Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,638)

Search Parameters:
Keywords = flow characteristic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 9541 KB  
Article
Numerical Investigation of Wet Coke Particles Drying in a Silo Dryer Using CFD-DEM Simulation
by Peng Zhou, Yiliu Wu, Jiaxin Cui and Dianyu E
Processes 2025, 13(10), 3164; https://doi.org/10.3390/pr13103164 (registering DOI) - 4 Oct 2025
Abstract
Coke is an essential raw material in the blast furnace (BF) ironmaking process. Its moisture content significantly impacts BF ironmaking production. This study employs a coupled Computational Fluid Dynamics–Discrete Element Method (CFD-DEM) approach to simulate the drying process of wet coke within a [...] Read more.
Coke is an essential raw material in the blast furnace (BF) ironmaking process. Its moisture content significantly impacts BF ironmaking production. This study employs a coupled Computational Fluid Dynamics–Discrete Element Method (CFD-DEM) approach to simulate the drying process of wet coke within a coke silo (CS) dryer. Initially, the model was validated by comparing numerical results with experimental data from the literature. Subsequently, it investigated the gas flow dynamics, heat and mass transfer characteristics, and differences in drying behaviour across distinct dryer zones. Finally, the effects of inlet gas velocity and inlet gas temperature on the drying process were systematically quantified. Simulation results reveal that the bottom of the CS dryer exhibits a low-velocity laminar state, while the middle and upper regions display intense gas flow motion. Consequently, the bottom region exhibits insufficient particle drying in comparison to other zones, with the average particle moisture content decreasing by less than 20%. Under the continuous heat exchange between the hot gas and the particles, the moisture content of the particles decreases rapidly. Based on the drying rate behaviour, the drying process exhibits the following three different stages: the pre-heating period, the constant-rate period, and the falling-rate period. Compared to zones 1 and 3, zone 2 exhibits higher temperatures due to its high heat transfer efficiency, which significantly promotes a reduction in particle moisture content. An increase in inlet gas velocity enhances the particle drying rate and heat flux, accelerates moisture reduction, and raises the temperature. The impact of inlet gas velocity is most pronounced after the constant-rate period, with particle drying uniformity decreasing as the inlet gas velocity increases, consequently leading to a decline in drying quality. Increasing inlet gas temperature significantly increases particle temperature and heat flux throughout the drying period and accelerates the high-rate drying stage. These findings provide fundamental insights for further understanding and studying the coke drying process. Full article
(This article belongs to the Section Particle Processes)
Show Figures

Figure 1

19 pages, 3706 KB  
Article
Microstructural Comparison of the Mineralization Within Borsec and Tusnad Public Springs
by Simona Elena Avram, Lucian Barbu Tudoran, Gheorghe Borodi and Ioan Petean
Water 2025, 17(19), 2892; https://doi.org/10.3390/w17192892 (registering DOI) - 4 Oct 2025
Abstract
Mineral water content strongly depends on the geologic layer characteristics. Therefore, the aim of the present study is to make a comparison between two renowned mineral water sources in Romania, Borsec and Tusnad. Two public springs were selected from each location: Boldizsar (about [...] Read more.
Mineral water content strongly depends on the geologic layer characteristics. Therefore, the aim of the present study is to make a comparison between two renowned mineral water sources in Romania, Borsec and Tusnad. Two public springs were selected from each location: Boldizsar (about 6600 L/day) and Lazar (about 500 L/day) from Borsec and Mikes (about 5000 L/day) and Young’s spring (about 600 L/day) from Tusnad. All investigated springs are naturally carbonated. Water properties were measured in situ and in laboratory for the collected samples; the results found that Borsec mineral water has a pH of about 7.5, while Tusnad mineral water is slightly acid (pH = 6.5). TDS strongly depends on the spring’s flow (for instance, Boldizsar has a TDS of about 900 mg/L, while Lazar has a TDS of about 1529 mg/L due to its high mineralization, while Young’s spring has a TDS of 165 mg/L due to its low mineralization, although it has low flow). Borsec mineral water has a lower salinity of about 1.22 PSU, while Tusnad water has a salinity of about 2 PSU, caused by a high amount of Na and Fe ions. Mineral waters dissolve ions from the geological layers, which react with carbonic acid during drying, generating specific crystallized compounds. The crystallized matter was investigated using XRD coupled with mineralogical optical microscopy (MOM); their microstructural features were observed using SEM coupled with elemental spectroscopy. Borsec water generates mainly Ca, Mg, and Na minerals like calcite, aragonite, pseudo-dolomite, natron, and traces of halite. Tusnad mineral waters have significant amounts of Ca, but also have Fe and much more Cl, since calcite and aragonite are mixed up with large amounts of halite and iron compounds. It looks like the presence of iron ions in the Tusnad mineral water collected from Mikes and Young’s spring explains the acidic pH. All these aspects are useful for further investigation regarding specific therapeutic purposes like chronic colitis and biliary lithiasis symptom amelioration (Boldizsar), chronic colitis, and enterocolitis symptoms (Lazar). Tusnad waters, like the water from Mikes spring, are recommended for anemia and neurasthenia, while Young’s spring is recommended for renal lithiasis amelioration. Full article
Show Figures

Figure 1

13 pages, 2827 KB  
Article
The Mechanism of Casing Perforation Erosion Under Fracturing-Fluid Flow: An FSI and Strength Criteria Study
by Hui Zhang and Chengwen Wang
Modelling 2025, 6(4), 121; https://doi.org/10.3390/modelling6040121 (registering DOI) - 4 Oct 2025
Abstract
High-pressure, high-volume fracturing in unconventional reservoirs often induces perforation erosion damage, endangering operational safety. This paper employs fluid–solid coupling theory to analyze the flow characteristics of fracturing fluid inside the casing during fracturing. Combined with strength theory, the stress distribution and variation law [...] Read more.
High-pressure, high-volume fracturing in unconventional reservoirs often induces perforation erosion damage, endangering operational safety. This paper employs fluid–solid coupling theory to analyze the flow characteristics of fracturing fluid inside the casing during fracturing. Combined with strength theory, the stress distribution and variation law are investigated, revealing the mechanical mechanism of casing perforation erosion damage. The results indicate that the structural discontinuity at the entrance of the perforation tunnel causes an increase in fracturing-fluid velocity, and this is where the most severe erosion happens. The stress around the perforation is symmetrically distributed along the perforation axis. The casing inner wall experiences a combined tensile–compressive stress state, while non-perforated regions are under pure tensile stress, with the maximum amplitudes occurring in the 90° and 270° directions. Although the tensile and compressive stress do not exceed the material’s allowable stress, the shear stress exceeds the allowable shear stress, indicating that shear stress failure is likely to initiate at the perforation, inducing erosion. Moreover, under the impact of fracturing fluid, the contact forces at the first and second interfaces of the casing are unevenly distributed, reducing cement bonding capability and compromising casing integrity. The findings provide a theoretical basis for optimizing casing selection. Full article
19 pages, 1292 KB  
Review
Ricin and Abrin in Biosecurity: Detection Technologies and Strategic Responses
by Wojciech Zajaczkowski, Ewelina Bojarska, Elwira Furtak, Michal Bijak, Rafal Szelenberger, Marcin Niemcewicz, Marcin Podogrocki, Maksymilian Stela and Natalia Cichon
Toxins 2025, 17(10), 494; https://doi.org/10.3390/toxins17100494 - 3 Oct 2025
Abstract
Plant-derived toxins such as ricin and abrin represent some of the most potent biological agents known, posing significant threats to public health and security due to their high toxicity, relative ease of extraction, and widespread availability. These ribosome-inactivating proteins (RIPs) have been implicated [...] Read more.
Plant-derived toxins such as ricin and abrin represent some of the most potent biological agents known, posing significant threats to public health and security due to their high toxicity, relative ease of extraction, and widespread availability. These ribosome-inactivating proteins (RIPs) have been implicated in politically and criminally motivated events, underscoring their critical importance in the context of biodefense. Public safety agencies, including law enforcement, customs, and emergency response units, require rapid, sensitive, and portable detection methods to effectively counteract these threats. However, many existing screening technologies lack the capability to detect biotoxins unless specifically designed for this purpose, revealing a critical gap in current biodefense preparedness. Consequently, there is an urgent need for robust, field-deployable detection platforms that operate reliably under real-world conditions. End-users in the security and public health sectors demand analytical tools that combine high specificity and sensitivity with operational ease and adaptability. This review provides a comprehensive overview of the biochemical characteristics of ricin and abrin, their documented misuse, and the challenges associated with their detection. Furthermore, it critically assesses key detection platforms—including immunoassays, mass spectrometry, biosensors, and lateral flow assays—focusing on their applicability in operational environments. Advancing detection capabilities within frontline services is imperative for effective prevention, timely intervention, and the strengthening of biosecurity measures. Full article
Show Figures

Figure 1

14 pages, 1868 KB  
Article
Characteristic Analysis of Boiling Heat Transfer of R32 Refrigerant and Modeling Study of Heat Exchanger
by Bo Yu, Chenjie Zhou, Wenxiao Chu and Yuye Luo
Energies 2025, 18(19), 5258; https://doi.org/10.3390/en18195258 - 3 Oct 2025
Abstract
This study experimentally investigates the boiling heat transfer characteristics of R32 and R410A refrigerants in heat exchangers, systematically analyzing the effects of tube thickness, saturation temperature, latent heat, liquid-phase density, and viscosity. The average boiling heat transfer coefficients (HTCs) of R32 and R410A [...] Read more.
This study experimentally investigates the boiling heat transfer characteristics of R32 and R410A refrigerants in heat exchangers, systematically analyzing the effects of tube thickness, saturation temperature, latent heat, liquid-phase density, and viscosity. The average boiling heat transfer coefficients (HTCs) of R32 and R410A were compared across varying mass flow rates and saturation temperatures. The results reveal that, independent of tube thickness, the boiling HTC of R32 exhibits a non-monotonic increase followed by a decrease with rising mass flow rate. Additionally, elevated saturation temperatures reduced vaporization latent heat, liquid-phase density, and gas-phase viscosity, while the flow pattern may also change. Meanwhile, R32 demonstrated superior boiling heat transfer performance compared to R410A under equivalent conditions. Furthermore, the correlation is proposed to predict the HTCs, indicating ±10% prediction error. This study provides critical insights for optimizing refrigeration systems and advancing heat exchanger modeling frameworks. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

24 pages, 4192 KB  
Article
Investigation on Dynamic Thermal Transfer Characteristics of Electromagnetic Rail Spray Cooling in Transient Processes
by Shuo Ma and Hongting Ma
Energies 2025, 18(19), 5254; https://doi.org/10.3390/en18195254 - 3 Oct 2025
Abstract
Electromagnetic Railguns Face Severe Ablation and Melting Risks Due to Extremely High Transient Thermal Loads During High-Speed Launching, Directly Impacting Launch Reliability and Service Life. To address this thermal management challenge, this study proposes and validates the effectiveness of spray cooling technology. Leveraging [...] Read more.
Electromagnetic Railguns Face Severe Ablation and Melting Risks Due to Extremely High Transient Thermal Loads During High-Speed Launching, Directly Impacting Launch Reliability and Service Life. To address this thermal management challenge, this study proposes and validates the effectiveness of spray cooling technology. Leveraging its high heat transfer coefficient, exceptional critical heat flux (CHF) carrying capacity, and strong transient cooling characteristics, it is particularly suitable for the unsteady thermal control during the initial launch phase. An experimental platform was established, and a three-dimensional numerical model was developed to systematically analyze the dynamic influence mechanisms of nozzle inlet pressure, flow rate, spray angle, and spray distance on cooling performance. Experimental results indicate that the system achieves maximum critical heat flux (CHF) and rail temperature drop at an inlet pressure of 0.5 MPa and a spray angle of 0°. Numerical simulations further reveal that a 45° spray cone angle simultaneously achieves the maximum temperature drop and optimal wall temperature uniformity. Key parameter sensitivity analysis demonstrates that while increasing spray distance leads to larger droplet diameters, the minimal droplet velocity decay combined with a significant increase in overall momentum markedly enhances convective heat transfer efficiency. Concurrently, increasing spray distance effectively improves rail surface temperature uniformity by optimizing the spatial distribution of droplet size and velocity. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

20 pages, 3033 KB  
Review
Particle-Laden Two-Phase Boundary Layer: A Review
by Aleksey Yu. Varaksin and Sergei V. Ryzhkov
Aerospace 2025, 12(10), 894; https://doi.org/10.3390/aerospace12100894 - 2 Oct 2025
Abstract
The presence of solid particles (or droplets) in a flow leads to a significant increase in heat fluxes, the occurrence of chemical reactions, and erosive surface wear of various aircraft moving in the dusty (or rainy) atmosphere of Earth or Mars. A review [...] Read more.
The presence of solid particles (or droplets) in a flow leads to a significant increase in heat fluxes, the occurrence of chemical reactions, and erosive surface wear of various aircraft moving in the dusty (or rainy) atmosphere of Earth or Mars. A review of computational, theoretical, and experimental work devoted to the study of the characteristics of the boundary layers (BL) of gas with solid particles was performed. The features of particle motion in laminar and turbulent boundary layers, as well as their inverse effect on gas flow, are considered. Available studies on the stability of the laminar boundary layer and the effect of particles on the laminar–turbulent transition are analyzed. At the end of the review, conclusions are drawn, and priorities for future research are discussed. Full article
(This article belongs to the Special Issue Fluid Flow Mechanics (4th Edition))
Show Figures

Figure 1

29 pages, 4258 KB  
Article
A Risk-Averse Data-Driven Distributionally Robust Optimization Method for Transmission Power Systems Under Uncertainty
by Mehrdad Ghahramani, Daryoush Habibi and Asma Aziz
Energies 2025, 18(19), 5245; https://doi.org/10.3390/en18195245 - 2 Oct 2025
Abstract
The increasing penetration of renewable energy sources and the consequent rise in forecast uncertainty have underscored the need for robust operational strategies in transmission power systems. This paper introduces a risk-averse, data-driven distributionally robust optimization framework that integrates unit commitment and power flow [...] Read more.
The increasing penetration of renewable energy sources and the consequent rise in forecast uncertainty have underscored the need for robust operational strategies in transmission power systems. This paper introduces a risk-averse, data-driven distributionally robust optimization framework that integrates unit commitment and power flow constraints to enhance both reliability and operational security. Leveraging advanced forecasting techniques implemented via gradient boosting and enriched with cyclical and lag-based time features, the proposed methodology forecasts renewable generation and demand profiles. Uncertainty is quantified through a quantile-based analysis of forecasting residuals, which forms the basis for constructing data-driven ambiguity sets using Wasserstein balls. The framework incorporates comprehensive network constraints, power flow equations, unit commitment dynamics, and battery storage operational constraints, thereby capturing the intricacies of modern transmission systems. A worst-case net demand and renewable generation scenario is computed to further bolster the system’s risk-averse characteristics. The proposed method demonstrates the integration of data preprocessing, forecasting model training, uncertainty quantification, and robust optimization in a unified environment. Simulation results on a representative IEEE 24-bus network reveal that the proposed method effectively balances economic efficiency with risk mitigation, ensuring reliable operation under adverse conditions. This work contributes a novel, integrated approach to enhance the reliability of transmission power systems in the face of increasing uncertainty. Full article
Show Figures

Figure 1

20 pages, 2011 KB  
Article
Research on Optimization Method of Operating Parameters for Electric Submersible Pumps Based on Multiphase Flow Fitting
by Mingchun Wang, Xinrui Zhang, Yuchen Ji, Yupei Liu, Tianhao Wang, Zixiao Xing, Guoqing Han and Yinmingze Sun
Processes 2025, 13(10), 3156; https://doi.org/10.3390/pr13103156 - 2 Oct 2025
Abstract
Electric submersible pumps (ESPs) are among the most widely used artificial lifting systems, and their operational stability is crucial to the production capacity and lifespan of oil wells. However, during the operation of ESP systems, they often face complex flow issues such as [...] Read more.
Electric submersible pumps (ESPs) are among the most widely used artificial lifting systems, and their operational stability is crucial to the production capacity and lifespan of oil wells. However, during the operation of ESP systems, they often face complex flow issues such as gas lock and insufficient liquid carry. Traditional control strategies relying on liquid level monitoring and electrical parameter alarms exhibit obvious latency, making it difficult to effectively guide the adjustments of key operating parameters such as pump frequency, valve opening, and on/off strategies. To monitor the flow state of ESP systems and optimize it in a timely manner, this paper proposes an innovative profile recognition method based on multiphase flow fitting in the wellbore, aimed at reconstructing the flow state at the pump’s intake. This method identifies flow abnormalities and, in conjunction with flow characteristics, designs targeted operating parameter optimization logic to enhance the stability and efficiency of ESP systems. Research shows that this optimization method can significantly improve the pump’s operational performance, reduce failure rates, and extend equipment lifespan, thus providing an effective solution for optimizing production in electric pump wells. Additionally, this method holds significant importance for enhancing oil well production efficiency and economic benefits, providing a scientific theoretical foundation and practical guidance for future oil and gas exploration and management. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

12 pages, 1302 KB  
Article
Construction and Characterization of Immortalized Skin Fibroblasts from Milu Deer
by Pan Zhang, Riujia Liu, Zhenyu Zhong, Yunfang Shan, Zhibin Cheng, Qingyun Guo, Hao Zhang, Frank Hailer and Jiade Bai
Animals 2025, 15(19), 2889; https://doi.org/10.3390/ani15192889 - 2 Oct 2025
Abstract
Somatic cell preservation is an effective strategy for conserving the genetic potential of endangered species. To contribute to the conservation of the Milu deer (Elaphurus davidianus), this study aimed to establish and characterize an immortalized skin fibroblast cell line (ML-iSFC). The [...] Read more.
Somatic cell preservation is an effective strategy for conserving the genetic potential of endangered species. To contribute to the conservation of the Milu deer (Elaphurus davidianus), this study aimed to establish and characterize an immortalized skin fibroblast cell line (ML-iSFC). The cell line is based on fibroblasts from the skin tissue of a male fawn of Milu deer. Optimal culture conditions were determined by supplementing the culture medium with different growth factors, and immortalization was achieved through simian virus 40 large T antigen (SV40T) transduction. Optimal culturing conditions for the cells were determined by adding a range of growth factors. The cellular morphology, growth characteristics, and marker expression of the cells were further evaluated. Cell cycle and proliferation were assessed by flow cytometry and CCK-8 assays, respectively. Chromosomes were determined by karyotype analysis. The highest cell growth rate was observed when the culture medium was supplemented with 3 ng/mL of FGF2. The fibroblast-specific marker vimentin (VIM) was expressed in both ML-SFC and ML-iSFC, while the epithelial marker keratin 18 (KRT18) was weakly expressed in ML-SFC cells. Cell proliferation and cell-cycle analysis revealed that ML-iSFC exhibited a higher growth rate and greater vitality compared to ML-SFC. Karyotype analysis showed that ML-iSFC maintained the same chromosome number and morphology as ML-SFC. In summary, this study reports the successful construction of an immortalized fibroblast cell line from Milu deer, which will serve as a valuable tool for Milu deer conservation. Full article
(This article belongs to the Section Animal Genetics and Genomics)
20 pages, 10430 KB  
Article
Modeling of Roughness Effects on Generic Gas Turbine Swirler via a Detached Eddy Simulation Low-y+ Approach
by Robin Vivoli, Daniel Pugh, Burak Goktepe and Philip J. Bowen
Energies 2025, 18(19), 5240; https://doi.org/10.3390/en18195240 - 2 Oct 2025
Abstract
The use of additive manufacturing (AM) has seen increased utilization over the last decade, thanks to well-documented advantages such as lower startup costs, reduced wastage, and the ability to rapidly prototype. The poor surface finish of unprocessed AM components is one of the [...] Read more.
The use of additive manufacturing (AM) has seen increased utilization over the last decade, thanks to well-documented advantages such as lower startup costs, reduced wastage, and the ability to rapidly prototype. The poor surface finish of unprocessed AM components is one of the major drawbacks of this technology, with the research literature suggesting a measurable impact on flow characteristics and burner operability. For instance, surface roughness has been shown to potentially increase resistance to boundary layer flashback—an area of high concern, particularly when utilizing fuels with high hydrogen content. A more detailed understanding of the underlying thermophysical mechanisms is, therefore, required. Computational fluid dynamics can help elucidate the impact of these roughness effects by enabling detailed data interrogation in locations not easily accessible experimentally. In this study, roughness effects on a generic gas turbine swirler were numerically modeled using a low-y+ detached eddy simulation (DES) approach. Three DES models were investigated utilizing a smooth reference case and two rough cases, the latter employing a literature-based and novel equivalent sand-grain roughness (ks) correlation developed for this work. Existing experimental isothermal and CH4 data were used to validate the numerical simulations. Detailed investigations into the effects of roughness on flow characteristics, such as swirl number and recirculation zone position, were subsequently performed. The results show that literature-based ks correlations are unsuitable for the current application. The novel correlation yields more promising outcomes, though its effectiveness depends on the chosen turbulence model. Moreover, it was demonstrated that, for identical ks values, while trends remained consistent, the extent to which they manifested differed under reacting and isothermal conditions. Full article
(This article belongs to the Special Issue Science and Technology of Combustion for Clean Energy)
Show Figures

Figure 1

16 pages, 3568 KB  
Article
Delineation and Application of Gas Geological Units for Optimized Large-Scale Gas Drainage in the Baode Mine
by Shuaiyin He, Xinjiang Luo, Jinbo Zhang, Zenghui Zhang, Peng Li and Huazhou Huang
Energies 2025, 18(19), 5237; https://doi.org/10.3390/en18195237 - 2 Oct 2025
Abstract
Addressing the challenge of efficient gas control in high-gas coal mines with ultra-long panels, this study focuses on the No. 8 coal seam in the Baode Mine. A multi-parameter integrated methodology was developed to establish a hierarchical classification system of Gas Geological Units [...] Read more.
Addressing the challenge of efficient gas control in high-gas coal mines with ultra-long panels, this study focuses on the No. 8 coal seam in the Baode Mine. A multi-parameter integrated methodology was developed to establish a hierarchical classification system of Gas Geological Units (GGUs), aiming to identify regions suitable for large-scale gas extraction. The results indicate that the overall structure of the No. 8 coal seam is a simple monocline. Both gas content (ranging from 2.0 to 7.0 m3/t) and gas pressure (ranging from 0.2 to 0.65 MPa) generally increase with burial depth. However, local anomalies in these parameters, caused by geological structures and hydrogeological conditions, significantly limit the effectiveness of large-scale drainage using ultra-long boreholes. Based on key criteria, the seam was classified into three Grade I and ten Grade II GGUs, distinguishing anomalous zones from homogeneous units. Among the Grade II units, eight (II-i to II-viii) were identified as anomalous zones with distinct geological constraints, while two (II-ix and II-x) exhibited homogeneous gas geological parameters. Practical implementation of large-scale gas extraction strategies—including underground ultra-long boreholes and a U-shaped surface well—within the homogeneous Unit II-x demonstrated significantly improved gas drainage performance, characterized by higher methane concentration, greater flow rate, enhanced temporal stability, and more favorable decay characteristics compared to conventional boreholes. These findings confirm the critical role of GGU delineation in guiding efficient regional gas control and ensuring safe production in similar high-gas coal mines. Full article
Show Figures

Figure 1

26 pages, 14492 KB  
Article
Experimental and Numerical Study of a Towing Test for a Barge-Type Floating Offshore Wind Turbine
by Samuel Davis, Anthony Viselli and Amrit Verma
Energies 2025, 18(19), 5228; https://doi.org/10.3390/en18195228 - 1 Oct 2025
Abstract
Several experimental and numerical studies have been conducted on the towing behavior of floating offshore wind turbines (FOWTs); however, these studies mainly focus on tension-leg platform (TLP) and semi-submersible designs with cylindrical features. The University of Maine’s VolturnUS+ concept is a cruciform-shaped barge-type [...] Read more.
Several experimental and numerical studies have been conducted on the towing behavior of floating offshore wind turbines (FOWTs); however, these studies mainly focus on tension-leg platform (TLP) and semi-submersible designs with cylindrical features. The University of Maine’s VolturnUS+ concept is a cruciform-shaped barge-type FOWT with distinctive hydrodynamic properties that have not been characterized in previous research. This study presents basin-scale experiments that characterize the hydrodynamic drag properties of the VolturnUS+ platform, as well as observing the motion behavior of the platform and added resistance during towing in calm water and waves. The towing experiments are conducted in two towing configurations, with differing platform orientations and towline designs. The basin experiments are supplemented with a numerical study using computational fluid dynamic (CFD) simulations to explore flow-induced motion (FIM) on the platform during towing. In both the experiments and the CFD simulations, it was determined that the towing configuration significantly impacted the drag and motion characteristics of the platform, with the cruciform shape producing FIM phenomena. Observations from the towing tests confirmed the feasibility of towing the VolturnUS+ platform in the two orientations. The results and observations developed from the experimental and numerical towing studies will be used to inform numerical models for planning towing operations, as well as develop informed recommendations for towing similar cruciform-shaped structures in the future. Full article
Show Figures

Figure 1

13 pages, 609 KB  
Article
Research on the Development and Application of the GDELT Event Database
by Dengxi Hong, Zexin Fu, Xin Zhang and Yan Pan
Data 2025, 10(10), 158; https://doi.org/10.3390/data10100158 - 1 Oct 2025
Abstract
This study investigates the development and application of the GDELT (Global Database of Events, Language, and Tone) news database. Through experiments, we conducted a quantitative statistical analysis of the GDELT event database to evaluate its practical characteristics. The results indicate that although the [...] Read more.
This study investigates the development and application of the GDELT (Global Database of Events, Language, and Tone) news database. Through experiments, we conducted a quantitative statistical analysis of the GDELT event database to evaluate its practical characteristics. The results indicate that although the database achieves comprehensive coverage across all countries and regions and includes most major global media outlets, the accuracy rate of its key fields is only approximately 55%, with a data redundancy as high as 20%. Based on these findings, while the GDELT data demonstrates good coverage and data integrity, data correction and deduplication are recommended before its use in research contexts and industrial applications. Subsequently, a survey of the existing literature reveals that current studies using GDELT primarily focused on event-related metrics, such as event quantity, tone, and GoldsteinScale, for application in international relations analysis, crisis event prediction, policy effectiveness testing, and public opinion impact analysis. Nevertheless, news constitutes a fundamental channel of information dissemination in media networks, and the propagation of news events through these networks represents a critical area of study for information recommendation, public opinion guidance, and crisis intervention. Existing research has employed the Event, GKG, and Mentions tables to construct cross-national news flow network models. However, the informational correlations across different data table fields have not been fully leveraged in preliminary data selection, leading to substantial computational overhead. To advance research in this field, this study employs chained list queries on the Event and Mentions tables within GDELT. Using social network analysis, we constructed a media co-occurrence network of event reports, through which core hubs and associative relationships within the event dissemination network are identified. Full article
30 pages, 6209 KB  
Article
Unraveling the Surrounding Drivers of Interprovincial Trade Embodied Energy Flow Based on the MRIO Model: A Case Study in China
by Wen Wen, Yijing He, Yang Zhang, Weize Song and Yujuan Fang
Energies 2025, 18(19), 5222; https://doi.org/10.3390/en18195222 - 1 Oct 2025
Abstract
To achieve the carbon neutrality target, China has proposed “dual control” policies on provincial energy consumption. However, inter-provincial trade drives significant embodied energy flows beyond local demand. How do we identify key energy consumers driving through other provinces? And how does energy, especially [...] Read more.
To achieve the carbon neutrality target, China has proposed “dual control” policies on provincial energy consumption. However, inter-provincial trade drives significant embodied energy flows beyond local demand. How do we identify key energy consumers driving through other provinces? And how does energy, especially from coal, flow to other provinces? Current studies analyzed regional and sectoral energy flow, which are always separated. And seldom was attention paid to coal flow. Intending to identify the critical energy-consuming province in China and investigate how energy and coal flow out from it, this study applied the EE-MRIO model to measure energy and coal embodied in provincial trades. The results suggest the following: (1) The energy embodied in provincial trade was mostly from energy-rich regions to provinces that lacked energy but had developed economies. Shanxi is a critical embodied-energy export province; (2) neighboring provinces and economically developed provinces drive the most embodied energy from Shanxi, and embodied energy mainly flows from the energy sectors and high-energy-intensity sectors; and (3) the provincial and sectoral coal flow in Shanxi presents consistent characteristics of embodied energy flow. We contributed to understanding the energy equity affected by embodied energy flow and propose energy consumption as a relieving measure. Full article
Show Figures

Figure 1

Back to TopTop