Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (964)

Search Parameters:
Keywords = flux-less

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
40 pages, 9892 KB  
Article
Influence of Web-Perforated Cold-Formed Steel Studs on the Heat Transfer Properties of LSF External Walls
by Saranya Ilango, Anthony Ariyanayagam and Mahen Mahendran
Energies 2025, 18(19), 5103; https://doi.org/10.3390/en18195103 - 25 Sep 2025
Abstract
Thermal bridging through cold-formed steel (CFS) studs significantly reduces the thermal performance of light gauge steel frame (LSF) wall systems, particularly in climates demanding higher thermal resistance (R-value). While thermal breaks are commonly used, they increase material costs and construction complexity. According to [...] Read more.
Thermal bridging through cold-formed steel (CFS) studs significantly reduces the thermal performance of light gauge steel frame (LSF) wall systems, particularly in climates demanding higher thermal resistance (R-value). While thermal breaks are commonly used, they increase material costs and construction complexity. According to NCC 2022, the minimum total R-value requirement for external walls ranges between 2.8 and 3.8 m2·K/W depending on the climate zone and building class. This study therefore evaluated web-perforated steel studs as a passive strategy to enhance thermal resistance of LSF walls, analysing 120 configurations with validated 3D finite element models in Abaqus and benchmarking in THERM. The results showed that web perforations consistently improved R-values by 14 to 20%, as isotherm contours and heat flux vectors demonstrated disruption of direct heat flow through the stud, thereby mitigating thermal bridging. Although the axial compression capacity of web-perforated CFS studs decreased by 29.5%, the use of 4 mm hole-edge stiffeners restored 96.8% of the original capacity. The modified NZS 4214:2006 and ASHRAE Modified Zone methods, incorporating steel area reduction and heat flux redistribution, closely matched Abaqus predictions, with coefficients of variation (COV) below 0.009, corresponding to less than 1% relative deviation between analytical and numerical R-values. Furthermore, application of web-perforated CFS studs in five external wall systems demonstrated improved thermal resistance, ensuring compliance with NCC 2022 R-value requirements across all Australian climate zones. Overall, the findings establish web-perforated studs as an effective solution for improving the energy performance of LSF building envelopes. Full article
Show Figures

Figure 1

17 pages, 6943 KB  
Article
Flux and Fouling Behavior of Graphene Oxide-Polyphenylsulfone Ultrafiltration Membranes Incorporating ZIF-67/ZIF-8 Fillers
by Azile Nqombolo, Thollwana Andretta Makhetha, Richard Motlhaletsi Moutloali and Philiswa Nosizo Nomngongo
Membranes 2025, 15(10), 289; https://doi.org/10.3390/membranes15100289 - 25 Sep 2025
Abstract
Wider adoption of membrane technology is hindered by fouling and flux/rejection challenges. Recent practice in mitigating these is to incorporate hydrophilic and porous fillers. Herein the addition of hydrophilic graphene oxide (GO) in conjunction with porous mixed ZIFs (ZIF-67/ZIF-8) crystallites were used as [...] Read more.
Wider adoption of membrane technology is hindered by fouling and flux/rejection challenges. Recent practice in mitigating these is to incorporate hydrophilic and porous fillers. Herein the addition of hydrophilic graphene oxide (GO) in conjunction with porous mixed ZIFs (ZIF-67/ZIF-8) crystallites were used as inorganic fillers in the preparation of polyphenylenesulfone (PPSU) ultrafiltration (UF) membranes. The morphology of the resultant composite membranes was assessed using atomic force microscopy (AFM) and scanning electron microscopy (SEM) whilst surface hydrophilicity through water contact angle. The pure water flux (PWF) and membrane permeability were found to increase with increasing filler content. This was attributed to the combined hydrophilicity of GO and porous structure of the ZIF materials because of increasing alternative water pathways in the membrane matrix with increasing filler content. Furthermore, the increase in the ZIF component led to increasing bovine serum albumin (BSA) fouling resistance as demonstrated by increasing fouling recovery ratio (FRR). The dye rejection was due to a combination of electrostatic interaction between the fillers and the dyes as well as size exclusion. The chemical interactions between the ZIFs and the dyes resulted in slightly different rejection profiles for the smaller dyes, the cationic methylene blue being rejected less efficiently than the anionic methyl orange, potentially leading to their separation. The larger anionic dye, Congo red was rejected predominately through size exclusion. Full article
(This article belongs to the Special Issue Design, Preparation and Application of Nanocomposite Membranes)
Show Figures

Figure 1

8 pages, 1008 KB  
Proceeding Paper
Combining Knowledge About Metabolic Networks and Single-Cell Data with Maximum Entropy
by Carola S. Heinzel, Johann F. Jadebeck, Elisabeth Zelle, Johannes Seiffarth and Katharina Nöh
Phys. Sci. Forum 2025, 12(1), 3; https://doi.org/10.3390/psf2025012003 - 24 Sep 2025
Abstract
Better understanding of the fitness and flexibility of microbial platform organisms is central to biotechnological process development. Live-cell experiments uncover the phenotypic heterogeneity of living cells, emerging even within isogenic cell populations. However, how this observed heterogeneity in growth relates to the variability [...] Read more.
Better understanding of the fitness and flexibility of microbial platform organisms is central to biotechnological process development. Live-cell experiments uncover the phenotypic heterogeneity of living cells, emerging even within isogenic cell populations. However, how this observed heterogeneity in growth relates to the variability of intracellular processes that drive cell growth and division is less understood. We here approach the question, how the observed phenotypic variability in single-cell growth rates links to metabolic processes, specifically intracellular reaction rates (fluxes). To approach this question, we employ the Maximum Entropy (MaxEnt) principle that allows us to bring together the phenotypic solution space, derived from metabolic network models, to single-cell growth rates observed in live-cell experiments. We apply the computational machinery to first-of-its-kind data of the microorganism Corynebacterium glutamicum, grown on different substrates under continuous medium supply. We compare the MaxEnt-based estimates of metabolic fluxes with estimates obtained by assuming that the average cell operates at its maximum growth rate, which is the current predominant practice in biotechnology. Full article
Show Figures

Figure 1

19 pages, 6121 KB  
Article
Natural Variability and External Forcing Factors That Drive Surface Air Temperature Trends over East Asia
by Debashis Nath, Reshmita Nath and Wen Chen
Atmosphere 2025, 16(10), 1113; https://doi.org/10.3390/atmos16101113 - 23 Sep 2025
Viewed by 148
Abstract
Community Earth System Model-Large Ensemble (CESM-LE) simulations are used to partition the Surface Air Temperature (SAT) trends over East Asia into the contribution of external forcing factors and internal variability. In the historical period (1966–2005), the summer SAT trends display a considerable diversity [...] Read more.
Community Earth System Model-Large Ensemble (CESM-LE) simulations are used to partition the Surface Air Temperature (SAT) trends over East Asia into the contribution of external forcing factors and internal variability. In the historical period (1966–2005), the summer SAT trends display a considerable diversity (≤−2 °C to ≥2 °C) across the 35 member ensembles, while under the RCP8.5 scenario, the region is mostly dominated by a strong warming trend (~1.5–2.5 °C/51 years) and touches the ~4 °C mark by the end of the 21st century. In the historical period, the warming is prominent over the Yangtze River basin of China, while under the RCP8.5 scenario, the warming pattern shifts northward towards Mongolia. In the historical period, the Signal-to-Noise Ratio (SNR) is less than 1, while it is higher than 4 under the RCP8.5 scenario, which indicates that, in the early period, internal variability overrides the forced response and vice versa under the RCP8.5 scenario. In addition, over much of the East Asian region, the chances of cooling are relatively high in the historical period, which partially counteracted the warming trend due to external forcing factors. In contrast, under the RCP8.5 scenario, the chances of warming reach ~100% over East Asia due to contributions from the external forcing factors. The novel aspect of the current study is that, in the negative phase (from the mid-1960s to ~2000), the Atlantic Multidecadal Oscillation (AMO) accounts for ~70–80% of the cooling trend or the SAT variability over East Asia, and thereafter, natural variability exhibits a slow increasing trend in the future. However, the contribution of external forcing factors increases from ~55% in 2000 to 95% in 2075 at a rate much faster than natural variability, which is primarily due to increasing downward solar radiation fluxes and albedo feedback on SAT over East Asia. Full article
(This article belongs to the Special Issue Tropical Monsoon Circulation and Dynamics)
Show Figures

Figure 1

14 pages, 3374 KB  
Article
Burning Trash for Science: The Potential Use of Discarded Waste to Monitor Energy Fluxes Delivered to Ecosystem Components by Wildfires
by Ania Losiak, Amber Avery, Andy Elliott, Sarah J. Baker and Claire M. Belcher
Fire 2025, 8(9), 373; https://doi.org/10.3390/fire8090373 - 22 Sep 2025
Viewed by 178
Abstract
Assessing the energy flux delivered to ecosystem components by wildfires is hard because of technical and safety problems in performing measurements during such events. Here, we present a laboratory and field experimental assessment of a new method of evaluating a wildfire energy flux; [...] Read more.
Assessing the energy flux delivered to ecosystem components by wildfires is hard because of technical and safety problems in performing measurements during such events. Here, we present a laboratory and field experimental assessment of a new method of evaluating a wildfire energy flux; our approach is based on the fact that different types of trash deform at different temperatures. We produced deformed trash in a laboratory environment using an iCone calorimeter to deliver a range of heat fluxes over a range of durations. We followed this by placing trash in instrumented prescribed fires. We show that finding melted or heat-altered plastic bottles and aluminium cans in the aftermath of wildfires can provide useful information about the heating that they received during the fire: plastic bottles are a useful indicator for areas that received less than 2 MJ/m2 with a maximal temperature of <200 °C, while aluminium cans may be applied to higher-energy sites 100 MJ/m2 that experienced a temperature above 600 °C. We provide a semi-quantitative proxy guide as to what different observed deformations may indicate in terms of energy flux and hope that this may allow scientists and forest managers to easily and cheaply assess the energy flux delivered to ecosystems and semi-quantitatively compare different wildfires. Full article
Show Figures

Graphical abstract

25 pages, 4355 KB  
Article
Soil–Atmosphere GHG Fluxes in Cacao Agroecosystems on São Tomé Island, Central Africa: Toward Climate-Smart Practices
by Armando Sterling, Yerson D. Suárez-Córdoba, Francesca del Bove Orlandi and Carlos H. Rodríguez-León
Land 2025, 14(9), 1918; https://doi.org/10.3390/land14091918 - 20 Sep 2025
Viewed by 287
Abstract
This study evaluated soil–atmosphere greenhouse gas (GHG) fluxes—including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)—in cacao agroecosystems on São Tomé Island, Central Africa. The field campaign was conducted between April and May 2025, coinciding with [...] Read more.
This study evaluated soil–atmosphere greenhouse gas (GHG) fluxes—including carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)—in cacao agroecosystems on São Tomé Island, Central Africa. The field campaign was conducted between April and May 2025, coinciding with the transition from the short rainy season to the onset of the dry period. The sampling design comprised two system types (biodiverse and conventional), two crop development stages (growing and productive), and two climatic zones (wet and dry). Gas fluxes were measured using the static chamber method and analyzed in relation to climatic, topographic, and edaphic variables. CO2 fluxes were the dominant contributor to total emissions, accounting for approximately 97.4% of the global warming potential (GWP), while CH4 and N2O together contributed less than 3%. The highest CO2 emissions occurred in conventional systems during the growing stage in the wet zone (125.5 ± 11.41 mg C m−2 h−1). CH4 generally acted as a sink, particularly in conventional systems in the dry zone (−12.58 ± 2.35 μg C m−2 h−1), although net emissions were detected in biodiverse systems in the wet zone (5.08 ± 1.50 μg C m−2 h−1). The highest N2O fluxes were observed in conventional growing systems (32.28 ± 5.76 μg N m−2 h−1). GHG dynamics were mainly regulated by climatic factors—such as air temperature, relative humidity, and precipitation—and by key edaphic properties, including soil pH, soil organic carbon, soil temperature, and clay content. Projected GWP values ranged from 9.05 ± 2.77 to 40.9 ± 6.23 Mg CO2-eq ha−1 year−1, with the highest values recorded in conventional systems in the growing stage. Overall, our findings underscore the potential of biodiversity-based agroforestry as a climate-smart practice to mitigate net GHG emissions in tropical cacao landscapes. Full article
Show Figures

Figure 1

17 pages, 1802 KB  
Article
Zero Liquid Discharge of High-Salinity Produced Water via Integrated Membrane Distillation and Crystallization: Experimental Study and Techno-Economic Analysis
by Gabriela Torres Fernandez, Zongjie He, Jeremiah Kessie and Jianjia Yu
Membranes 2025, 15(9), 281; https://doi.org/10.3390/membranes15090281 - 19 Sep 2025
Viewed by 270
Abstract
Direct Contact Membrane Distillation–Crystallization (DCMD-Cr) is a synergistic technology for zero liquid discharge (ZLD) and resource recovery from high-salinity brines. In this study, DCMD-Cr was integrated to desalinate real oilfield-produced water (PW) with an initial salinity of 156,700 mg/L. The PW was concentrated [...] Read more.
Direct Contact Membrane Distillation–Crystallization (DCMD-Cr) is a synergistic technology for zero liquid discharge (ZLD) and resource recovery from high-salinity brines. In this study, DCMD-Cr was integrated to desalinate real oilfield-produced water (PW) with an initial salinity of 156,700 mg/L. The PW was concentrated to its saturation point of 28 wt.% via DCMD, and the integrated crystallization increased the overall water recovery from 42.0% to 98.9%, with a decline in water flux and salt rejection, mainly due to vapor pressure lowering and scaling. The precipitated salts in the crystallization unit were recovered and identified using different techniques. The results indicated that 91% of the crystals are sodium chloride, and less than 5% are calcium sulfate. A techno-economic analysis (TEA) was performed to evaluate the economic feasibility of the integrated DCMD-Cr process with a 500,000 gallons per day (GDP) capacity. The results showed that the crystallization operating cost was dominant at USD 0.50 per barrel, while the capital cost was only USD 0.04 per barrel. The economic viability can be enhanced by recovering value-added byproducts and using renewable or waste heat, which can reduce the total cost to USD 0.50 per barrel. Full article
(This article belongs to the Special Issue Membrane Distillation: Module Design and Application Performance)
Show Figures

Figure 1

25 pages, 1221 KB  
Article
Simulations of Drainage Flows with Topographic Shading and Surface Physics Inform Analytical Models
by Alex Connolly and Fotini Katopodes Chow
Atmosphere 2025, 16(9), 1091; https://doi.org/10.3390/atmos16091091 - 17 Sep 2025
Viewed by 192
Abstract
We perform large-eddy simulations (LESs) with realistic radiation, including topographic shading, and an advanced land surface model to investigate drainage flow dynamics in an idealized compound-slope mountain geometry. This allows an analysis not only of fully developed profiles in steady state—the subject of [...] Read more.
We perform large-eddy simulations (LESs) with realistic radiation, including topographic shading, and an advanced land surface model to investigate drainage flow dynamics in an idealized compound-slope mountain geometry. This allows an analysis not only of fully developed profiles in steady state—the subject of existing analytical solutions—but also of transient two- and three-dimensional dynamics. The evening onset of downslope flow is related to the duration of shadow front propagation along the eastern slopes, for which an analytic form is derived. We demonstrate that the flow response to this radiation pattern is mediated by the thermal inertia of the land through sensitivity to soil moisture. Onset timing differences on opposite sides of the peak are explained by convective structures that persist after sunset over the western slopes when topographic shading is considered. Although these preceding convective systems, as well as the presence of neighboring terrain, inhibit the initial development of drainage flows, the LES develops an approximately steady-state, fully developed flow over the finite slopes and finite nocturnal period. This allows a comparison to analytical models restricted to such cases. New analytical solutions based on surface heat flux boundary conditions, which can be estimated by the coupled land surface model, suggest the need for improved representation of the eddy diffusivity for analytical models of drainage flows. Full article
Show Figures

Graphical abstract

13 pages, 2422 KB  
Article
Luminescence of (YxGd3−x)(AlyGa5−y)O12:Ce and (LuxGd3−x)(AlyGa5−y)O12:Ce Radiation-Synthesized Ceramics
by Aida Tulegenova, Victor Lisitsyn, Gulnur Nogaibekova, Renata Nemkayeva and Aiymkul Markhabayeva
Ceramics 2025, 8(3), 112; https://doi.org/10.3390/ceramics8030112 - 5 Sep 2025
Viewed by 281
Abstract
(YxGd3−x)(AlyGa5−y)O12:Ce and (LuxGd3−x)(AlyGa5−y)O12:Ce ceramics were synthesized for the first time by direct exposure of a powerful electron flux to a mixture of the [...] Read more.
(YxGd3−x)(AlyGa5−y)O12:Ce and (LuxGd3−x)(AlyGa5−y)O12:Ce ceramics were synthesized for the first time by direct exposure of a powerful electron flux to a mixture of the corresponding oxide components. Five-component ceramics were obtained from oxide powders of Y2O3, Lu2O3, Gd2O3, Al2O3, Ga2O3, and Ce2O3 in less than 1 s, without the use of any additional reagents or process stimulants. The average productivity of the synthesis process was approximately 5 g/s. The reaction yield, defined as the mass ratio of the synthesized ceramic to the initial mixture, ranged from 94% to 99%. The synthesized ceramics exhibit photoluminescence when excited by radiation in the 340–450 nm spectral range. The position of the luminescence bands depends on the specific composition, with the emission maxima located within the 525–560 nm range. It is suggested that under high radiation power density, the element exchange rate between the particles of the initial materials is governed by the formation of an ion–electron plasma. Full article
Show Figures

Figure 1

19 pages, 6051 KB  
Article
Development of Simple and Affordable Integrating Device for Accurate LED Strip Light Measurement
by Krzysztof Skarżyński and Tomasz Krzysztoń
Sensors 2025, 25(17), 5533; https://doi.org/10.3390/s25175533 - 5 Sep 2025
Viewed by 1096
Abstract
LED strips are increasingly used as lighting sources in public and private spaces. However, traditional photometric methods, such as integrating spheres, are unsuitable for measuring their light parameters, often resulting in significant errors and requiring expensive instrumentation or calibration. These errors are typically [...] Read more.
LED strips are increasingly used as lighting sources in public and private spaces. However, traditional photometric methods, such as integrating spheres, are unsuitable for measuring their light parameters, often resulting in significant errors and requiring expensive instrumentation or calibration. These errors are typically caused by non-uniform illumination of the internal surface or improper internal geometry, especially when measuring LED sources. This article presents the development of a low-cost integrating device specifically designed to measure LED strips’ light parameters. The device is a compact cube with a volume of less than 1.0 m3. It was tested against alternative methods using an integrating sphere and a goniophotometer in a professional photometric laboratory. The verification results confirmed its effectiveness. The device showed the maximum relative error of luminous flux measurement to be around 5% compared with the accurate, expensive goniophotometric method. For colorimetric measurements, the maximum Correlated Color Temperature (CCT) absolute error was about 35 K for an LED strip with a CCT of 4000 K, indicating a difference imperceptible to the human eye. These results demonstrate the device’s proper relevance in the research and development of LED strip-based lighting equipment to improve lighting equipment quality and control processes. The device is easy to replicate, significantly reducing production and transportation costs, making it an excellent solution for companies and research units seeking a cost-effective method for LED strip measurements. Additionally, the device can measure other light sources or luminaires with reasonably small sizes emitting light in only one hemisphere. The device is the basis of a patent application. Full article
(This article belongs to the Special Issue Recent Advances in Optoelectronic Materials and Device Engineering)
Show Figures

Graphical abstract

15 pages, 3459 KB  
Article
Modeling Thermal Energy Storage Capability of Organic PCMs Confined in a 2-D Cavity
by Abdullatif A. Gari
Computation 2025, 13(9), 209; https://doi.org/10.3390/computation13090209 - 1 Sep 2025
Viewed by 366
Abstract
Organic phase change materials (PCMs) are a useful and increasingly popular choice for thermal energy storage applications such as solar energy and building envelope thermal barriers. Buildings located in high-temperature locations are exposed to extreme weather with high solar radiation intensity. PCM envelopes [...] Read more.
Organic phase change materials (PCMs) are a useful and increasingly popular choice for thermal energy storage applications such as solar energy and building envelope thermal barriers. Buildings located in high-temperature locations are exposed to extreme weather with high solar radiation intensity. PCM envelopes could act as thermal barriers on the exterior walls to prevent excessive heat gain and save on air conditioning costs. The PCM cavity is represented as a square cavity in this project. This project studies the effect of different parameters on energy transfer through the cavity. These parameters are PCM, heat flux gain (solar radiation), and time period (day hours). One parameter was changed at a time while others remained the same. This model was simulated numerically using ANSYS FLUENT software version 6.3.26. The project was solved as a transient problem and was run for a full day in simulation time. A pressure-based model was used because it is ideal for viscous flow and suitable for mildly compressible and low-speed flow. The PISO algorithm was used here because of the transient nature of the project. Temperature and convection heat transfer flux on the inner surface were recorded to study how the inner temperature and the amount of convective heat flux gain react to different conditions after energy passes the PCM envelope. It was found that Linoleic Acid provides the highest convective heat flux gain, meaning it provides the lowest thermal resistance. On the other hand, Tricosane was found to provide the lowest convective heat flux gain, meaning it provides the highest thermal resistance. For longer days (τq < 1), the PCM was in a liquid form for a longer time, which means less conduction, while for shorter days (τq > 1), the PCM was in a solid form for a longer time. Full article
(This article belongs to the Special Issue Computational Methods for Energy Storage)
Show Figures

Figure 1

11 pages, 711 KB  
Communication
What Do Radio Emission Constraints Tell Us About Little Red Dots as Tidal Disruption Events?
by Krisztina Perger, Judit Fogasy and Sándor Frey
Universe 2025, 11(9), 294; https://doi.org/10.3390/universe11090294 - 1 Sep 2025
Viewed by 384
Abstract
The real nature of little red dots (LRDs), a class of very compact galaxies in the early Universe recently discovered by the James Webb Space Telescope, is still poorly understood. The most popular theories competing to interpret the phenomena include active galactic nuclei [...] Read more.
The real nature of little red dots (LRDs), a class of very compact galaxies in the early Universe recently discovered by the James Webb Space Telescope, is still poorly understood. The most popular theories competing to interpret the phenomena include active galactic nuclei and enhanced star formation in dusty galaxies. To date, however, neither model gives a completely satisfactory explanation to the population as a whole; thus, alternative theories have arisen, including tidal disruption events (TDEs). By considering observational constraints on the radio emission of LRDs, we discuss whether TDEs are adequate alternatives solving these high-redshift enigmas. We utilise radio flux density upper limits from LRD stacking analyses, TDE peak radio luminosities, and volumetric density estimates. We find that the characteristic values of flux densities and luminosities allow radio-quiet TDEs as the underlying process of LRDs in any case, while the less common radio-loud TDEs are compatible with the model under special constraints only. Considering other factors, such as volumetric density estimates, delayed and long-term radio flares of TDEs, and cosmological time dilation, TDEs appear to be a plausible explanation for LRDs from the radio point of view. Full article
(This article belongs to the Special Issue Advances in Studies of Galaxies at High Redshift)
Show Figures

Figure 1

14 pages, 2445 KB  
Article
Effects of Operational Parameters on Mg2+/Li+ Separation Performance in Electrodialysis System
by Zhijuan Zhao, Jianhua Yang, Dexin Kong, Yunyan Peng and Dong Jin
Membranes 2025, 15(9), 260; https://doi.org/10.3390/membranes15090260 - 29 Aug 2025
Viewed by 461
Abstract
Brine with a high magnesium-to-lithium ratio was separated by electrodialysis equipped with a monovalent cation exchange membrane under differing operational parameters. The ionic concentration variations, separation coefficients, lithium recovery ratio, permselectivity coefficient, and Li+ flux were analyzed to evaluate the effect of [...] Read more.
Brine with a high magnesium-to-lithium ratio was separated by electrodialysis equipped with a monovalent cation exchange membrane under differing operational parameters. The ionic concentration variations, separation coefficients, lithium recovery ratio, permselectivity coefficient, and Li+ flux were analyzed to evaluate the effect of the initial Li+/Mg2+ mass concentration ratio, applied voltage, and initial volume ratio between the dilute and concentrated compartments on the separation performance of magnesium and lithium. The results showed that the increase in initial Li+/Mg2+ concentration ratio significantly increased the separation coefficient, lithium recovery ratio, and Li+ flux, demonstrating an improvement in the separation performance since the Li+ migration was accelerated when less Mg2+ competed with Li+. As the applied voltage increased from 10 V to 15 V, the separation coefficient increased, and the lithium recovery ratio and Li+ flux increased within 60 min; however, as the applied voltage increased to 20 V, the separation coefficient, the lithium recovery ratio, and the Li+ flux did not increase, which indicated that an increase in the applied voltage within the limits would contribute to the separation performance. The increase in the initial volume ratio between the dilute and concentrated compartments decreased the separation coefficient and lithium recovery ratio, indicating that the separation performance had declined. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

25 pages, 4050 KB  
Article
A Multi-Objective Optimization Study of Supply Air Parameters in a Supersonic Aircraft Cabin Environment Combined with Fast Calculation
by Guo Yu, Sajawal Nazar, Fei Li, Yuxin Wu, Zhu He and Xiaodong Cao
Atmosphere 2025, 16(9), 1005; https://doi.org/10.3390/atmos16091005 - 25 Aug 2025
Viewed by 530
Abstract
Supersonic cabins are characterized by high heat flux and high occupant density, which can adversely affect passenger comfort, health, and energy efficiency. This study proposed a multi-objective optimization framework for determining supply air parameters in a supersonic aircraft cabin, evaluating the performances of [...] Read more.
Supersonic cabins are characterized by high heat flux and high occupant density, which can adversely affect passenger comfort, health, and energy efficiency. This study proposed a multi-objective optimization framework for determining supply air parameters in a supersonic aircraft cabin, evaluating the performances of different optimization methods. The optimization focused on three design objectives: thermal comfort (PMV), air freshness (air age), and the temperature differential between the supply and exhaust air. Two fast calculation methods—Proper Orthogonal Decomposition (POD) and Artificial Neural Networks (ANN)—were compared alongside two optimization algorithms: Multi-Objective Genetic Algorithm (MOGA) and Pareto search. The results indicate that the POD method has a smaller relative root mean square error compared to the ANN method. The relative root mean square error of the ANN method in predicting PMV is 2.7 times higher than the POD method and 3.9 times higher in air age prediction. The Pareto search algorithm outperformed MOGA in computational efficiency, generating 3.3 times more Pareto-optimal solutions in less time. The entropy weight method was used to assign weight for both optimization algorithms, revealing that neither algorithm achieved universally optimal performance across all objectives. Therefore, selecting the best solution requires aligning optimization outcomes with specific design priorities. Full article
(This article belongs to the Section Atmospheric Techniques, Instruments, and Modeling)
Show Figures

Figure 1

14 pages, 6616 KB  
Article
The Use of Conditional Variational Autoencoders in Generating Stellar Spectra
by Marwan Gebran and Ian Bentley
Astronomy 2025, 4(3), 13; https://doi.org/10.3390/astronomy4030013 - 22 Aug 2025
Viewed by 383
Abstract
We present a conditional variational autoencoder (CVAE) that generates stellar spectra covering 4000 ≤ Teff ≤ 11,000 K, 2.0logg5.0 dex, 1.5[M/H]+1.5 dex, vsini300 [...] Read more.
We present a conditional variational autoencoder (CVAE) that generates stellar spectra covering 4000 ≤ Teff ≤ 11,000 K, 2.0logg5.0 dex, 1.5[M/H]+1.5 dex, vsini300 km/s, ξt between 0 and 4 km/s, and for any instrumental resolving powers less than 115,000. The spectra can be calculated in the wavelength range 4450–5400 Å. Trained on a grid of SYNSPEC spectra, the network synthesizes a spectrum in around two orders of magnitude faster than line-by-line radiative transfer. We validate the CVAE on 104 test spectra unseen during training. Pixel-wise statistics yield a median absolute residual of <1.8×103 flux units with no wavelength-dependent bias. A residual error map across the parameters plane shows |ΔF|<2×103 everywhere, and marginal diagnostics versus Teff, logg, vesini, ξt, and [M/H] reveal no relevant trends. These results demonstrate that the CVAE can serve as a drop-in, physics-aware surrogate for radiative transfer codes, enabling real-time forward modeling in stellar parameter inference and offering promising tools for spectra synthesis for large astrophysical data analysis. Full article
Show Figures

Figure 1

Back to TopTop