Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (201)

Search Parameters:
Keywords = fractal aggregates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 8960 KB  
Article
Analysis on Durability of Bentonite Slurry–Steel Slag Foam Concrete Under Wet–Dry Cycles
by Guosheng Xiang, Feiyang Shao, Hongri Zhang, Yunze Bai, Yuan Fang, Youjun Li, Ling Li and Yang Ming
Buildings 2025, 15(19), 3550; https://doi.org/10.3390/buildings15193550 - 2 Oct 2025
Abstract
Wet–dry cycles are a key factor aggravating the durability degradation of foam concrete. To address this issue, this study prepared bentonite slurry–steel slag foam concrete (with steel slag and cement as main raw materials, and bentonite slurry as admixture) using the physical foaming [...] Read more.
Wet–dry cycles are a key factor aggravating the durability degradation of foam concrete. To address this issue, this study prepared bentonite slurry–steel slag foam concrete (with steel slag and cement as main raw materials, and bentonite slurry as admixture) using the physical foaming method. Based on 7-day unconfined compressive strength tests with different mix proportions, the optimal mix proportion was determined as follows: mass ratio of bentonite to water 1:15, steel slag content 10%, and mass fraction of bentonite slurry 5%. Based on this optimal mix proportion, dry–wet cycle tests were carried out in both water and salt solution environments to systematically analyze the improvement effect of steel slag and bentonite slurry on the durability of foam concrete. The results show the following: steel slag can act as fine aggregate to play a skeleton role; after fully mixing with cement paste, it wraps the outer wall of foam, which not only reduces foam breakage but also inhibits the formation of large pores inside the specimen; bentonite slurry can densify the interface transition zone, improve the toughness of foam concrete, and inhibit the initiation and propagation of matrix cracks during the dry–wet cycle process; the composite addition of the two can significantly enhance the water erosion resistance and salt solution erosion resistance of foam concrete. The dry–wet cycle in the salt solution environment causes more severe erosion damage to foam concrete. The main reason is that, after chloride ions invade the cement matrix, they erode hydration products and generate expansive substances, thereby aggravating the matrix damage. Scanning Electron Microscopy (SEM) analysis shows that, whether in water environment or salt solution environment, the fractal dimension of foam concrete decreased slightly with an increasing number of wet–dry cycle times. Based on fractal theory, this study established a compressive strength–porosity prediction model and a dense concrete compressive strength–dry–wet cycle times prediction model, and both models were validated against experimental data from other researchers. The research results can provide technical support for the development of durable foam concrete in harsh environments and the high-value utilization of steel slag solid waste, and are applicable to civil engineering lightweight porous material application scenarios requiring resistance to dry–wet cycle erosion, such as wall bodies and subgrade filling. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

26 pages, 8999 KB  
Article
Experimental Study on Overlay Tester of Asphalt Mixture Based on Discrete Element Method
by Jianhui Wei, Xiangyang Fan and Tao Fu
Coatings 2025, 15(9), 1097; https://doi.org/10.3390/coatings15091097 - 19 Sep 2025
Viewed by 255
Abstract
To evaluate the feasibility of a virtual overlay tester (OT), a modeling approach was proposed based on the discrete element method (DEM). Simulations were conducted on three types of asphalt mixtures across three different thickness conditions. Through the analysis of the load/displacement curves, [...] Read more.
To evaluate the feasibility of a virtual overlay tester (OT), a modeling approach was proposed based on the discrete element method (DEM). Simulations were conducted on three types of asphalt mixtures across three different thickness conditions. Through the analysis of the load/displacement curves, crack propagation paths, force chains, and contact force characteristics, it was observed that the peak loads decrease with increasing thicknesses, indicating a notable size effect. The complexity of the crack path was positively correlated with the particle size along the path and the fractal dimension. Coarse aggregates can inhibit crack propagation to some extent. Prior to reaching the peak load, compressive force chains in asphalt concrete-13 (AC13) and large stone porous asphalt mixture-30 (LSPM30) exhibited a symmetrical and divergent distribution along the crack, while tensile force chains formed an arch-like pattern. After the peak load, compressive force chains were symmetrically distributed in an arch shape along the crack. In stone mastic asphalt-13 (SMA13), compressive forces were transmitted along coarse aggregates, forming several continuous vertical paths. The proportion of strong compressive force chains to total compressive force chains across the three gradations ranged from 0.74 to 0.83, while the corresponding proportion for tensile force chains ranged from 0.72 to 0.78. Full article
(This article belongs to the Special Issue Novel Cleaner Materials for Pavements)
Show Figures

Figure 1

22 pages, 6875 KB  
Article
Comparative Analysis of Particle Size Characteristics of Calcareous Soils Under Cultivated and Natural Conditions Based on Fractal Theory
by Yilong Li, Zongheng Xu, Hongchen Ye, Jianjiao Bai, Xirui Dai and Yun Zeng
Agriculture 2025, 15(17), 1858; https://doi.org/10.3390/agriculture15171858 - 31 Aug 2025
Viewed by 407
Abstract
This study examines the particle size distribution (PSD) of calcareous soils under cultivated and natural conditions in Chenggong District of Kunming, Yunnan Province, China, using single-fractal and multifractal analyses. Soil samples were collected from the profiles of both land use types, and the [...] Read more.
This study examines the particle size distribution (PSD) of calcareous soils under cultivated and natural conditions in Chenggong District of Kunming, Yunnan Province, China, using single-fractal and multifractal analyses. Soil samples were collected from the profiles of both land use types, and the PSD parameters, organic matter, and total nitrogen were determined. Single-fractal analysis showed that the single-fractal dimension (D) was mainly influenced by the clay content, with higher clay fractions corresponding to larger D values. The generalized dimension spectrum revealed clear differences between natural and cultivated soils: natural soils exhibited greater sensitivity to probability density weight index(q) changes and a more compact particle distribution, whereas cultivation led to broader PSD ranges and higher heterogeneity. The ratio D1/D0 was negatively correlated with the clay content, and multifractal spectrum asymmetry (Δf) indicated that fine particles dominate the variability in deeper layers. Compared with natural soils, cultivated soils had higher organic matter and total nitrogen, reflecting the influence of fertilization and tillage on the soil aggregation and PSD. These findings demonstrate that fractal theory provides a sensitive tool for characterizing soil structural complexity and land use impacts, offering a theoretical basis for soil quality assessment and the sustainable management of calcareous soils. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

18 pages, 6559 KB  
Article
Fractal-Based Non-Linear Assessment of Crack Propagation in Recycled Aggregate Concrete Using 3D Response Surface Methodology
by Xiu-Cheng Zhang and Xue-Fei Chen
Fractal Fract. 2025, 9(9), 568; https://doi.org/10.3390/fractalfract9090568 - 29 Aug 2025
Viewed by 405
Abstract
This study investigates the fracture behavior of recycled aggregate concrete by integrating fractal theory and empirical modeling to quantify how recycled coarse aggregates (RCAs) and recycled fine aggregates (RFAs) influence crack complexity and maximum crack width under varying content and loads. The results [...] Read more.
This study investigates the fracture behavior of recycled aggregate concrete by integrating fractal theory and empirical modeling to quantify how recycled coarse aggregates (RCAs) and recycled fine aggregates (RFAs) influence crack complexity and maximum crack width under varying content and loads. The results reveal distinct scale-dependent behaviors between RCA and RFA. For RCA, moderate dosages enhance fractal complexity (a measure of surface roughness) by promoting micro-crack proliferation, while excessive RCA reduces complexity due to matrix homogenization. In contrast, RFA significantly increases both fractal complexity and crack width under equivalent loads, reflecting its susceptibility to micro-scale interfacial transition zone (ITZ) degradation. Non-linear thresholds are identified: RCA’s fractal complexity plateaus at high loads as cracks coalesce into fewer dominant paths, while RFA’s crack width growth decelerates at extreme dosages due to balancing effects like particle packing. Empirical models link aggregate dosage and load to fractal dimension and crack width with high predictive accuracy (R2 > 0.85), capturing interaction effects such as RCA’s load-induced complexity reduction and RFA’s load-driven crack width amplification. Secondary analyses further demonstrate that fractal dimension correlates with crack width through non-linear relationships, emphasizing the coupled nature of micro- and macro-scale damage. These findings challenge conventional design assumptions by differentiating the impacts of RCA (macro-crack coalescence) and RFA (micro-crack proliferation), providing actionable thresholds for optimizing mix designs. The study also advances sustainable material design by offering a scientific basis for updating standards to accommodate higher recycled aggregate percentages, supporting circular economy goals through reduced carbon emissions and waste diversion, and laying the groundwork for resilient, low-carbon infrastructure. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

23 pages, 3759 KB  
Article
Intra-Aggregate Pore Network Stability Following Wetting-Drying Cycles in a Subtropical Oxisol Under Contrasting Managements
by Everton de Andrade, Talita R. Ferreira, José V. Gaspareto and Luiz F. Pires
Agriculture 2025, 15(16), 1725; https://doi.org/10.3390/agriculture15161725 - 11 Aug 2025
Viewed by 442
Abstract
One type of pore fundamental to water dynamics is the intra-aggregate pore, which holds water vital for plant and root system development, mainly in finer-textured soils such as clays. The distribution of intra-aggregate pores also influences the redistribution of water. Thus, it is [...] Read more.
One type of pore fundamental to water dynamics is the intra-aggregate pore, which holds water vital for plant and root system development, mainly in finer-textured soils such as clays. The distribution of intra-aggregate pores also influences the redistribution of water. Thus, it is important to study the dynamics of the intra-aggregate pore network under processes such as wetting and drying cycles (WDC). Changes in these pore types can play essential roles in organic matter protection, water movement, microbial activity, and aggregate stability. To date, there are few studies analyzing the impact of WDC on intra-aggregate pore dynamics. This study aims to provide results in this regard, analyzing changes in the pore architecture of a subtropical Oxisol under no-tillage (NT), conventional tillage (CT), and forest (F) after WDC application. Three-dimensional X-Ray microtomography images of soil aggregate samples (2–4 mm) subjected to 0 and 12 WDC were analyzed. The results showed that WDC did not affect (p > 0.05) the imaged porosity, number of pores, fractal dimension, tortuosity, and pore connectivity for the different soil management types. To analyze the permeability and hydraulic conductivity of the soil pore system, the most voluminous pore (MVP) was examined. No differences were observed in the imaged porosity, fraction of aggregate occupied by the MVP, connectivity, tortuosity, hydraulic radius, permeability, and hydraulic conductivity between 0 and 12 WDC for the MVP. Comparing soil management types after 12 WDCs, for example, F samples became more porous than CT and NT samples. In contrast, the pore system of NT had a lower fractal dimension and was more tortuous than that of CT and F samples. Our results show that for highly weathered soils such as the Brazilian Oxisol studied, the intra-aggregate pore network proved resistant to changes with WDC, regardless of the type of management adopted. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

10 pages, 403 KB  
Proceeding Paper
Assessing the Oil Price–Exchange Rate Nexus: A Switching Regime Evidence Using Fractal Regression
by Sami Diaf and Rachid Toumache
Comput. Sci. Math. Forum 2025, 11(1), 7; https://doi.org/10.3390/cmsf2025011007 - 31 Jul 2025
Viewed by 202
Abstract
Oil, as a key commodity in international markets, bears an importance for both producers and consumers. For oil-exporting countries, periodic fluctuations have a considerable impact on the economic status and the way monetary and fiscal policies should be conducted in the future. While [...] Read more.
Oil, as a key commodity in international markets, bears an importance for both producers and consumers. For oil-exporting countries, periodic fluctuations have a considerable impact on the economic status and the way monetary and fiscal policies should be conducted in the future. While most of academic efforts tried to link low-frequency real exchange rate with macroeconomic fundamentals for medium-/long-term inference, they omitted to gauge the volatile and complex high-frequency linkage between oil prices and exchange rate fluctuations. The inherent non-linear characteristics of such time series preclude the use of traditional tools or aggregated schemes based on lower frequencies for inference purposes. This work investigates the scale-based volatile linkage between daily international oil fluctuations and nominal exchange rate variations of an oil-exporting country, namely Algeria, by adopting a fractal regression approach to uncover the power-law, time-varying transmission and track its incidence in the short and long runs. Results show the absence of any short-term transmission mechanism from oil prices to the exchange rate, as the two variables remain decoupled but exhibit an increasing negative correlation when long scales are considered. Furthermore, the multiscale regression analysis confirms the existence of a scale-free, two-state Markov switching regime process generating short- and long-term impacts with sizeable amplitudes. The findings confirm the usefulness of monetary policy interventions to stabilize the local currency, as the source of Dollar–Dinar multifractality was found to be the probability distribution of observations rather than long-range correlations specific to oil prices. Full article
Show Figures

Figure 1

17 pages, 4072 KB  
Article
Mechanistic Insights into Brine Domain Assembly Regulated by Natural Potential Field: A Molecular Dynamics Exploration in Porous Media
by Xiaoman Leng, Yajun Wang, Yueying Wang, Zhixue Sun, Shuangyan Kou, Ruidong Wu, Yifan Xu and Yufeng Jiang
Processes 2025, 13(8), 2355; https://doi.org/10.3390/pr13082355 - 24 Jul 2025
Viewed by 265
Abstract
The behavior of brine solution in the porous media of the strata is of great significance for geological environment regulation. In this study, a molecular dynamics model with silicon dioxide walls was constructed to reveal the regulatory mechanism of the natural potential of [...] Read more.
The behavior of brine solution in the porous media of the strata is of great significance for geological environment regulation. In this study, a molecular dynamics model with silicon dioxide walls was constructed to reveal the regulatory mechanism of the natural potential of the electric field on cluster aggregation. It was found that the critical electric field intensity was 7 V/m. When the electric field intensity was lower than this value, the aggregation rate was only increased by 0.73 times due to thermal motion; when it was higher than this value, the rate increased sharply by 3.2 times due to the dominant effect of electric field force. The microscopic structure analysis indicated that the strong electric field induced the transformation of clusters from fractal structure into an amorphous structure (the index of the order degree increased by 58%). The directional regulation experiments confirmed that the axial electric field led to anisotropic growth (the index of uniformity increased by 0.58 ± 0.04), and the rotational electric field could achieve a three-dimensional uniform distribution (the index of uniformity increased by 42%). This study provides theoretical support for the regulation of brine behavior and the optimization of geological energy storage. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 4263 KB  
Article
Quantitative Fractal Analysis of Fracture Mechanics and Damage Evolution in Recycled Aggregate Concrete Beams: Investigation of Dosage-Dependent Mechanical Response Under Incremental Load
by Xiu-Cheng Zhang and Xue-Fei Chen
Fractal Fract. 2025, 9(7), 454; https://doi.org/10.3390/fractalfract9070454 - 11 Jul 2025
Cited by 1 | Viewed by 551
Abstract
This study investigated the fracture behavior of concrete beams with recycled coarse aggregate (RCA) and recycled fine aggregate (RFA) using the box-counting method to measure crack fractal dimensions under load. Beams with RCA showed higher fractal dimensions due to RCA’s lower elastic moduli [...] Read more.
This study investigated the fracture behavior of concrete beams with recycled coarse aggregate (RCA) and recycled fine aggregate (RFA) using the box-counting method to measure crack fractal dimensions under load. Beams with RCA showed higher fractal dimensions due to RCA’s lower elastic moduli and compressive strengths, resulting in reduced deformation resistance, ductility, and more late-stage crack propagation. A direct proportional relationship existed between RCA/RFA replacement ratios and crack fractal dimensions. Second-order and third-order polynomial trend surface-fitting techniques were applied to examine the complex relationships among RFA/RCA dosage, applied load, and crack fractal dimension. The results indicated that the RFA dosage had a negative quadratic influence, while load had a positive linear effect, with dosage impact increasing with load. A second-order functional relationship was found between mid-span deflection and crack fractal dimension, reflecting nonlinear behavior consistent with concrete mechanics. This study enhances the understanding of recycled aggregate concrete beam fracture behavior, with the crack fractal dimension serving as a valuable quantitative indicator for damage state and crack complexity assessment. These findings are crucial for engineering design and application, enabling better evaluation of structural performance under various conditions. Full article
(This article belongs to the Section Engineering)
Show Figures

Figure 1

20 pages, 4257 KB  
Article
Photocatalytic Degradation of Toxic Dyes on Cu and Al Co-Doped ZnO Nanostructured Films: A Comparative Study
by Nadezhda D. Yakushova, Ivan A. Gubich, Andrey A. Karmanov, Alexey S. Komolov, Aleksandra V. Koroleva, Ghenadii Korotcenkov and Igor A. Pronin
Technologies 2025, 13(7), 277; https://doi.org/10.3390/technologies13070277 - 1 Jul 2025
Viewed by 514
Abstract
The article suggests a simple one-step sol–gel method for synthesizing nanostructured zinc oxide films co-doped with copper and aluminum. It shows the possibility of forming hierarchical ZnO:Al:Cu nanostructures combining branches of different sizes and ranks and quasi-spherical fractal aggregates. It demonstrates the use [...] Read more.
The article suggests a simple one-step sol–gel method for synthesizing nanostructured zinc oxide films co-doped with copper and aluminum. It shows the possibility of forming hierarchical ZnO:Al:Cu nanostructures combining branches of different sizes and ranks and quasi-spherical fractal aggregates. It demonstrates the use of the synthesized samples as highly efficient photocatalysts providing the decomposition of toxic dyes (methyl orange) under the action of both ultraviolet radiation and visible light. It establishes the contribution of the average crystallite size, the proportion of zinc atoms in the crystalline phase, their nanostructure, as well as X-ray amorphous phases of copper and aluminum to the efficiency of the photocatalysis process. Full article
(This article belongs to the Section Environmental Technology)
Show Figures

Graphical abstract

18 pages, 606 KB  
Article
A Permutation Entropy Method for Sleep Disorder Screening
by Cristina D. Duarte, Marcos M. Meo, Francisco R. Iaconis, Alejandro Wainselboim, Gustavo Gasaneo and Claudio Delrieux
Brain Sci. 2025, 15(7), 691; https://doi.org/10.3390/brainsci15070691 - 27 Jun 2025
Cited by 1 | Viewed by 615
Abstract
Background/Objectives: We present a novel approach for detecting generalized sleep pathologies through the fractal analysis of single-channel electroencephalographic (EEG) signals. We propose that the fractal scaling exponent of permutation entropy time series serves as a robust biomarker of pathological sleep patterns, capturing alterations [...] Read more.
Background/Objectives: We present a novel approach for detecting generalized sleep pathologies through the fractal analysis of single-channel electroencephalographic (EEG) signals. We propose that the fractal scaling exponent of permutation entropy time series serves as a robust biomarker of pathological sleep patterns, capturing alterations in brain dynamics across multiple disorders. Methods: Using two public datasets (Sleep-EDF and CAP Sleep Database) comprising 200 subjects (112 healthy controls and 88 patients with various sleep pathologies), we computed the fractal scaling of the permutation entropy of these signals. Results: The results demonstrate significantly reduced scaling exponents in pathological sleep compared to healthy controls (mean = 1.24 vs. 1.06, p<0.001), indicating disrupted long-range temporal correlations in neural activity. The method achieved 90% classification accuracy for rapid-eye-movement (REM) sleep behavior disorder (F1-score: 0.89) and maintained 74% accuracy when aggregating all pathologies (insomnia, narcolepsy, sleep-disordered breathing, etc.). Conclusions: The advantages of this approach, including compatibility with single-channel EEG (enabling potential wearable applications), independence from sleep-stage annotations, and generalizability across recording montages and sampling rates, stablish a framework for non-specific sleep pathology detection. This is a computationally efficient method that could transform screening protocols and enable earlier intervention. The robustness of this biomarker could enable straightforward clinical applications for common sleep pathologies as well as diseases associated with neurodegenerative conditions. Full article
(This article belongs to the Special Issue Clinical Research on Sleep Disorders: Opportunities and Challenges)
Show Figures

Figure 1

10 pages, 1750 KB  
Article
Local Fractional Modeling of Microorganism Physiology Arising in Wastewater Treatment: Lawrence–McCarty Model in Cantor Sets
by Yiming Wang, Yiying Feng, Xiurong Xu and Shoubo Jin
Fractal Fract. 2025, 9(7), 413; https://doi.org/10.3390/fractalfract9070413 - 25 Jun 2025
Viewed by 545
Abstract
Water pollution from industrial and domestic sewage demands the accurate modeling of wastewater treatment processes. While the Lawrence–McCarty model is widely used for activated sludge systems, its integer-order formulation cannot fully capture the fractal characteristics of microbial aggregation. This study proposed a fractal [...] Read more.
Water pollution from industrial and domestic sewage demands the accurate modeling of wastewater treatment processes. While the Lawrence–McCarty model is widely used for activated sludge systems, its integer-order formulation cannot fully capture the fractal characteristics of microbial aggregation. This study proposed a fractal Lawrence–McCarty model (FLMM) by incorporating local fractional derivatives (α = ln2/ln3) to describe microbial growth dynamics on Cantor sets. Theoretical analysis reveals that the FLMM exhibits Mittag-Leffler-type solutions, which naturally generate step-wise growth curves—consistent with the phased behavior (lag, rapid growth, and stabilization) observed in real sludge systems. Compared with classical models, the FLMM’s fractional-order structure provides a more flexible framework to represent memory effects and spatial heterogeneity in microbial communities. These advances establish a mathematical foundation for future experimental validation and suggest potential improvements in predicting nonlinear biomass accumulation patterns. Full article
Show Figures

Figure 1

17 pages, 4464 KB  
Article
Multiscale Evaluation System for Cold Patch Asphalt Mixtures: Integrating Macro-Performance Tests and Meso-Structural CT Analysis
by Wenbin Xie, Li Li and Runzhi Yang
Appl. Sci. 2025, 15(13), 7121; https://doi.org/10.3390/app15137121 - 24 Jun 2025
Viewed by 348
Abstract
The absence of standardized evaluation criteria for cold patch asphalt mixtures (CPAMs) leads to arbitrary material selection in pavement pothole repair, resulting in premature failure and recurrent damage. This study develops a comprehensive evaluation framework combining macro-performance tests with X-ray computed tomography (CT)-based [...] Read more.
The absence of standardized evaluation criteria for cold patch asphalt mixtures (CPAMs) leads to arbitrary material selection in pavement pothole repair, resulting in premature failure and recurrent damage. This study develops a comprehensive evaluation framework combining macro-performance tests with X-ray computed tomography (CT)-based meso-structural analysis. The macroscopic evaluation system incorporates six key parameters: aggregate gradation, binder–aggregate ratio, penetration strength, molding strength, residual rate, and stability retention. The CT-based meso-structural assessment quantifies void characteristics (longitudinal distribution, radial distribution, fractal dimension) and aggregate skeleton features (contact points, coordination number) through 3D reconstruction. Experimental results demonstrate that optimizing asphalt content (4.5–4.7%) with adjusted critical aggregate fractions (4.75 mm:35.0–45.0%; 2.36 mm:30.0–40.0%; 13.2 mm:1.0–1.2%; 9.5 mm:10.0–15.0%) significantly enhances repair durability. The established multiscale evaluation methodology provides a theoretical foundation for developing standardized CPAM quality specifications, particularly in emergency maintenance scenarios. Full article
Show Figures

Figure 1

15 pages, 2577 KB  
Article
Rapeseed Green Manure Coupled with Biochar and Vermicompost Enhances Soil Aggregates and Fungal Communities in Gleyed Paddy Fields
by Zhenhao Zhu, Shihong Gao, Yuhao Zhang, Guohan Si, Xiangyu Xu, Chenglin Peng, Shujun Zhao, Wei Liu, Qiang Zhu and Mingjian Geng
Agronomy 2025, 15(7), 1510; https://doi.org/10.3390/agronomy15071510 - 21 Jun 2025
Viewed by 552
Abstract
The gleyed paddy soils in subtropical China, characterized by poor structure, high reductive substances, and low fertility, pose challenges to sustainable agriculture. This study investigates the improvement effects of applying rapeseed green manure in combination with biochar or vermicompost through field experiments, aiming [...] Read more.
The gleyed paddy soils in subtropical China, characterized by poor structure, high reductive substances, and low fertility, pose challenges to sustainable agriculture. This study investigates the improvement effects of applying rapeseed green manure in combination with biochar or vermicompost through field experiments, aiming to provide a theoretical basis for the organic improvement of gleyed paddy soils. The experiment included four treatments: control (CK), rapeseed green manure (GM), GM + biochar (GMB), and GM + vermicompost (GMVC). Soil physicochemical properties, aggregate stability, and fungal communities were analyzed after rice harvest. GM significantly increased the total nitrogen (TN) content in the 0–10 cm soil layer and decreased the Fe2+ and total glomalin-related soil protein (T-GRSP) contents. GMVC further increased the pH value, available potassium (AK) content, and Shannon index in the 0–10 cm soil layer, decreased the available phosphorus (AP) content, and increased the proportion of macro-aggregates (>2000 µm) and decreased the fractal dimension (D) in the 10–20 cm soil layer. Compared with GMVC, GMB more significantly increased the soil organic carbon content and regulated the ratio of EE-GRSP/T-GRSP in the 0–10 cm soil layer. Fungal community analysis showed Ascomycota dominance. Pearson analysis showed Westerdykella enrichment significantly correlated with reduced T-GRSP. Monte Carlo tests identified pH and SOC as key factors shaping fungal communities. The GMB strategy mitigates reductive stress, enhances nutrient availability, and activates microbial functionality. These findings offer insights and frameworks for sustainable soil management in subtropical rice agroecosystems. Full article
Show Figures

Figure 1

19 pages, 3711 KB  
Article
Sustainable Strategy to Reduce Winter Energy Consumption: Incorporating PCM Aggregates and Rice Husk Ash–Fly Ash Matrix into Concrete
by Mingming Zhang, Shan Gao, Jin Xu, Lidong Wang, Mengyan Xu and Honghao Ying
Buildings 2025, 15(12), 2086; https://doi.org/10.3390/buildings15122086 - 17 Jun 2025
Viewed by 427
Abstract
This study improved the thermal damping of concrete with rice husk ash (RHA)–fly ash (FA) matrix and three phase-change material (PCM) aggregates with phase change temperatures between −15 and 5 °C, which are expected to reduce winter energy consumption in cold regions when [...] Read more.
This study improved the thermal damping of concrete with rice husk ash (RHA)–fly ash (FA) matrix and three phase-change material (PCM) aggregates with phase change temperatures between −15 and 5 °C, which are expected to reduce winter energy consumption in cold regions when used as building envelope structures. Firstly, the strength of concrete was studied. Secondly, the dynamic and transient thermal response of concrete was evaluated through thermal conductivity and thermal diffusivity. Based on nuclear magnetic resonance experiments, the changes in the pore volume and fractal dimension of RHA–FA matrix and PCM aggregate added to concrete were studied. Through correlation analysis, a macroscopic performance prediction model based on pore characteristics was obtained. The results indicated that the incorporation of PCM aggregate reduced concrete strength, while an appropriate RHA–FA matrix contributed to enhancing concrete strength. Both the PCM aggregate and RHA–FA matrix were beneficial for improving the thermal damping properties of concrete. For 15% RHA–30% FA 100% PCM concrete, the thermal conductivity can be reduced by 53%, the thermal diffusivity can be reduced by 64%, the limiting temperature decreased by 5.5 °C, and the thermal damping coefficient increased by 48%. The nuclear magnetic resonance test results showed that PCM aggregate increased the pore volume and decreased the fractal dimension, while an appropriate RHA–FA matrix helped to reduce the pore volume. The macroscopic properties of RHA–FA–PCM aggregate concrete were highly correlated with the capillary pore volume and fractal dimension. A two-parameter prediction model based on pore characteristics can effectively predict the macroscopic properties of concrete. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop