Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (830)

Search Parameters:
Keywords = focal adhesions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3353 KB  
Article
Enhanced Unidirectional Cell Migration Induced by Asymmetrical Micropatterns with Nanostructures
by Kaixin Chen, Yuanhao Xu and Stella W. Pang
J. Funct. Biomater. 2025, 16(9), 323; https://doi.org/10.3390/jfb16090323 (registering DOI) - 1 Sep 2025
Abstract
Directed cell migration is crucial for numerous biological processes, including tissue regeneration and cancer metastasis. However, conventional symmetrical micropatterns typically result in bidirectional cell migration guidance instead of unidirectional guidance. In this study, polydimethylsiloxane (PDMS)-based platforms with asymmetrical arrowhead micropatterns, nanopillars, and selective [...] Read more.
Directed cell migration is crucial for numerous biological processes, including tissue regeneration and cancer metastasis. However, conventional symmetrical micropatterns typically result in bidirectional cell migration guidance instead of unidirectional guidance. In this study, polydimethylsiloxane (PDMS)-based platforms with asymmetrical arrowhead micropatterns, nanopillars, and selective fibronectin coating were developed to enhance unidirectional cell migration. The platforms were fabricated using nanoimprint lithography and PDMS replication techniques, allowing for precise control over surface topography and biochemical modification. The MC3T3 osteoblastic cells cultured on these platforms demonstrated significantly enhanced directional migration, characterized by increased displacement, and directional alignment with micropattern orientation compared to symmetrical patterns. Quantitative analyses revealed that asymmetrical arrowheads combined with nanopillars induced more focal adhesions and F-actin polarization at cell front regions, supporting the observed unidirectional cell migration enhancement. These results confirm that integrating micropattern asymmetry, nanoscale features, and biochemical functionalization synergistically promotes unidirectional cell migration. The developed platforms offer valuable insights and practical strategies for designing advanced biomaterials capable of precise spatial cell guidance that can be applied to the designs of organ-on-a-chip systems. Full article
(This article belongs to the Section Synthesis of Biomaterials via Advanced Technologies)
Show Figures

Figure 1

52 pages, 10321 KB  
Article
Prognostic Significance of WWOX/HIF1A Ratio in Cancer Subtypes: Insights into Metabolism, ECM, and EMT
by Izabela Baryła, Raneem Y. Hammouz, Kinga Maciejek and Andrzej K. Bednarek
Biology 2025, 14(9), 1151; https://doi.org/10.3390/biology14091151 - 1 Sep 2025
Abstract
WWOX and HIF1α proteins are involved in cancer progression; their functions are closely related. WWOX binds HIF1α through its WW domains, sequestering it in the cytoplasm and inhibiting its transcriptional activity. This study evaluates the prognostic significance of the WWOX/HIF1A interaction [...] Read more.
WWOX and HIF1α proteins are involved in cancer progression; their functions are closely related. WWOX binds HIF1α through its WW domains, sequestering it in the cytoplasm and inhibiting its transcriptional activity. This study evaluates the prognostic significance of the WWOX/HIF1A interaction across cancers, breast cancer subtypes, glioblastoma (GBM), low-grade glioma (LGG), and hepatocellular carcinoma (HCC) through gene expression and pathway analysis focused on metabolism, ECM, and epithelial–mesenchymal transition. In breast cancer, metabolic pathways correlated with good prognosis in basal subtypes. HER2 subtypes showed enrichment in DNA replication pathways. Luminal A subtypes showed favourable prognosis via TNF and PI3K/AKT signalling, while luminal B subtypes had poor prognosis tied to metabolic activity; genes associated with good prognosis mirrored those tied to poor prognosis in luminal A. In HCC, enhanced metabolic activity was associated with good prognosis. In contrast, poor prognosis involved TNF signalling and cytoskeleton-related pathways, indicating more aggressive tumour behaviour. In LGG, good prognosis was linked to metabolic and cAMP pathways, while poor outcomes involved TNF, cell cycle, apoptosis, and focal adhesion pathways. GBM showed similar patterns: metabolic and cAMP pathways indicated better outcomes, while NFKB, TNF, JAK-STAT, and PI3K/AKT pathways marked poor prognosis. These findings suggest the WWOX/HIF1A ratio is a robust prognostic marker and a possible guide for developing targeted treatments. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

20 pages, 3232 KB  
Review
Targeting Focal Adhesion Kinase in Lung Diseases: Current Progress and Future Directions
by Ziyu Wan, Zefeng Zhu, Pengbin Wang, Xuan Xu, Tianhao Ma, Huari Li, Lexing Li, Feng Qian and Wei Gu
Biomolecules 2025, 15(9), 1233; https://doi.org/10.3390/biom15091233 - 26 Aug 2025
Viewed by 430
Abstract
Focal adhesion kinase (FAK) is a crucial protein component of focal adhesions (FAs) and belongs to the cytoplasmic non-receptor protein tyrosine kinase family. FAK primarily regulates adhesion signaling and cell migration and is highly expressed in various tumors, including lung, liver, gastric, and [...] Read more.
Focal adhesion kinase (FAK) is a crucial protein component of focal adhesions (FAs) and belongs to the cytoplasmic non-receptor protein tyrosine kinase family. FAK primarily regulates adhesion signaling and cell migration and is highly expressed in various tumors, including lung, liver, gastric, and colorectal cancers, as well as in conditions such as acute lung injury (ALI) and pulmonary fibrosis (PF). Recent research on FAK and its small-molecule inhibitors has revealed that targeting FAK provides a novel approach for treating various lung diseases. FAK inhibitors can obstruct signaling pathways, demonstrating anti-tumor, anti-inflammatory, and anti-fibrotic effects. In lung cancer, FAK inhibitors suppress tumor growth and metastasis; in ALI, they exert protective effects by alleviating inflammatory responses and oxidative stress; and in pulmonary fibrosis, FAK inhibitors reduce fibroblast activation and inhibit collagen deposition. The findings demonstrate promising efficacy and an acceptable safety profile in preclinical models. However, these early-stage results require further validation through clinical studies. Additionally, the underlying mechanisms, as well as the toxic effects and side effects, necessitate further in-depth investigation. Some have progressed to clinical trials (Defactinib (Phase II), PF-562271 (Phase I), CEP-37440 (Phase I), PND-1186 (Phase I), GSK-2256098 (Phase II), BI-853520 (Phase I)), offering potential therapeutic targets for lung diseases. Collectively, these findings establish a foundational basis for the advancement of FAK inhibitor discovery. Emerging methodologies, such as PROTAC degraders and combination regimens, demonstrate significant potential for future research. Based on a comprehensive analysis of the relevant literature from 2015 to the present, this review briefly introduces the structure and function of FAK and discusses recent research advancements regarding FAK and its inhibitors in the context of pulmonary diseases. Full article
(This article belongs to the Section Molecular Medicine)
Show Figures

Figure 1

19 pages, 17140 KB  
Article
Chinese Herbal Medicine Compound Microecological Agent (C-MEA) Improves Egg Production Performance in Caged Laying Ducks via Microbiota–Gut–Ovary Axis
by Yanfeng Lu, Lei Zhang, Rui Zhu, Xiujun Duan, Guobo Sun and Yuying Jiang
Vet. Sci. 2025, 12(9), 808; https://doi.org/10.3390/vetsci12090808 - 25 Aug 2025
Viewed by 305
Abstract
This study was conducted to investigate the effects of a Chinese herbal medicine compound microecological agent (C-MEA) on the egg production performance, ovarian follicle development, ovary transcriptome, and cecal microbiota of caged laying ducks. A total of 108 black Muscovy ducks (150 days [...] Read more.
This study was conducted to investigate the effects of a Chinese herbal medicine compound microecological agent (C-MEA) on the egg production performance, ovarian follicle development, ovary transcriptome, and cecal microbiota of caged laying ducks. A total of 108 black Muscovy ducks (150 days old) were randomly divided into three groups for 30 days in a formal feeding trial. Compared with the control basic diet (Group C) and 16 g/kg C-MEA dosage (Group B), the 8 g/kg C-MEA dosage (Group A) increased egg production (average laying rate 69.35%) and follicle development (5~7 Fs, 6~7 LYFs, 11~13 SYFs) mass (p < 0.05). According to RNA-Seq, the ovaries’ transcriptome among different dietary groups enriched six key pathways, including neuroactive ligand–receptor interaction, the PPAR signaling pathway, ECM–receptor interaction, focal adhesion, the adherens junction, and the FoxO signaling pathway, as well as 46 candidate key genes. According to 16S-Seq, the microbial diversity was significantly increased in Group A, and the genus abundances of Sphaerochaeta and UCG-004 were significantly changed among different dietary groups (p < 0.05). Supplementation with C-MEA may optimize the cecal microflora and the interactions between the intestinal microflora and the host. The results from combining RNA-Seq and 16S-Seq demonstrated that the relationship between Sphaerochaeta and the hub gene cluster (F2, KNG1, C5, PLG, F2RL1, FABP1, and GCG) is the most prominent. In conclusion, the egg performance of caged laying ducks can be modulated through the microbiota–gut–ovary axis. Our findings provide new insights for improving gut health and reproductive performance of caged laying ducks. Full article
Show Figures

Figure 1

10 pages, 1338 KB  
Article
Genomic Analysis of Cardiovascular Diseases Utilizing Space Omics and Medical Atlas
by Ryung Lee, Abir Rayhun, Jang Keun Kim, Cem Meydan, Afshin Beheshti, Kyle Sporn, Rahul Kumar, Jacques Calixte, M. Windy McNerney, Jainam Shah, Ethan Waisberg, Joshua Ong and Christopher Mason
Genes 2025, 16(9), 996; https://doi.org/10.3390/genes16090996 - 25 Aug 2025
Viewed by 378
Abstract
Background: The Space Omics and Medical Atlas (SOMA) is an extensive database containing gene expression information from samples collected during the short-duration Inspiration4 spaceflight mission in 2021. Given our prior understanding of the genetic basis for cardiovascular diseases in spaceflight, including orthostatic intolerance [...] Read more.
Background: The Space Omics and Medical Atlas (SOMA) is an extensive database containing gene expression information from samples collected during the short-duration Inspiration4 spaceflight mission in 2021. Given our prior understanding of the genetic basis for cardiovascular diseases in spaceflight, including orthostatic intolerance and cardiac deconditioning, we aimed to characterize changes in differential gene expression among astronauts using SOMA-derived data and curated cardiovascular pathways. Methods: Using the KEGG 2021 database, we curated a list of genes related to cardiovascular adaptations in spaceflight, focusing on pathways such as fluid shear stress and atherosclerosis, lipid metabolism, arrhythmogenic ventricular hypertrophy, and cardiac muscle contraction. Genes were cross-matched to spaceflight-relevant datasets from the Open Science Data Repository (OSDR). Differential expression analysis was performed using DESeq2 (v1.40.2, R) with normalization by median-of-ratios, paired pre-/post-flight covariates, and log2 fold change shrinkage using apeglm. Differentially expressed genes (DEGs) were defined as |log2FC| ≥ 1 and FDR < 0.05 (Benjamini–Hochberg correction). Module score analyses were conducted across SOMA cell types to confirm conserved cardiac adaptation genes. Results: A total of 185 spaceflight-relevant genes were analyzed. Statistically significant changes were observed in immune-related cardiovascular pathways, particularly within monocytes and T cells. Persistent upregulation of arrhythmogenic genes such as GJA1 was noted at post-flight day 82. WikiPathways enrichment revealed additional pathways, including focal adhesion, insulin signaling, and heart development. Conclusions: Short-duration spaceflight induces significant gene expression changes that are relevant to cardiovascular disease risk. These changes are mediated largely through immune signaling and transcriptional regulation in peripheral blood mononuclear cells. Findings highlight the need for tailored countermeasures and longitudinal monitoring in future long-duration missions. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

40 pages, 5469 KB  
Review
Shaping Orthodontics of the Future: Concepts and Implications from a Cellular and Molecular Perspective
by Thorsten Steinberg, Britta Jung, Ayman Husari, Shuoqiu Bai and Pascal Tomakidi
Int. J. Mol. Sci. 2025, 26(17), 8203; https://doi.org/10.3390/ijms26178203 - 23 Aug 2025
Viewed by 424
Abstract
Orthodontic tooth movement (OTM) is accompanied by sterile inflammation, a necessary biological process that facilitates tooth displacement but also contributes to adverse effects, including hyalinization and orthodontically induced external apical root resorption (OEARR). Despite advancements in orthodontic therapies, the inflammatory response—regulated by dynamic [...] Read more.
Orthodontic tooth movement (OTM) is accompanied by sterile inflammation, a necessary biological process that facilitates tooth displacement but also contributes to adverse effects, including hyalinization and orthodontically induced external apical root resorption (OEARR). Despite advancements in orthodontic therapies, the inflammatory response—regulated by dynamic interactions between tissue-specific cells and their molecular mediators—remains a critical factor influencing treatment outcomes. This review summarizes the current understanding of the cellular and molecular mechanisms underlying OTM, with a focus on how these insights can support the development of targeted therapeutic strategies. These include cell- and molecule-based therapies, biomaterial-mediated delivery systems, and applications of artificial intelligence (AI). Notably, AI offers promising opportunities for modeling and simulating biological responses, enabling the optimization of individualized treatment planning. We further discuss current clinical practices and highlight emerging experimental findings, with an emphasis on unresolved research questions pivotal to improving therapeutic efficacy and reducing complications such as OEARR. This comprehensive overview aims to inform future directions in orthodontics by integrating mechanistic knowledge with technological innovation. Full article
(This article belongs to the Special Issue Application of Biomolecular Materials in Tissue Engineering)
Show Figures

Figure 1

20 pages, 4459 KB  
Article
Substrate Stiffness Modulates Hypertrophic Chondrocyte Reversion and Chondrogenic Phenotype Restoration
by Da-Long Dong and Guang-Zhen Jin
Cells 2025, 14(16), 1291; https://doi.org/10.3390/cells14161291 - 20 Aug 2025
Viewed by 426
Abstract
The stiffness of the extracellular matrix (ECM) plays a pivotal role in the progression of osteoarthritis (OA), particularly by promoting hypertrophic differentiation of chondrocytes, which hinders cartilage regeneration and accelerates pathological ossification. This study aimed to investigate how substrate stiffness modulates hypertrophic chondrocyte [...] Read more.
The stiffness of the extracellular matrix (ECM) plays a pivotal role in the progression of osteoarthritis (OA), particularly by promoting hypertrophic differentiation of chondrocytes, which hinders cartilage regeneration and accelerates pathological ossification. This study aimed to investigate how substrate stiffness modulates hypertrophic chondrocyte behavior and whether it can reverse their phenotype towards a more stable, chondrogenic state. A series of tunable polydimethylsiloxane (PDMS) substrates with stiffnesses ranging from 78 to 508 kPa were fabricated to simulate varying mechanical microenvironments. Hypertrophic chondrocytes were cultured on these substrates, and their morphology, nuclear architecture, gene/protein expression, and mechanotransductive signaling pathways were systematically evaluated. After 7 to 21 days of culture, the chondrocytes on stiffer matrices exhibited enlarged nuclei, increased cytoskeletal tension, and enhanced focal adhesion signaling. This corresponded with the upregulation of osteogenic and hypertrophic markers such as RUNX2, COL10A1, and COL1A1. In contrast, cells on softer substrates (78 kPa) displayed reduced nuclear YAP localization, higher levels of phosphorylated YAP, and significantly increased expression of COL2A1 and SOX9, indicating reversion to a chondrogenic phenotype. Furthermore, differential activation of Smad1/5/8 and Smad2/3 pathways was observed depending on matrix stiffness, contributing to the phenotype shift. Matrix stiffness exerts a significant regulatory effect on hypertrophic chondrocytes via YAP-mediated mechanotransduction. Soft substrates promote phenotype reversion and cartilage-specific gene expression, offering a promising biomechanical strategy for cartilage tissue engineering and OA intervention. Full article
(This article belongs to the Special Issue Targeting Cellular Microenvironment in Aging and Disease)
Show Figures

Figure 1

16 pages, 9092 KB  
Article
Chromatin Remodeler RSF1 as an Oncogenic Driver and Therapeutic Target in Esophageal Squamous Cell Carcinoma
by Zhenhua Du, Zhili Jia, Yao Lin, Xudong Zhao, Gengsheng Cao and Hengbin Wang
Cells 2025, 14(16), 1262; https://doi.org/10.3390/cells14161262 - 15 Aug 2025
Viewed by 433
Abstract
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy, ranking eleventh in incidence and seventh in mortality globally. Remodeling and Spacing factor 1 (RSF1), a chromatin remodeling factor, is frequently overexpressed in various tumors and correlates with poor prognosis. This study, combining public [...] Read more.
Esophageal squamous cell carcinoma (ESCC) is a prevalent malignancy, ranking eleventh in incidence and seventh in mortality globally. Remodeling and Spacing factor 1 (RSF1), a chromatin remodeling factor, is frequently overexpressed in various tumors and correlates with poor prognosis. This study, combining public database analysis and clinical sample validation, reveals significantly elevated RSF1 expression in ESCC tumor tissues, confirmed further in an ESCC orthotopic model. Functional assays show that RSF1 knockout (KO) significantly inhibits ESCC cell proliferation, migration, invasion, and in vivo tumor growth, while reintroducing RSF1 restores its oncogenic effects. Proteomic analysis highlights that RSF1 KO disrupts pathways associated with cell cycle control, apoptosis, and focal adhesion. Experimentally, RSF1 KO induces apoptosis and G2/M arrest, establishing its essential role in ESCC progression. Collectively, these findings establish RSF1 as an oncogenic driver and a promising therapeutic target in ESCC. Full article
Show Figures

Figure 1

37 pages, 2836 KB  
Review
Tensins in Cancer: Integration of Their Domain Functions, Context-Dependent Regulation and Biomarker Potential
by Junyi Zheng, Hualong Zhao, Lisha Wei, Jinjun Jiang and Wenlong Xia
Biology 2025, 14(8), 1053; https://doi.org/10.3390/biology14081053 - 14 Aug 2025
Viewed by 395
Abstract
Tensins (TNS1–4) are pivotal molecular scaffolds bridging the actin cytoskeleton to integrin-based adhesions, orchestrating signal transduction and governing cellular processes in cancer. Structurally, the N-terminal actin-binding domain (ABD) in TNS1–3 enables cytoskeletal regulation and interactions with regulators like the Rho GAP DLC1, while [...] Read more.
Tensins (TNS1–4) are pivotal molecular scaffolds bridging the actin cytoskeleton to integrin-based adhesions, orchestrating signal transduction and governing cellular processes in cancer. Structurally, the N-terminal actin-binding domain (ABD) in TNS1–3 enables cytoskeletal regulation and interactions with regulators like the Rho GAP DLC1, while ABD-deficient TNS4 functions as a focal adhesion signal amplifier. Functionally, TNS1–3 exhibit context-dependent duality as tumor promoters or suppressors, dictated by tissue-specific microenvironments and signaling crosstalk. In contrast, TNS4 acts predominantly as an oncoprotein across carcinomas by stabilizing epidermal growth factor receptor (EGFR), driving epithelial–mesenchymal transition and invasion, and sustaining proliferation. Clinically, tensin dysregulation correlates with metastasis and poor prognosis: TNS2 serves as a diagnostic biomarker for gastrointestinal stromal tumors, aberrant TNS1/TNS3 expression predicts metastasis risk, and TNS4 is recurrently embedded in multi-gene prognostic signatures. This review synthesizes their structural basis, regulatory mechanisms, and clinical relevance, highlighting context-dependent switches and TNS4’s therapeutic potential. Full article
Show Figures

Graphical abstract

14 pages, 1390 KB  
Article
Loss of Myh11 K1256 Dysregulates the Extracellular Matrix and Focal Adhesion by Inhibiting Zyxin-Activated Transcription
by Shota Tomida, Hironori Okuhata, Tamaki Ishima, Ryozo Nagai and Kenichi Aizawa
Int. J. Mol. Sci. 2025, 26(16), 7853; https://doi.org/10.3390/ijms26167853 - 14 Aug 2025
Viewed by 287
Abstract
Pathogenic variants of MYH11, which encode smooth muscle myosin heavy chain 11, have been linked to familial thoracic aortic aneurysms and dissections (FTAAD). However, molecular pathways affected by these mutations have not been well understood. To explore downstream consequences of Myh11 disruption, we [...] Read more.
Pathogenic variants of MYH11, which encode smooth muscle myosin heavy chain 11, have been linked to familial thoracic aortic aneurysms and dissections (FTAAD). However, molecular pathways affected by these mutations have not been well understood. To explore downstream consequences of Myh11 disruption, we analyzed transcriptomic and proteomic profiles of aortas from male Myh11 mice with homozygous deletion of lysine 1256 (K1256) and of wild-type controls. Of 6499 proteins quantified, 1763 were differentially expressed (adjusted p < 0.05), including 942 that were downregulated and 821 that were upregulated in mutant aortas. Enrichment analysis of downregulated genes and proteins revealed a consistent reduction in extracellular matrix-related pathways. Among downregulated proteins, we identified tenascin Xb, transforming growth factor β (Tgfb) 2, and Tgfb receptor 1/2, malfunctions of which are linked to connective tissue diseases, such as Ehlers–Danlos and Loeys–Dietz syndromes. Nevertheless, unlike these syndromic diseases, mice with Myh11 pathogenic variants and patients with FTAAD do not exhibit syndromic features, likely reflecting expression of Myh11 restricted to smooth muscle. These results suggest that loss of Myh11 disrupts maintenance of extracellular matrix by SMCs, the loss of which contributes to aortic fragility without affecting other tissues. Full article
Show Figures

Figure 1

13 pages, 2450 KB  
Article
Activation of Focal Adhesion Pathway by CIDEA as Key Regulatory Axis in Lipid Deposition in Goat Intramuscular Precursor Adipocytes
by Peng Shao, Qi Li, Yu Liao, Yong Wang, Yaqiu Lin, Hua Xiang, Zhanyu Du, Changhui Zhang, Jiangjiang Zhu and Lian Huang
Animals 2025, 15(16), 2374; https://doi.org/10.3390/ani15162374 - 13 Aug 2025
Viewed by 294
Abstract
Intramuscular fat (IMF) content determines the quality of goat meat and is regulated by the comprehensive effect of the proliferation and adipogenesis of intramuscular preadipocytes. Our previous RNA-seq data revealed that cell death-inducing DNA fragmentation factor alpha (DFFA)-like effector (CIDE) A was upregulated [...] Read more.
Intramuscular fat (IMF) content determines the quality of goat meat and is regulated by the comprehensive effect of the proliferation and adipogenesis of intramuscular preadipocytes. Our previous RNA-seq data revealed that cell death-inducing DNA fragmentation factor alpha (DFFA)-like effector (CIDE) A was upregulated during the development of intramuscular fat in the longissimus dorsi muscle tissue, implying an important role in lipid homeostasis. However, the mechanism by which CIDEA, a member of the CIDE family, regulates intramuscular fat deposition in goat muscle is unknown, so we explored the function and underlying mechanism of CIDEA in goat intramuscular preadipocytes. To address this, we altered CIDEA in intramuscular preadipocytes and resolved the effect and mechanism of CIDEA in adipogenesis through RT-PCR, Western blot, triglyceride and LD determinations, CCK-8, and RNA-seq. It was found that CIDEA increased lipid droplets (LDs) and triglyceride contents and inhibited cell proliferation. Meanwhile, the lipid metabolism-related genes PPARγ, C/EBPα, SREBP1c, PLIN1, TIP47, ADFP, DGAT1, ACC, FASN, ACSL1, and FABP3 were upregulated, while the lipolysis and β-oxidation genes HSL, ACOX1, and CPT1B, as well as the proliferation marker gene CDK1, were all downregulated upon CIDEA overexpression. Differentially expressed genes in CIDEA dysregulation groups through RNA-seq were selected and were enriched in the apelin and focal adhesion signaling pathways. Specifically, the Western blot and rescue assays found that focal adhesion, but not apelin, was the key signaling pathway in CIDEA regulating lipid deposition in goat intramuscular preadipocytes. In summary, this study reveals that CIDEA promotes lipid deposition in intramuscular preadipocytes through the focal adhesion pathway and inhibits cell proliferation. This work clarifies the functional role and downstream signaling pathway of CIDEA in intramuscular fat deposition and provides theoretical support for improving meat quality by targeting key phenotype-related genes. Full article
Show Figures

Figure 1

16 pages, 2238 KB  
Article
Gene Expression Pattern Associated with Cytoskeletal Remodeling in Lipid-Loaded Human Vascular Smooth Muscle Cells: Crosstalk Between C3 Complement and the Focal Adhesion Protein Paxillin
by Maisa Garcia-Arguinzonis, Rafael Escate, Roberta Lugano, Esther Peña, Maria Borrell-Pages, Lina Badimon and Teresa Padro
Cells 2025, 14(16), 1245; https://doi.org/10.3390/cells14161245 - 12 Aug 2025
Viewed by 468
Abstract
Mechanical and contractile forces in the vascular wall regulate smooth muscle cell migration. We previously demonstrated the presence of C3 complement products in atherosclerotic lesions of human aortas and showed that that C3-derived fragments promote key cellular processes, such as actin cytoskeleton organization [...] Read more.
Mechanical and contractile forces in the vascular wall regulate smooth muscle cell migration. We previously demonstrated the presence of C3 complement products in atherosclerotic lesions of human aortas and showed that that C3-derived fragments promote key cellular processes, such as actin cytoskeleton organization and cell migration, in lipid-loaded human vascular smooth muscle cells (hVSMCs). In the present study, we aimed to investigate gene expression profiles related to cytoskeletal remodeling and cell adhesion in migrating hVSMCs with a particular focus on modulatory effect of the C3 complement pathway on these processes. We analyzed gene expression in migrating and non-migrating hVSMCs using real-time PCR and in silico network analysis. Additionally, we investigated cytoskeletal remodeling through Western blotting and confocal microscopy. PCR profiling revealed 30 genes with significantly altered expression in migrating hVSMCs compared to non-migrating control cells. In silico analysis identified six of these genes—PXN, AKT1, RHOA, VCL, CTNNB1, and FN1—as being associated with cytoskeletal remodeling and focal adhesion, with PXN occupying a central position in the interaction network. PXN expression was reduced at both the transcript and protein levels and showed altered subcellular localization in migrating lipid-loaded hVSMCs. Protein–protein interaction analysis using STRING predicted an association between PXN and the integrin complex αMβ2 (comprising ITGAM (CD11b) and ITGB2 (CD18)), which functions as receptors for the iC3b complement fragment. Confocal imaging of cell adhesion structures revealed that lipid-loaded hVSMCs stimulated with iC3b displayed a more diffuse PXN distribution and significantly increased PXN–F-actin colocalization in active cytoplasmic regions compared to lipid-loaded control cells. PXN–F-actin colocalization increased from 1.26% to 19.68%. Subcellular fractionation further confirmed enhanced PXN enrichment in the membrane fraction, with no significant changes observed in the cytosolic or cytoskeletal compartments. In conclusion, iC3b-mediated molecular signaling in lipid-loaded hVSMCs alters PXN distribution and enhances cytoskeletal remodeling, revealing novel molecular interactions in vascular remodeling and the progression of atherosclerotic lesions. Full article
Show Figures

Graphical abstract

15 pages, 1316 KB  
Review
The Role of Pyk2 Kinase in Glioblastoma Progression and Therapeutic Targeting
by Lilia Kucheryavykh and Yuriy Kucheryavykh
Cancers 2025, 17(16), 2611; https://doi.org/10.3390/cancers17162611 - 9 Aug 2025
Viewed by 432
Abstract
Glioblastoma (GBM) is a highly aggressive brain tumor with limited treatment options and poor prognosis. Proline-rich tyrosine kinase 2 (Pyk2) has been implicated in regulation of GBM invasion, proliferation, and recurrence. Its activation, driven by tumor-infiltrating microglia and macrophage-derived extracellular factors such as [...] Read more.
Glioblastoma (GBM) is a highly aggressive brain tumor with limited treatment options and poor prognosis. Proline-rich tyrosine kinase 2 (Pyk2) has been implicated in regulation of GBM invasion, proliferation, and recurrence. Its activation, driven by tumor-infiltrating microglia and macrophage-derived extracellular factors such as EGF, PDGFB, SDF-1α, IL-6, and IL-8, enhances tumor cell motility and survival. Experimental studies demonstrate that pharmacological inhibition or genetic knockdown of Pyk2 significantly reduces glioma cell migration and proliferation. Furthermore, recurrent GBM tumors exhibit elevated Pyk2 phosphorylation in mouse GBM models, correlating with increased tumor growth. Inhibition of Pyk2 and the structurally related focal adhesion kinase (FAK) signaling has shown promising results in preclinical studies, reducing tumor recurrence and improving survival outcomes. This review summarizes recent findings and underscores the pivotal role of Pyk2 in GBM pathophysiology, highlighting its potential as a therapeutic target. Full article
Show Figures

Figure 1

23 pages, 26085 KB  
Article
How Actin Polymerization and Myosin II Activity Regulate Focal Adhesion Dynamics in Motile Cells
by Anastasiia Kovaleva, Evgeniya Solomatina, Madina Tlegenova, Aleena Saidova and Ivan A. Vorobjev
Int. J. Mol. Sci. 2025, 26(16), 7701; https://doi.org/10.3390/ijms26167701 - 9 Aug 2025
Viewed by 470
Abstract
Focal adhesions (FAs) are multi-protein complexes that mediate cell attachment to the extracellular matrix. Their formation and maturation depend on intracellular tension generated by actin filaments interacting with phosphorylated myosin II. Using live-cell and confocal microscopy, we investigated how FA dynamics are regulated [...] Read more.
Focal adhesions (FAs) are multi-protein complexes that mediate cell attachment to the extracellular matrix. Their formation and maturation depend on intracellular tension generated by actin filaments interacting with phosphorylated myosin II. Using live-cell and confocal microscopy, we investigated how FA dynamics are regulated by actin polymerization and myosin II-driven contractility. We found that knockdown of myosin II resulted in complete and irreversible disassembly of FAs. However, partial inhibition of myosin II, through either ROCK or myosin light chain kinase (MLCK) inhibitors, leads to gradual FA shrinkage. In contrast, complete inhibition of myosin II phosphorylation causes disassembly of existing FAs, followed by the formation of new, small FAs at the cell periphery. In both cases, FAs formed after inhibition of myosin II phosphorylation exhibited significantly longer lifespans than FAs in control cells. Similarly, partial inhibition of actin polymerization using nanomolar concentrations of latrunculin B or cytochalasin D also promoted the formation of small FAs. Complete and irreversible FA disassembly occurred only when actin filaments were fully disrupted, leading to cell lamella retraction. These findings suggest that actin polymerization at the cell edge is the minimal and sufficient requirement for the assembly of small FAs. Notably, our data demonstrate for the first time that perturbation of the actin–myosin system results in stabilization and prolonged lifespan of small FAs, whereas larger FAs, formed in the presence of myosin II activity, are more dynamic. Together, these results emphasize the essential role of cortical actin organization and myosin II phosphorylation in the maintenance and turnover of FAs. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 5071 KB  
Article
Bioactive Phenolics from Vinegar–Egg Accelerates Acute Wound Healing by Activation of Focal Adhesion and Mitogen-Activated Protein Kinase Signaling
by Taehoon Oh, Chan Hee Cho, Su Cheol Baek, Mun Seok Jo, Woo Bong Kang, Yun Seok Kang, Sung-Kyun Ko and Ki Hyun Kim
Nutrients 2025, 17(16), 2584; https://doi.org/10.3390/nu17162584 - 8 Aug 2025
Viewed by 358
Abstract
Background/Objectives: Vinegar–egg is a traditional health-promoting beverage prepared by soaking eggs in vinegar. While both eggs and vinegar are common dietary components with well-documented nutritional and pharmacological activities, eggs treated with vinegar have been rarely studied. This study aims to identify and characterize [...] Read more.
Background/Objectives: Vinegar–egg is a traditional health-promoting beverage prepared by soaking eggs in vinegar. While both eggs and vinegar are common dietary components with well-documented nutritional and pharmacological activities, eggs treated with vinegar have been rarely studied. This study aims to identify and characterize bioactive compounds in vinegar–egg and investigate their potential wound-healing activities. Methods: The vinegar–egg extract was analyzed using liquid chromatography–mass spectrometry (LC–MS) and column chromatography, including HPLC purification, which led to the isolation of four phenolic compounds. Results: These compounds were identified as 4-hydroxybenzoic acid (1), vanillic acid (2), methyl syringate (3), and leptosperin (4) using ESI-MS, UV, and NMR spectroscopic data. Among the isolates, 4-hydroxybenzoic acid (1) and vanillic acid (2) demonstrated wound-healing properties in mouse embryonic fibroblast (MEF) cells. None of the compounds, 4-hydroxybenzoic acid (1), vanillic acid (2), methyl syringate (3), or leptosperin (4), exhibited cytotoxicity in PC12, AGS, MEF, or MDA-MB-231 cells. Notably, 4-hydroxybenzoic acid (1) enhanced cell motility by 2.59-fold and cell invasion by 1.20-fold, while vanillic acid (2) increased cell motility by 2.69-fold and cell invasion by 1.23-fold. Western blot analysis revealed that treatment with 4-hydroxybenzoic acid (1) and vanillic acid (2) increased the phosphorylation of focal adhesion kinase (p-FAK) and matrix metalloproteinase 2 (MMP-2). Furthermore, both compounds elevated the phosphorylation of p38, a key regulator in wound-healing pathways. Conclusions: These findings demonstrate that 4-hydroxybenzoic acid (1) and vanillic acid (2) accelerate wound healing through the activation of focal adhesion and mitogen-activated protein kinase (MAPK) signaling pathways. These results highlight vinegar–egg as a promising therapeutic candidate for wound healing. Full article
(This article belongs to the Special Issue Effects of Plant Extracts on Human Health—2nd Edition)
Show Figures

Figure 1

Back to TopTop