Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,541)

Search Parameters:
Keywords = flow length

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 6226 KB  
Article
Investigation of Grout Anisotropic Propagation at Fracture Intersections Under Flowing Water
by Bangtao Sun, Dongli Li, Xuebin Liu, Qiquan Hu, Xiaoxiong Li, Xiangdong Meng and Wanghua Sui
Appl. Sci. 2025, 15(17), 9787; https://doi.org/10.3390/app15179787 (registering DOI) - 6 Sep 2025
Abstract
Grout propagation is a critical aspect of fracture grouting. This study investigated grout propagation at fracture intersections under flowing conditions using a simplified two-dimensional (2D) fracture network. Transparent soil technology was employed to simulate the porous filling material within the fractures. The results [...] Read more.
Grout propagation is a critical aspect of fracture grouting. This study investigated grout propagation at fracture intersections under flowing conditions using a simplified two-dimensional (2D) fracture network. Transparent soil technology was employed to simulate the porous filling material within the fractures. The results showed that the penetration velocity of grout decreased significantly after passing through an intersection, and the velocity in the main fracture was consistently higher than that in the branch fractures. In the unfilled fracture network, the diffusion ratio between branch and main fractures ranged from 0.35 to 0.88, whereas after filling, it ranged from 0.71 to 0.86. For each intersection, the ratio of grout length in the downstream branch to that in the main fracture (RDM) was positively correlated with branch width. This trend was especially evident in unfilled fractures, whereas in filled fractures, the increase in RDM was much less pronounced. Regarding the upstream ratio (RUM), it was consistently lower than RDM. RUM increased with branch width in unfilled fractures but decreased in filled fractures. Additionally, higher fluid velocity amplified these anisotropic propagation behaviors. Based on the simplified filled fracture model, it was concluded that porous filling materials reduce permeability differences between fractures with different aperture widths. Furthermore, increased flow rate intensified the anisotropic diffusion of grout. This study provides valuable insight into the mechanism of anisotropic grout propagation and offers guidance for engineering grouting applications. Full article
(This article belongs to the Special Issue Hydrogeology and Regional Groundwater Flow)
Show Figures

Figure 1

32 pages, 6751 KB  
Article
Investigation of the Effectiveness of a Compact Heat Exchanger with Metal Foam in Supercritical Carbon Dioxide Cooling
by Roman Dyga
Energies 2025, 18(17), 4736; https://doi.org/10.3390/en18174736 - 5 Sep 2025
Viewed by 36
Abstract
Printed circuit heat exchangers (PCHE) are ideal for use in very demanding operating conditions. In addition, they are characterized by very high efficiency, which can still be increased. This paper presents new concepts for improving PCHE heat exchangers. The aim of the described [...] Read more.
Printed circuit heat exchangers (PCHE) are ideal for use in very demanding operating conditions. In addition, they are characterized by very high efficiency, which can still be increased. This paper presents new concepts for improving PCHE heat exchangers. The aim of the described work was to evaluate the potential for improving the performance of printed circuit heat exchangers by incorporating open-cell metal foam as the heat exchanger packing material. The evaluation was conducted based on the results of numerical simulation of supercritical carbon dioxide cooling flowing through printed circuit heat exchanger channels filled with 40 PPI copper foam with 90% porosity. A unit periodic region of the heat exchanger comprising two adjacent straight channels for cold and hot fluid was analyzed. The channels had a semicircular cross-section and a length of 200 mm. Studies were conducted for three different channel diameters—2, 3, and 4 mm. The range of mass flux variations for cold fluid (water) and hot fluid (sCO2) were 300–1500 kg/(m2·s) and 200–800 kg/(m2·s), respectively. It was found that in channels filled with metal foam, carbon dioxide cooling is characterized by a higher heat transfer coefficient than in channels without metal foam. In channels of the same diameter, heat flux was 33–63% higher in favor of the channel with metal foam. Thermal effectiveness of the heat exchanger with metal foam can be up to 20% higher than in the case of a heat exchanger without foam. Despite very high pressure drop through channels filled with metal foam, thermal–hydraulic performance can also be higher—even 4.7 in the case of a 2 mm channel. However, both these parameters depend on flow conditions and channel diameter, and under certain conditions may be lower than in a heat exchanger without metal foam. The results of the presented work indicate a new direction for the development of PCHE heat exchangers and confirm that the use of metal foams in the construction of PCHE heat exchangers can contribute to increasing the efficiency and effectiveness of the processes in which they are used. Full article
(This article belongs to the Section J1: Heat and Mass Transfer)
Show Figures

Figure 1

19 pages, 8255 KB  
Article
Performance and Mixing Characterization of a New Type of Venturi Reactor for Hydrazine Hydrate Production
by Suli Yang, Zhihao Wang, Haibin Wu, Xiaojing Wang and Shengting Li
Processes 2025, 13(9), 2839; https://doi.org/10.3390/pr13092839 - 4 Sep 2025
Viewed by 168
Abstract
In this paper, a novel venturi jet reactor is innovatively proposed for the process of hydrazine hydrate production using the urea method. In order to investigate the performance of this reactor in depth, we used the computational fluid dynamics method to optimize the [...] Read more.
In this paper, a novel venturi jet reactor is innovatively proposed for the process of hydrazine hydrate production using the urea method. In order to investigate the performance of this reactor in depth, we used the computational fluid dynamics method to optimize the design of the structure of the new venturi jet reactor based on the flow field condition, the degree of mixing uniformity, and the efficiency of the reactor using the component transport model. The results showed that the moderate increase of the distance of mixing tube to nozzle and nozzle diameter seven could help to improve the efficiency of the jet reactor; however, in terms of the mixing effect, the increase of the distance of mixing tube to nozzle led to the mixing effect to be enhanced and then weakened, while the increase in the nozzle diameter was not conducive to the full mixing of the two fluids. In addition, the effects of ratio of throat length to diameter and constriction angle on the efficiency of the jet reactor showed nonlinear characteristics, and the optimal values existed in the study range. Based on the above analysis, this paper determines the optimal range of structural parameters, i.e., the distance of mixing tube to nozzle of 7–13 mm, the nozzle outlet diameter of 5–7 mm, the ratio of throat length to diameter of 3–5, and the constriction angle of 30–40°, and the study provides guidance for the industrial application of the venturi jet reactor. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

18 pages, 3160 KB  
Article
Balancing Load and Speed: A New Approach to Reducing Energy Use in Coal Conveyor Systems
by Leszek Jurdziak and Mirosław Bajda
Energies 2025, 18(17), 4716; https://doi.org/10.3390/en18174716 - 4 Sep 2025
Viewed by 186
Abstract
Reducing energy consumption in belt conveyor systems is critical to improving the overall energy efficiency of lignite mining operations. This study presents a theoretical and empirical analysis of energy use in overburden and coal conveyors, with a focus on balancing the relationship between [...] Read more.
Reducing energy consumption in belt conveyor systems is critical to improving the overall energy efficiency of lignite mining operations. This study presents a theoretical and empirical analysis of energy use in overburden and coal conveyors, with a focus on balancing the relationship between belt speed and load. Building on the theory of conveyor motion resistance, the energy consumption index (WskZE)—previously introduced by the authors—is revisited as a function of two key variables: belt speed (v) and real-time material flow rate (Qr). Empirical validation was conducted using operational data from variable-speed conveyors in the Konin lignite mine and compared to similar-length conveyors in the Bełchatów mine. Energy consumption measurements allowed for the analysis of energy consumption for two different scenarios: (i) in the Bełchatów mine the belt speed was constant and the excavator capacity was variable and (ii) in the Konin mine the excavator capacity was kept constant and the conveyor belt speed was varied. The results confirm that WskZE is linearly dependent on belt speed and inversely proportional to throughput, as predicted by theoretical models. However, findings also show that lowering belt speed—while effective in reducing energy use—results in a higher proportion of power being consumed to move the belt and heavy idlers, especially when these components are sized for peak loads. This study suggests a revised conveyor design philosophy (a new paradigm) that emphasizes maximizing the mass ratio of transported material to moving components. Additionally, it recommends integrating real-time monitoring of energy performance indicators into mine control systems to enable energy-aware operational decisions. Full article
(This article belongs to the Special Issue Energy Consumption at Production Stages in Mining, 2nd Edition)
Show Figures

Figure 1

26 pages, 4880 KB  
Article
Cell-Sequence-Based Covert Signal for Tor De-Anonymization Attacks
by Ran Xin, Yapeng Wang, Xiaohong Huang, Xu Yang and Sio Kei Im
Future Internet 2025, 17(9), 403; https://doi.org/10.3390/fi17090403 - 4 Sep 2025
Viewed by 123
Abstract
This research introduces a novel de-anonymization technique targeting the Tor network, addressing limitations in prior attack models, particularly concerning router positioning following the introduction of bridge relays. Our method exploits two specific, inherent protocol-level vulnerabilities: the absence of a continuity check for circuit-level [...] Read more.
This research introduces a novel de-anonymization technique targeting the Tor network, addressing limitations in prior attack models, particularly concerning router positioning following the introduction of bridge relays. Our method exploits two specific, inherent protocol-level vulnerabilities: the absence of a continuity check for circuit-level cells and anomalous residual values in RELAY_EARLY cell counters, working by manipulating cell headers to embed a covert signal. This signal is composed of reserved fields, start and end delimiters, and a payload that encodes target identifiers. Using this signal, malicious routers can effectively mark data flows for later identification. These routers employ a finite state machine (FSM) to adaptively switch between signal injection and detection. Experimental evaluations, conducted within a controlled environment using attacker-controlled onion routers, demonstrated that the embedded signals are undetectable by standard Tor routers, cause no noticeable performance degradation, and allow reliable correlation of Tor users with public services and deanonymization of hidden service IP addresses. This work reveals a fundamental design trade-off in Tor: the decision to conceal circuit length inadvertently exposes cell transmission characteristics. This creates a bidirectional vector for stealthy, protocol-level de-anonymization attacks, even though Tor payloads remain encrypted. Full article
Show Figures

Figure 1

19 pages, 12279 KB  
Article
Numerical Study on Self-Pulsation Phenomenon in Liquid-Centered Swirl Coaxial Injector with Recess
by Jiwon Lee, Hadong Jung and Kyubok Ahn
Aerospace 2025, 12(9), 796; https://doi.org/10.3390/aerospace12090796 - 3 Sep 2025
Viewed by 122
Abstract
This study investigates self-pulsation phenomena in a liquid-centered swirl coaxial injector with a recess length of 4 mm, under varying liquid flow conditions, using numerical simulations. The simulations focused on analyzing spray patterns, pressure oscillations, and dominant frequency characteristics, and the results were [...] Read more.
This study investigates self-pulsation phenomena in a liquid-centered swirl coaxial injector with a recess length of 4 mm, under varying liquid flow conditions, using numerical simulations. The simulations focused on analyzing spray patterns, pressure oscillations, and dominant frequency characteristics, and the results were compared with previous experimental data. Self-pulsation, observed at liquid flow rates of 60%, 90%, and 100% of nominal values, generated distinctive periodic oscillations in the spray pattern, forming “neck” and “shoulder” breakup structures that resemble a Christmas tree. Surface waves induced by Kelvin-Helmholtz and Rayleigh-Taylor instabilities were identified at the gas-liquid interface, contributing to enhanced atomization and reduced spray breakup length. FFT analysis of the pressure oscillations highlighted a match in trends between simulation and experimental data, although variations in dominant frequency magnitudes arose due to the absence of manifold space in simulations, confining oscillations and slightly elevating dominant frequencies. Regional analysis revealed that interactions between the high-speed gas and liquid film in the recess region drive self-pulsation, leading to amplified pressure oscillations throughout the injector’s internal regions, including the gas annular passage, tangential hole, and gas core. These findings provide insights into the internal flow dynamics of swirl coaxial injectors and inform design optimizations to control instabilities in liquid rocket engines. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

17 pages, 13752 KB  
Article
Response of Preferential Flow to Initial Soil Water Content in Coalmining Subsidence Zones Along the Middle Reaches of the Yellow River, China
by Yunsong Yang and Qiaoling Guo
Water 2025, 17(17), 2606; https://doi.org/10.3390/w17172606 - 3 Sep 2025
Viewed by 208
Abstract
Preferential flow in coal mining subsidence areas leads to shallow soil moisture loss, vegetation reducing and ecological degradation. However, the factors influencing the development of preferential flow remain unclear. This study analyzed the morphological characteristics of preferential flow using a staining tracer test [...] Read more.
Preferential flow in coal mining subsidence areas leads to shallow soil moisture loss, vegetation reducing and ecological degradation. However, the factors influencing the development of preferential flow remain unclear. This study analyzed the morphological characteristics of preferential flow using a staining tracer test in coal mining subsidence areas along the middle reaches of the Yellow River Basin. Characteristic parameters including the dye-stained area ratio, preferential flow ratio, length index, variation coefficient were comparatively evaluated under different initial soil moisture conditions. Results showed that shallow soils exhibited substrate flow, while preferential flow occurred in deeper soil layers below the matrix flow. As initial soil moisture increased, the extent of both substrate flow and preferential flow decreased. The dye-stained area ratio declined with increasing soil depth, and the relationship between dye-stained area and soil layer depth was best described by a cubic function. Higher initial soil moisture reduced maximum infiltration depth and length indices while increasing the coefficient of the stained pattern. Furthermore, a higher of initial soil water content corresponded to a lower preferential flow index. Overall, increased initial soil moisture may reduce the extent of preferential flow and the rapid infiltration of water into soil. These findings provides a basis for further hydrological studies in coal mining subsidence areas in arid and semi-arid regions and offer scientific support for ecological restoration efforts in mining areas. Full article
(This article belongs to the Special Issue Advance in Groundwater in Arid Areas)
Show Figures

Figure 1

25 pages, 12557 KB  
Article
Nonlinear Dynamic Analysis of High-Speed Aerostatic Conical Bearing–Rotor System with Micro-Orifice Frictional Loss
by Qilong Han, Xiaoli Wang and Chen Zheng
Machines 2025, 13(9), 797; https://doi.org/10.3390/machines13090797 - 2 Sep 2025
Viewed by 230
Abstract
Aerostatic conical bearings with micro-orifices (ACBMOs) can simultaneously withstand both radial and axial external loads and have high power density. Nevertheless, due to the larger surface-to-volume ratio and length-to-diameter ratio of micro-orifices, the gas flow through micro-orifices is more susceptible to frictional loss. [...] Read more.
Aerostatic conical bearings with micro-orifices (ACBMOs) can simultaneously withstand both radial and axial external loads and have high power density. Nevertheless, due to the larger surface-to-volume ratio and length-to-diameter ratio of micro-orifices, the gas flow through micro-orifices is more susceptible to frictional loss. Since frictional loss in micro-orifices has been ignored in the literature, an aerostatic conical bearing lubrication model with frictional loss in micro-orifices and a transient model of their nonlinear dynamics are established. The effects of the micro-orifice length-to-diameter ratio and relative roughness on lubrication performance, nonlinear behaviors, and ACBMO–rotor system stability are investigated, followed by experimental validation. The results indicate that the gas mass flow rate of the micro-orifices, gas film pressure, and load capacity in the ACBMOs decrease with the increase in micro-orifice relative roughness and length-to-diameter ratio, which cannot be observed in the conventional model without frictional loss. Meanwhile, both the onset speed of instability and the failure speed decrease when frictional loss occurs in micro-orifices are considered. Full article
Show Figures

Figure 1

25 pages, 7039 KB  
Article
Evaluating the Influence of Vegetation Breakage on Tsunami-Induced Structural Forces: An Experimental Study
by Ranasinghege Nipuni Udarika and Norio Tanaka
Geosciences 2025, 15(9), 339; https://doi.org/10.3390/geosciences15090339 - 2 Sep 2025
Viewed by 239
Abstract
This study experimentally investigated the influence of vegetation integrity, vertical architecture and morphology, flexibility, and patch length on tsunami bore attenuation and structural force reduction, using Pandanus odoratissimus (screwpine) as a model species. A key aspect of the experimental design was [...] Read more.
This study experimentally investigated the influence of vegetation integrity, vertical architecture and morphology, flexibility, and patch length on tsunami bore attenuation and structural force reduction, using Pandanus odoratissimus (screwpine) as a model species. A key aspect of the experimental design was the simulation of vegetation breakage, defined as occurring when the tsunami water depth exceeded 80% of tree height, a critical threshold for structural failure. Results showed that vegetation under non-breaking conditions significantly attenuated water levels and hydrodynamic forces, with maximum tsunami force reductions of up to 70% for rigid and 66.5% for flexible vegetation, particularly when the patch extended further inland (i.e., longer vegetation length). In contrast, vegetation breakage led to a notable decline in protective performance, with horizontal and uplift force reductions dropping between 10.1–45.2% and 10.7–16.7%, respectively, in short patches. Flexible vegetation exhibited the greatest loss of effectiveness due to structural collapse. However, longer vegetation patches played a compensatory role, maintaining higher force reduction even under breaking conditions. Notably, broken P. odoratissimus still contributes to energy dissipation through its intact dense aerial roots that resist flow near the bed. These findings highlight the importance of maintaining vegetation integrity for effective tsunami mitigation, while also recognizing that partially damaged vegetation retains some protective function, particularly when configured in extended patches. Full article
(This article belongs to the Section Natural Hazards)
Show Figures

Figure 1

32 pages, 8209 KB  
Article
Hydraulic Response of Dam-Break Flood Waves to Converging Channel Geometries: A Numerical Investigation
by Amir Ghaderi, Hooman Shahini, Hossein Mohammadnezhad, Hossein Hamidifar and Jaan H. Pu
Water 2025, 17(17), 2593; https://doi.org/10.3390/w17172593 - 2 Sep 2025
Viewed by 460
Abstract
The topography of the flood path significantly influences the hydraulic characteristics of flood events, necessitating in-depth analysis to better understand the continuous dynamics during dam failure scenarios. These analyses are useful for the hydraulic evaluation of infrastructures downstream of a dam site. This [...] Read more.
The topography of the flood path significantly influences the hydraulic characteristics of flood events, necessitating in-depth analysis to better understand the continuous dynamics during dam failure scenarios. These analyses are useful for the hydraulic evaluation of infrastructures downstream of a dam site. This study examined the effects of four distinct converging configurations of guide-banks on the propagation of unsteady flow in a rectangular channel. The configurations studied included trapezoidal and crescent side contractions, as well as trapezoidal and crescent barriers located at the channel’s center, each with varying lengths and widths. Numerical simulations using computational fluid dynamics (CFD) simulation were validated against experimental data from the literature. The results reveal that the flow experienced a depth increase upon encountering converging geometries, leading to the formation of a hydraulic jump and the subsequent upstream progression of the resulting wave. The width of the obstacles and contractions had a marked influence on the flow profile. Increased channel contraction led to a more pronounced initial water elevation rise when the flood flow encountered the topography, resulting in a deeper reflected wave that propagated upstream at less time. The reflected wave increased the water elevations up to 0.64, 0.72, and 0.80 times the initial reservoir level (0.25 m), respectively, for cases with 33%, 50%, and 66% contraction ratios to the channel width (0.3 m). For the same cases at a certain time of t = 5.0 s, the reflected wave reached 1.1 m downstream, 0.5 m downstream, and 0.1 m upstream of the initial dam location. Waves generated by the trapezoidal configuration affected the upstream in less time than those formed by the crescent contraction. The length of the transitions or their placement (middle of/across the channel) did not significantly affect the flow profile upstream; however, within the converging zone, longer configurations resulted in a wider increased water elevation. Overall, the intensity of the hydraulic response can be related to one factor in all cases, namely, the convergence intensity of the flow lines as they entered the contractions. Full article
(This article belongs to the Special Issue Coastal Engineering and Fluid–Structure Interactions)
Show Figures

Figure 1

20 pages, 3333 KB  
Article
A New Hybrid Intelligent System for Predicting Bottom-Hole Pressure in Vertical Oil Wells: A Case Study
by Kheireddine Redouane and Ashkan Jahanbani Ghahfarokhi
Algorithms 2025, 18(9), 549; https://doi.org/10.3390/a18090549 - 1 Sep 2025
Viewed by 255
Abstract
The evaluation of pressure drops across the length of production wells is a crucial task, as it influences both the cost-effective selection of tubing and the development of an efficient production strategy, both of which are vital for maximizing oil recovery while minimizing [...] Read more.
The evaluation of pressure drops across the length of production wells is a crucial task, as it influences both the cost-effective selection of tubing and the development of an efficient production strategy, both of which are vital for maximizing oil recovery while minimizing operational expenses. To address this, our study proposes an innovative hybrid intelligent system designed to predict bottom-hole flowing pressure in vertical multiphase conditions with superior accuracy compared to existing methods using a data set of 150 field measurements amassed from Algerian fields. In this work, the applied hybrid framework is the Adaptive Neuro-Fuzzy Inference System (ANFIS), which integrates artificial neural networks (ANN) with fuzzy logic (FL). The ANFIS model was constructed using a subtractive clustering technique after data filtering, and then its outcomes were evaluated against the most widely utilized correlations and mechanistic models. Graphical inspection and error statistics confirmed that ANFIS consistently outperformed all other approaches in terms of precision, reliability, and effectiveness. For further improvement of the ANFIS performance, a particle swarm optimization (PSO) algorithm is employed to refine the model and optimize the design of the antecedent Gaussian memberships along with the consequent linear coefficient vector. The results achieved by the hybrid ANFIS-PSO model demonstrated greater accuracy in bottom-hole pressure estimation than the conventional hybrid approach. Full article
(This article belongs to the Special Issue AI and Computational Methods in Engineering and Science)
Show Figures

Figure 1

21 pages, 4719 KB  
Article
A CNN-LSTM-GRU Hybrid Model for Spatiotemporal Highway Traffic Flow Prediction
by Jinsong Zhang, Junyi Sha, Chunyu Zhang and Yijin Zhang
Systems 2025, 13(9), 765; https://doi.org/10.3390/systems13090765 - 1 Sep 2025
Viewed by 289
Abstract
The rapid growth in the number of motor vehicles has exacerbated traffic congestion. The occurrence of congestion not only poses significant challenges for traffic management authorities but also severely impacts residents’ travel and daily routines. Against this backdrop, predicting traffic flow can provide [...] Read more.
The rapid growth in the number of motor vehicles has exacerbated traffic congestion. The occurrence of congestion not only poses significant challenges for traffic management authorities but also severely impacts residents’ travel and daily routines. Against this backdrop, predicting traffic flow can provide crucial insights for anticipating changing traffic patterns. Therefore, this paper proposes a novel hybrid deep learning architecture (CNN-LSTM-GRU) for highway traffic flow prediction that integrates spatiotemporal and meteorological dimensions. Our approach constructs a multidimensional feature matrix encompassing temporal sequences, spatial correlations, and weather conditions. Convolutional Neural Networks (CNN) are employed to capture spatial patterns, while Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) networks jointly model temporal dependencies. Through systematic hyperparameter tuning and step-length optimization, we validate the model using real-world traffic data from a provincial highway network. The experimental evaluation analyzes the following two critical dimensions: (1) holiday vs. non-holiday traffic patterns, and (2) the impact of weather data integration. Comparative analysis reveals that our hybrid model demonstrates superior prediction accuracy over standalone LSTM, GRU, and their CNN-based counterparts (CNN-LSTM, CNN-GRU). Full article
(This article belongs to the Special Issue Modelling and Simulation of Transportation Systems)
Show Figures

Figure 1

18 pages, 3624 KB  
Article
Passive Droplet Generation in T-Junction Microchannel: Experiments and Lattice Boltzmann Simulations
by Xiang Li, Weiran Wu, Zhiqiang Dong, Yiming Wang and Peng Yu
Micromachines 2025, 16(9), 1011; https://doi.org/10.3390/mi16091011 - 31 Aug 2025
Viewed by 308
Abstract
The present study investigates passive microdroplet generation in a T-junction microchannel using microscopic observations, microscale particle image velocimetry (Micro-PIV) visualization, and lattice Boltzmann simulations. The key flow regimes, i.e., dripping, threading, and parallel flow, are characterized by analyzing the balance between hydrodynamic forces [...] Read more.
The present study investigates passive microdroplet generation in a T-junction microchannel using microscopic observations, microscale particle image velocimetry (Micro-PIV) visualization, and lattice Boltzmann simulations. The key flow regimes, i.e., dripping, threading, and parallel flow, are characterized by analyzing the balance between hydrodynamic forces and surface tension, revealing the critical role of the flow rate ratio of the continuous to dispersed fluids in regime transitions. Micro-PIV visualizes velocity fields and vortex structures during droplet formation, while a lattice Boltzmann model with wetting boundary conditions captures interface deformation and flow dynamics, showing good agreement with experiments in the dripping and threading regimes but discrepancies in the parallel flow regime due to neglected surface roughness. The present experimental results highlight non-monotonic trends in the maximum head interface and breakup positions of the dispersed fluid under various flow rates, reflecting the competition between the squeezing and shearing forces of the continuous fluid and the hydrodynamic and surface tension forces of the dispersed fluid. Quantitative analysis shows that the droplet size increases with the flow rate of continuous fluid but decreases with the flow rate of dispersed fluid, while generation frequency rises monotonically with the flow rate of dispersed fluid. The dimensionless droplet length correlates with the flow rate ratio, enabling tunable control over droplet size and flow regimes. This work enhances understanding of T-junction microdroplet generation mechanisms, offering insights for applications in precision biology, material fabrication, and drug delivery. Full article
(This article belongs to the Special Issue Flows in Micro- and Nano-Systems)
Show Figures

Figure 1

18 pages, 3600 KB  
Article
Spatial Distribution, Key Influencing Factors, and Ecological Risk of Microplastics in Pearl River Estuary Water and Sediments
by Jiyuan Hu, Chengliang Li, Lichi Deng, Ziyan Yan and Xing Gong
Water 2025, 17(17), 2572; https://doi.org/10.3390/w17172572 - 31 Aug 2025
Viewed by 441
Abstract
Microplastic (MP) pollution in aquatic ecosystems poses significant ecological and public health risks. A comprehensive understanding of estuarine MP pollution, influenced by multiple anthropogenic and environmental factors, remains elusive in current research. This study investigated the spatial distribution patterns and dominant factors influencing [...] Read more.
Microplastic (MP) pollution in aquatic ecosystems poses significant ecological and public health risks. A comprehensive understanding of estuarine MP pollution, influenced by multiple anthropogenic and environmental factors, remains elusive in current research. This study investigated the spatial distribution patterns and dominant factors influencing MP abundance (MPA) and physicochemical diversity in the river water and sediments of the Pearl River Estuary (PRE), while also assessing the associated ecological risks. The dominant MP categories in river water and sediments were fibers, clear in color, <1 mm in length, and composed of polyethylene terephthalate and polypropylene. Whereas inland regions showed higher MPA, nearshore regions exhibited marginally greater physicochemical diversity. Multivariate statistical analysis identified population density as the primary driver of both MPA in river water and MP physicochemical diversity in sediments. MP physicochemical diversity in river water was predominantly governed by the synergistic effect of salinity and the vegetation land. MPA in sediments depended on the synergistic effect of flow rate and watershed area. Ecological risk assessment identified elevated risks in the eastern study area driven by the presence of polymethyl methacrylate. This study establishes a scientific basis for PRE region MP management and provides global comparative data for estuarine MP research. Full article
Show Figures

Figure 1

18 pages, 3731 KB  
Article
Induction of Mutations in Veronica Species by Colchicine Treatment
by Hye-Wan Park, Samantha Serafin Sevilleno, Ji-Hun Yi, Wonwoo Cho, Young-Jae Kim and Yoon-Jung Hwang
Life 2025, 15(9), 1367; https://doi.org/10.3390/life15091367 - 28 Aug 2025
Viewed by 420
Abstract
Veronica nakaiana Ohwi and Veronica pusanensis Y.N.Lee are rare and endemic plants native to Korea, with increasing interest in their cultivation and breeding for industrial applications. Mutation breeding is important for developing horticultural cultivars. Among mutation breeding techniques, chemical mutagenesis is particularly accessible [...] Read more.
Veronica nakaiana Ohwi and Veronica pusanensis Y.N.Lee are rare and endemic plants native to Korea, with increasing interest in their cultivation and breeding for industrial applications. Mutation breeding is important for developing horticultural cultivars. Among mutation breeding techniques, chemical mutagenesis is particularly accessible and effective. Colchicine-induced mutagenesis was performed in vivo at various concentrations (0.2%, 0.4%, 0.6%, 0.8%, and 1.0%) and treatment durations (1, 2, 3, 4, and 5 h). Both V. nakaiana Ohwi and V. pusanensis Y.N.Lee showed the highest survival (23.4% and 34.8%, respectively) and mutation (1.6% and 0.5%, respectively) rates with 0.2% colchicine. Flow cytometry and chromosome number analyses revealed mutants as tetraploid, with chromosome numbers ranging from 2n = 66 to 2n = 68. Stomatal analysis indicated increased stomatal length and width and decreased stomatal density. Morphological analysis of the mutants revealed that the leaves of V. nakaiana Ohwi and V. pusanensis Y.N.Lee were significantly larger and had different shapes compared to the control. This study successfully generated new mutant plants of two Veronica species using chemical mutagen treatment, which could be utilized as new genetic resources for various Veronica species breeding programs in the future. Full article
(This article belongs to the Special Issue Advances in Plant Biotechnology and Molecular Breeding)
Show Figures

Figure 1

Back to TopTop