

Figure 1

20 pages, 5461 KB  
Article
Design and Implementation of a 3D Korean Sign Language Learning System Using Pseudo-Hologram
by Naeun Kim, HaeYeong Choe, Sukwon Lee and Changgu Kang
Appl. Sci. 2025, 15(16), 8962; https://doi.org/10.3390/app15168962 - 14 Aug 2025
Viewed by 223
Abstract
Sign language is a three-dimensional (3D) visual language that conveys meaning through hand positions, shapes, and movements. Traditional sign language education methods, such as textbooks and videos, often fail to capture the spatial characteristics of sign language, leading to limitations in learning accuracy [...] Read more.
Sign language is a three-dimensional (3D) visual language that conveys meaning through hand positions, shapes, and movements. Traditional sign language education methods, such as textbooks and videos, often fail to capture the spatial characteristics of sign language, leading to limitations in learning accuracy and comprehension. To address this, we propose a 3D Korean Sign Language Learning System that leverages pseudo-hologram technology and hand gesture recognition using Leap Motion sensors. The proposed system provides learners with an immersive 3D learning experience by visualizing sign language gestures through pseudo-holographic displays. A Recurrent Neural Network (RNN) model, combined with Diffusion Convolutional Recurrent Neural Networks (DCRNNs) and ProbSparse Attention mechanisms, is used to recognize hand gestures from both hands in real-time. The system is implemented using a server–client architecture to ensure scalability and flexibility, allowing efficient updates to the gesture recognition model without modifying the client application. Experimental results show that the system enhances learners’ ability to accurately perform and comprehend sign language gestures. Additionally, a usability study demonstrated that 3D visualization significantly improves learning motivation and user engagement compared to traditional 2D learning methods. Full article
Show Figures

Figure 1

23 pages, 436 KB  
Article
Carbon Reduction Impact of the Digital Economy: Infrastructure Thresholds, Dual Objectives Constraint, and Mechanism Optimization Pathways
by Shan Yan, Wen Zhong and Zhiqing Yan
Sustainability 2025, 17(16), 7277; https://doi.org/10.3390/su17167277 - 12 Aug 2025
Viewed by 237
Abstract
The synergistic advancement of “Digital China” and “Beautiful China” represents a pivotal national strategy for achieving high-quality economic development and a low-carbon transition. To illuminate the intrinsic mechanisms linking the digital economy (DE) to urban carbon emission performance (CEP), this study develops a [...] Read more.
The synergistic advancement of “Digital China” and “Beautiful China” represents a pivotal national strategy for achieving high-quality economic development and a low-carbon transition. To illuminate the intrinsic mechanisms linking the digital economy (DE) to urban carbon emission performance (CEP), this study develops a novel two-sector theoretical framework. Leveraging panel data from 278 Chinese prefecture-level cities (2011–2023), we employ a comprehensive evaluation method to gauge DE development and utilize calibrated nighttime light data with downscaling inversion techniques to estimate city-level CEP. Our empirical analysis integrates static panel fixed effects, panel threshold, and moderating effects models. Key findings reveal that the digital economy demonstrably enhances urban carbon emission performance, although this positive effect exhibits a threshold characteristic linked to the maturity of digital infrastructure; beyond a specific developmental stage, the marginal benefits diminish. Crucially, this enhancement operates primarily through the twin engines of fostering technological innovation and driving industrial structure upgrading, with the former playing a dominant role. The impact of DE on CEP displays significant heterogeneity, proving stronger in northern cities, resource-dependent cities, and those characterized by higher levels of inclusive finance or lower fiscal expenditure intensities. Furthermore, the effectiveness of DE in reducing carbon emissions is dynamically moderated by policy environments: flexible economic growth targets amplify its carbon reduction efficacy, while environmental target constraints, particularly direct binding mandates, exert a more pronounced moderating influence. This research provides crucial theoretical insights and actionable policy pathways for harmonizing the “Dual Carbon” goals with the overarching Digital China strategy. Full article
Show Figures

Figure 1

13 pages, 3182 KB  
Article
Improved Electrochemical Performance Using Transition Metal Doped ZnNi/Carbon Nanotubes as Conductive Additive in Li/CFx Battery
by Fangmin Wang, Jiayin Li, Yuxin Zheng, Xue Dong, Yuzhen Zhao, Zemin He, Manni Li, Lei Lin, Danyang He, Zongcheng Miao, Haibo Zhang, Hua Tan and Jianfeng Huang
Catalysts 2025, 15(8), 758; https://doi.org/10.3390/catal15080758 - 8 Aug 2025
Viewed by 419
Abstract
Lithium/carbon fluoride (Li/CFx) batteries are promising for specialized applications due to their high theoretical capacity (>865 mAh·g−1) and energy density. However, their practical deployment is hindered by the intrinsically low conductivity of CFx and sluggish reaction kinetics. While [...] Read more.
Lithium/carbon fluoride (Li/CFx) batteries are promising for specialized applications due to their high theoretical capacity (>865 mAh·g−1) and energy density. However, their practical deployment is hindered by the intrinsically low conductivity of CFx and sluggish reaction kinetics. While conventional conductive additives improve electron transport, their physical mixing with active materials yields weak interfacial contacts and fails to catalytically facilitate C–F bond cleavage. To address these dual limitations, this study proposes a dual-functional conductive-catalytic additive strategy. We engineered zinc-nickel/carbon nanotube (ZnNi/CNT) composites modified with transition metal dopants (Fe, W, Cu) to integrate conductive networks with nanoscale-dispersed catalytic sites. Fe-doped ZnNi/CNT (ZnFeNiC) emerged as the optimal system, delivering a discharge plateau of 2.45 V and a specific capacity of 810.3 mAh·g−1 at 0.1 C. This performance is attributed to Fe-doping accelerates Li+ diffusion, and promotes reversible Ni redox transitions (Ni2+↔Ni0) that catalyze C–F bond dissociation. This work establishes a design paradigm for high-performance Li/CFx batteries, bridging the gap between conductive enhancement and catalytic activation. Full article
Show Figures

Figure 1

13 pages, 1329 KB  
Article
The Complex Interaction Between the Sense of Presence, Movement Features, and Performance in a Virtual Reality Spatial Task: A Preliminary Study
by Tommaso Palombi, Andrea Chirico, Laura Mandolesi, Maurizio Mancini, Noemi Passarello, Erica Volta, Fabio Alivernini and Fabio Lucidi
Electronics 2025, 14(15), 3143; https://doi.org/10.3390/electronics14153143 - 7 Aug 2025
Viewed by 354
Abstract
The present study explores the innovative application of virtual reality (VR) in conducting the Radial Arm Maze (RAM) task, a performance-based test traditionally utilized for assessing spatial memory. This study aimed to develop a gamified version of the RAM implemented in immersive VR [...] Read more.
The present study explores the innovative application of virtual reality (VR) in conducting the Radial Arm Maze (RAM) task, a performance-based test traditionally utilized for assessing spatial memory. This study aimed to develop a gamified version of the RAM implemented in immersive VR and investigate the interaction between the sense of presence, movement features, and performance within the RAM. We developed software supporting a head-mounted display (HMD), addressing prior limitations in the scientific literature concerning user interaction, data collection accuracy, operational flexibility, and immersion level. This study involved a sample of healthy young adults who engaged with the immersive VR version of the RAM, examining the influence of VR experience variables (sense of presence, motion sickness, and usability) on RAM performance. Notably, it also introduced the collection and analysis of movement features within the VR environment to ascertain their impact on performance outcomes and their relationship with VR experience variables. The VR application developed is notable for its user-friendliness, adaptability, and integration capability with physiological monitoring devices, marking a significant advance in utilizing VR for cognitive assessments. Findings from our study underscore the importance of VR experience factors in RAM performance, highlighting how a heightened sense of presence can predict better performance, thereby emphasizing engagement and immersion as crucial for task success in VR settings. Additionally, this study revealed how movement parameters within the VR environment, specifically speed and directness, significantly influence RAM performance, offering new insights into optimizing VR experiences for enhanced task performance. Full article
(This article belongs to the Special Issue Augmented Reality, Virtual Reality, and 3D Reconstruction)
Show Figures

Figure 1

15 pages, 2361 KB  
Article
Galacto-Oligosaccharides Exert Bifidogenic Effects at Capsule-Compatible Ultra-Low Doses
by Lucien F. Harthoorn, Jasmine Heyse, Aurélien Baudot, Ingmar A. J. van Hengel and Pieter Van den Abbeele
Metabolites 2025, 15(8), 530; https://doi.org/10.3390/metabo15080530 - 5 Aug 2025
Viewed by 684
Abstract
Background: Prebiotics are selectively used by host microorganisms to promote health. Because effective prebiotic doses (1.5–30 g/day) often require inconvenient delivery formats, this study aims to explore whether capsule-compatible doses of galacto-oligosaccharides (GOS) can effectively modulate the gut microbiome. Methods: The impact of [...] Read more.
Background: Prebiotics are selectively used by host microorganisms to promote health. Because effective prebiotic doses (1.5–30 g/day) often require inconvenient delivery formats, this study aims to explore whether capsule-compatible doses of galacto-oligosaccharides (GOS) can effectively modulate the gut microbiome. Methods: The impact of Bimuno® GOS (Reading, UK) at 0.5, 0.75, 1.83, and 3.65 g on the adult gut microbiome was assessed using the ex vivo SIFR® technology (n = 8), a clinically validated, bioreactor-based technology. Results: The GOS were rapidly fermented and significantly increased beneficial Bifidobacterium species (B. adolescentis, B. bifidum, and B. longum), even at the lowest tested dose. In doing so, GOS strongly promoted SCFA production, particularly acetate (significant from 0.5 g) and butyrate (significant from 0.75 g). Gas production only mildly increased, likely as Bifidobacterium species do not produce gases. Based on the ability of the SIFR® technology to cultivate strictly anaerobic, hard-to-culture gut microbes, unlike in past in vitro studies, we elucidated that GOS also enriched specific Lachnospiraceae species. Besides Anaerobutyricum hallii, this included Bariatricus comes, Blautia species (B. massiliensis, Blautia_A, B. faecis), Oliverpabstia intestinalis, Mediterraneibacter faecis, and Fusicatenibacter species. Finally, GOS also promoted propionate (significant from 0.75 g), linked to increases in Phocaeicola vulgatus. Conclusions: GOS displayed prebiotic potential at capsule-compatible doses, offering greater flexibility in nutritional product formulation and consumer convenience. Notably, the strong response at the lowest dose suggests effective microbiome modulation at lower levels than previously expected. Full article
Show Figures

Graphical abstract

18 pages, 3939 KB  
Article
Transparent Alicyclic Polyimides Prepared via Copolymerization or Crosslinking: Enhanced Flexibility and Optical Properties for Flexible Display Cover Windows
by Hyuck-Jin Kwon, Jun Hwang, Suk-Min Hong and Chil Won Lee
Polymers 2025, 17(15), 2081; https://doi.org/10.3390/polym17152081 - 30 Jul 2025
Viewed by 500
Abstract
Transparent polyimides with excellent mechanical properties and high optical transmittance have been widely used in various optical and electrical applications. However, due to the rigidity of their aromatic structure, their flexibility is limited, making them unsuitable for applications requiring different form factors, such [...] Read more.
Transparent polyimides with excellent mechanical properties and high optical transmittance have been widely used in various optical and electrical applications. However, due to the rigidity of their aromatic structure, their flexibility is limited, making them unsuitable for applications requiring different form factors, such as flexible display cover windows. Furthermore, the refractive index of most transparent polyimides is approximately 1.57, which differs from that of the optically clear adhesives (OCAs) and window materials that have values typically around 1.5, resulting in visual distortion. This study employed 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 2,2′-bis(trifluoromethyl)benzidine (TFMB) as the base structure of polyimides (6T). Additionally, 1,3-bis(aminomethyl)cyclohexane (BAC) with a monocyclic structure and bis(aminomethyl)bicyclo[2,2,1]heptane (BBH) with a bicyclic structure were introduced as co-monomers or crosslinking agents to 6T. The mechanical, thermal, and optical properties of the obtained copolymers (6T-BAC and 6T-BBH series) and crosslinked polymers (6T-CL-BAC and 6T-CL-BBH series) were compared. Both the copolymer series (6T-BAC and 6T-BBH) and the crosslinked series (6T-CL-BAC and 6T-CL-BBH) exhibited improved optical properties compared to the conventional 6T, with maximum transmittance exceeding 90% and refractive indices ranging from approximately 1.53 to 1.55. Notably, the copolymer series achieved transmittance levels above 95% and exhibited lower refractive indices (~1.53), demonstrating superior optical performance relative not only to the 6T baseline but also to the crosslinked series. The alicyclic polyimides synthesized in this study exhibited mechanical flexibility, high optical transmittance, and a refractive index approaching 1.5, demonstrating their applicability for use as flexible display cover window materials. Full article
Show Figures

Graphical abstract

29 pages, 14906 KB  
Article
Hydrothermal Engineering of Ferroelectric PZT Thin Films Tailoring Electrical and Ferroelectric Properties via TiO2 and SrTiO3 Interlayers for Advanced MEMS
by Chun-Lin Li and Guo-Hua Feng
Micromachines 2025, 16(8), 879; https://doi.org/10.3390/mi16080879 - 29 Jul 2025
Viewed by 384
Abstract
This work presents an innovative hydrothermal approach for fabricating flexible piezoelectric PZT thin films on 20 μm titanium foil substrates using TiO2 and SrTiO3 (STO) interlayers. Three heterostructures (Ti/PZT, Ti/TiO2/PZT, and Ti/TiO2/STO/PZT) were synthesized to enable low-temperature [...] Read more.
This work presents an innovative hydrothermal approach for fabricating flexible piezoelectric PZT thin films on 20 μm titanium foil substrates using TiO2 and SrTiO3 (STO) interlayers. Three heterostructures (Ti/PZT, Ti/TiO2/PZT, and Ti/TiO2/STO/PZT) were synthesized to enable low-temperature growth and improve ferroelectric performance for advanced flexible MEMS. Characterizations including XRD, PFM, and P–E loop analysis evaluated crystallinity, piezoelectric coefficient d33, and polarization behavior. The results demonstrate that the multilayered Ti/TiO2/STO/PZT structure significantly enhances performance. XRD confirmed the STO buffer layer effectively reduces lattice mismatch with PZT to ~0.76%, promoting stable morphotropic phase boundary (MPB) composition formation. This optimized film exhibited superior piezoelectric and ferroelectric properties, with a high d33 of 113.42 pm/V, representing an ~8.65% increase over unbuffered Ti/PZT samples, and displayed more uniform domain behavior in PFM imaging. Impedance spectroscopy showed the lowest minimum impedance of 8.96 Ω at 10.19 MHz, indicating strong electromechanical coupling. Furthermore, I–V measurements demonstrated significantly suppressed leakage currents in the STO-buffered samples, with current levels ranging from 10−12 A to 10−9 A over ±3 V. This structure also showed excellent fatigue endurance through one million electrical cycles, confirming its mechanical and electrical stability. These findings highlight the potential of this hydrothermally engineered flexible heterostructure for high-performance actuators and sensors in advanced MEMS applications. Full article
(This article belongs to the Special Issue Manufacturing and Application of Advanced Thin-Film-Based Device)
Show Figures

Figure 1

16 pages, 2713 KB  
Article
Change in C, N, and P Characteristics of Hypericum kouytchense Organs in Response to Altitude Gradients in Karst Regions of SW China
by Yage Li, Chunyan Zhao, Jiajun Wu, Suyan Ba, Shuo Liu and Panfeng Dai
Plants 2025, 14(15), 2307; https://doi.org/10.3390/plants14152307 - 26 Jul 2025
Viewed by 224
Abstract
The environmental heterogeneity caused by altitude can lead to trade-offs in nutrient utilization and allocation strategies among plant organs; however, there is still a lack of research on the nutrient variation in the “flower–leaf–branch–fine root–soil” systems of native shrubs along altitude gradients in [...] Read more.
The environmental heterogeneity caused by altitude can lead to trade-offs in nutrient utilization and allocation strategies among plant organs; however, there is still a lack of research on the nutrient variation in the “flower–leaf–branch–fine root–soil” systems of native shrubs along altitude gradients in China’s unique karst regions. Therefore, we analyzed the carbon (C), nitrogen (N), and phosphorus (P) contents and their ratios in flowers, leaves, branches, fine roots, and surface soil of Hypericum kouytchense shrubs across 2200–2700 m altitudinal range in southwestern China’s karst areas, where this species is widely distributed and grows well. The results show that H. kouytchense organs had higher N content than both global and Chinese plant averages. The order of C:N:P value across plant organs was branches > fine roots > flowers > leaves. Altitude significantly affected the nutrient dynamics in plant organs and soil. With increasing altitude, P content in plant organs exhibited a significant concave pattern, leading to unimodal trends in the C:P of plant organs, as well as the N:P of leaves and fine roots. Meanwhile, plant organs except branches displayed significant homeostasis coefficients in C:P and fine root P, indicating a shift in H. kouytchense’s P utilization strategy from acquisitive-type to conservative-type. Strong positive relationships between plant organs and soil P and available P revealed that P was the key driver of nutrient cycling in H. kouytchense shrubs, enhancing plant organ–soil coupling relationships. In conclusion, H. kouytchense demonstrates flexible adaptability, suggesting that future vegetation restoration and conservation management projects in karst ecosystems should consider the nutrient adaptation strategies of different species, paying particular attention to P utilization. Full article
(This article belongs to the Special Issue Plant Functional Diversity and Nutrient Cycling in Forest Ecosystems)
Show Figures

Figure 1

14 pages, 4216 KB  
Article
Redox-Active Anthraquinone-1-Sulfonic Acid Sodium Salt-Loaded Polyaniline for Dual-Functional Electrochromic Supercapacitors
by Yi Wang, Enkai Lin, Ze Wang, Tong Feng and An Xie
Gels 2025, 11(8), 568; https://doi.org/10.3390/gels11080568 - 23 Jul 2025
Viewed by 320
Abstract
Electrochromic (EC) devices are gaining increasing attention for next-generation smart windows and low-power displays due to their reversible color modulation, low operating voltage, and flexible form factors. Recently, electrochromic energy storage devices (EESDs) have emerged as a promising class of multifunctional systems, enabling [...] Read more.
Electrochromic (EC) devices are gaining increasing attention for next-generation smart windows and low-power displays due to their reversible color modulation, low operating voltage, and flexible form factors. Recently, electrochromic energy storage devices (EESDs) have emerged as a promising class of multifunctional systems, enabling simultaneous energy storage and real-time visual monitoring. In this study, we report a flexible dual-functional EESD constructed using polyaniline (PANI) films doped with anthraquinone-1-sulfonic acid sodium salt (AQS), coupled with a redox-active PVA-based gel electrolyte also incorporating AQS. The incorporation of AQS into both the polymer matrix and the gel electrolyte introduces synergistic redox activity, facilitating bidirectional Faradaic reactions at the film–electrolyte interface and within the bulk gel phase. The resulting vertically aligned PANI-AQS nanoneedle films provide high surface area and efficient ion pathways, while the AQS-doped gel electrolyte contributes to enhanced ionic conductivity and electrochemical stability. The device exhibits rapid and reversible color switching from light green to deep black (within 2 s), along with a high areal capacitance of 194.2 mF·cm−2 at 1 mA·cm−2 and 72.1% capacitance retention over 5000 cycles—representing a 31.5% improvement over undoped systems. These results highlight the critical role of redox-functionalized gel electrolytes in enhancing both the energy storage and optical performance of EESDs, offering a scalable strategy for multifunctional, gel-based electrochemical systems in wearable and smart electronics. Full article
(This article belongs to the Special Issue Smart Gels for Sensing Devices and Flexible Electronics)
Show Figures

Graphical abstract

15 pages, 6089 KB  
Article
Molecular Fingerprint of Cold Adaptation in Antarctic Icefish PepT1 (Chionodraco hamatus): A Comparative Molecular Dynamics Study
by Guillermo Carrasco-Faus, Valeria Márquez-Miranda and Ignacio Diaz-Franulic
Biomolecules 2025, 15(8), 1058; https://doi.org/10.3390/biom15081058 - 22 Jul 2025
Viewed by 295
Abstract
Cold environments challenge the structural and functional integrity of membrane proteins, requiring specialized adaptations to maintain activity under low thermal energy. Here, we investigate the molecular basis of cold tolerance in the peptide transporter PepT1 from the Antarctic icefish (Chionodraco hamatus, [...] Read more.
Cold environments challenge the structural and functional integrity of membrane proteins, requiring specialized adaptations to maintain activity under low thermal energy. Here, we investigate the molecular basis of cold tolerance in the peptide transporter PepT1 from the Antarctic icefish (Chionodraco hamatus, ChPepT1) using molecular dynamics simulations, binding free energy calculations (MM/GBSA), and dynamic network analysis. We compare ChPepT1 to its human ortholog (hPepT1), a non-cold-adapted variant, to reveal key features enabling psychrophilic function. Our simulations show that ChPepT1 displays enhanced global flexibility, particularly in domains adjacent to the substrate-binding site and the C-terminal domain (CTD). While hPepT1 loses substrate binding affinity as temperature increases, ChPepT1 maintains stable peptide interactions across a broad thermal range. This thermodynamic buffering results from temperature-sensitive rearrangement of hydrogen bond networks and more dynamic lipid interactions. Importantly, we identify a temperature-responsive segment (TRS, residues 660–670) within the proximal CTD that undergoes an α-helix to coil transition, modulating long-range coupling with transmembrane helices. Dynamic cross-correlation analyses further suggest that ChPepT1, unlike hPepT1, reorganizes its interdomain communication in response to temperature shifts. Our findings suggest that cold tolerance in ChPepT1 arises from a combination of structural flexibility, resilient substrate binding, and temperature-sensitive interdomain dynamics. These results provide new mechanistic insight into thermal adaptation in membrane transporters and offer a framework for engineering proteins with enhanced functionality in extreme environments. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

Back to TopTop