Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (925)

Search Parameters:
Keywords = frequency multiplexing

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3388 KB  
Article
Impact of Alien Chromosome Introgression from Thinopyrum ponticum on Wheat Grain Traits
by Shuwei Zhang, Yu Zhang, Ting Hu, Linying Li, Zihao Wang, Linyi Qiao, Lifang Chang, Xin Li, Zhijian Chang, Peng Zhang and Xiaojun Zhang
Plants 2025, 14(19), 3072; https://doi.org/10.3390/plants14193072 (registering DOI) - 4 Oct 2025
Abstract
Structural variation (SV) serves as a fundamental driver of phenotypic diversity and environmental adaptation in plants and animals, significantly influencing key agronomic traits in crops. Common wheat (Triticum aestivum L.), an allohexaploid species, harbors extensive chromosomal SVs and distant hybridization-induced recombination events [...] Read more.
Structural variation (SV) serves as a fundamental driver of phenotypic diversity and environmental adaptation in plants and animals, significantly influencing key agronomic traits in crops. Common wheat (Triticum aestivum L.), an allohexaploid species, harbors extensive chromosomal SVs and distant hybridization-induced recombination events that provide critical resources for genetic improvement. This study utilizes non-denaturing fluorescence in situ hybridization (ND-FISH) and oligonucleotide multiplex probe-based FISH (ONPM-FISH) to analyze the karyotypes of 153 BC1F4–BC1F6 lines derived from the hybrid line Xiaoyan 7430 and common wheat Yannong 1212. The results revealed that Xiaoyan 7430 carries 8 alien chromosome pairs and 20 wheat chromosome pairs (lacking 6B), and Yannong 1212 contains 21 pairs of wheat chromosomes. The parental lines exhibited presence/absence variations (PAVs) on chromosomes 2A, 6A, 5B, 1D, and 2D. Chromosomal variations, including numerical chromosomal variation (NCV), structural chromosomal variation (SCV), and complex chromosomal variation (CCV), were detected in the progeny lines through ONPM-FISH analysis. The tracking of alien chromosomes over three consecutive generations revealed a significant decrease in transmission frequency, declining from 61.82% in BC1F4 to 26.83% in BC1F6. Telosomes were also lost during transmission, declining from 21.82% in BC1F4 to 9.76% in BC1F6. Alien chromosome 1JS, 4J, and 6J exhibited the highest transmission stability and were detected across all three generations. Association analysis showed that YN-PAV.2A significantly affected the length/width ratio (LWR) and grain diameter (GD); YN-PAV.6A, XY-PAV.6A, and PAV.5B increased six grain traits (+2.25%~15.36%); YN-PAV.1D negatively affected grain length (GL) and grain circumference (GC); and XY-PAV.2D exerted positive effects on thousand-grain weight (TGW). Alien chromosomes differentially modulated grain characteristics: 1JS and 6J both reduced grain length and grain circumference; 1JS increased LWR; and 4J negatively impacted TGW, grain width (GW), GD, and grain area (GA). Meanwhile, increasing alien chromosome numbers correlated with progressively stronger negative effects on grain traits. These findings elucidate the genetic mechanisms underlying wheat chromosomal variations induced by distant hybridization and their impact on wheat grain traits, and provide critical intermediate materials for genome design breeding and marker-assisted selection in wheat improvement. Full article
(This article belongs to the Section Plant Molecular Biology)
Show Figures

Figure 1

29 pages, 6557 KB  
Article
A Carrier Frequency Offset Estimation Scheme for Underwater Acoustic MIMO-OFDM Communication Based on Sparse Bayesian Learning-Assisted Tentative Channel Estimation
by Zhijiang Liu, Lijun Xu, Hongming Zhang and Qingqing Zhao
Appl. Sci. 2025, 15(19), 10712; https://doi.org/10.3390/app151910712 (registering DOI) - 4 Oct 2025
Abstract
Carrier frequency offset (CFO) estimation is crucial for underwater acoustic (UWA) multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) systems. By employing pilot symbols, a CFO estimation scheme utilizing least squares (LS)-based tentative channel estimation and equalization can achieve an improved CFO estimation performance. However, [...] Read more.
Carrier frequency offset (CFO) estimation is crucial for underwater acoustic (UWA) multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) systems. By employing pilot symbols, a CFO estimation scheme utilizing least squares (LS)-based tentative channel estimation and equalization can achieve an improved CFO estimation performance. However, it suffers from performance degradation due to inaccurate tentative channel estimation in scenarios with relatively long channels or a relatively large number of transmitting transducers. To address this problem, we propose a sparse Bayesian learning (SBL)-based CFO estimation scheme, which employs the expectation-maximization SBL (EM-SBL) algorithm as the tentative channel estimator. In addition, to reduce computational complexity caused by matrix inversion, a refined scheme employing variational Bayesian inference (VBI) technology is proposed, which achieves comparable performance to the original scheme with lower complexity. Finally, numerical simulations demonstrate that our proposed schemes can achieve a remarkably low root mean square error (below 102) and outperform existing methods across diverse system configurations and simulated channels. Full article
Show Figures

Figure 1

16 pages, 689 KB  
Article
Investigation of Polarization Division Multiplexed CVQKD Based on Coherent Optical Transmission Structure
by Wenpeng Gao, Jianjun Tang, Tianqi Dou, Peizhe Han, Yuanchen Hao and Weiwen Kong
Photonics 2025, 12(10), 954; https://doi.org/10.3390/photonics12100954 - 25 Sep 2025
Abstract
Employing commercial off-the-shelf coherent optical transmission components and methods to design a continuous variable quantum key distribution (CVQKD) system is a promising trend of achieving QKD with high security key rate (SKR) and cost-effectiveness. In this paper, we explore a CVQKD system based [...] Read more.
Employing commercial off-the-shelf coherent optical transmission components and methods to design a continuous variable quantum key distribution (CVQKD) system is a promising trend of achieving QKD with high security key rate (SKR) and cost-effectiveness. In this paper, we explore a CVQKD system based on the widely used polarization division multiplexed (PDM) coherent optical transmission structure and pilot-aided digital signal processing methods. A simplified pilot-aided phase noise compensation scheme based on frequency division multiplexing (FDM) is proposed, which introduces less total excess noise than classical pilot-aided schemes based on time division multiplexing (TDM). In addition, the two schemes of training symbol (TS)-aided equalization are compared to find the optimal strategy for TS insertion, where the scheme based on block insertion strategy can provide the SKR gain of around 29%, 22%, and 15% compared with the scheme based on fine-grained insertion strategy at the transmission distance of 5 km, 25 km, and 50 km, respectively. The joint optimization of pilot-aided and TS-aided methods in this work can provide a reference for achieving a CVQKD system with a high SKR and low complexity in metropolitan-scale applications. Full article
Show Figures

Figure 1

26 pages, 2110 KB  
Article
Integrated Communication and Navigation Measurement Signal Design for LEO Satellites with Side-Tone Modulation
by Xue Li, Yujie Feng and Linshan Xue
Sensors 2025, 25(18), 5890; https://doi.org/10.3390/s25185890 - 20 Sep 2025
Viewed by 216
Abstract
This paper proposes an integrated OFDM signal system combining sidetone signals for communication and measurement, addressing the challenges of system complexity, resource waste, and interference caused by separated communication and measurement functions in traditional LEO satellite systems. The proposed approach effectively combines sidetone [...] Read more.
This paper proposes an integrated OFDM signal system combining sidetone signals for communication and measurement, addressing the challenges of system complexity, resource waste, and interference caused by separated communication and measurement functions in traditional LEO satellite systems. The proposed approach effectively combines sidetone signals with OFDM technology, utilizing different short-period coprime pseudorandom codes as pilots to form composite ranging codes, while inserting multi-frequency sidetone signals at specific subcarrier points for precise ranging. A dual-mode channel estimation algorithm is designed to merge the channel estimation results from ranging pilots and sidetone signals, significantly enhancing system performance. Additionally, an adaptive ranging mode switching mechanism based on error thresholds achieves dynamic balance between ranging accuracy and spectral efficiency. Simulation results demonstrate that the proposed system can reduce bit error rate to approximately 10−3 at 6 dB SNR, saving about 3 dB of transmission power compared to conventional pilot methods, while achieving centimeter-level ranging accuracy of approximately 0.02 m, improving precision by 3–4 orders of magnitude over traditional pilot methods. The proposed scheme provides a high-precision, high-efficiency integrated solution for LEO satellite communication systems. The theoretical performance assumes idealized conditions, with practical deployment requiring comprehensive error modeling for hardware imperfections and environmental variations. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

17 pages, 369 KB  
Article
AI-Assisted Dynamic Port and Waveform Switching for Enhancing UL Coverage in 5G NR
by Alejandro Villena-Rodríguez, Francisco J. Martín-Vega, Gerardo Gómez, Mari Carmen Aguayo-Torres, José Outes-Carnero, F. Yak Ng-Molina and Juan Ramiro-Moreno
Sensors 2025, 25(18), 5875; https://doi.org/10.3390/s25185875 - 19 Sep 2025
Viewed by 266
Abstract
The uplink of 5G networks allows selecting the transmit waveform between cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) and discrete Fourier transform spread OFDM (DFT-S-OFDM) to cope with the diverse operational conditions of the power amplifiers (PAs) in different user equipment (UEs). CP-OFDM [...] Read more.
The uplink of 5G networks allows selecting the transmit waveform between cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) and discrete Fourier transform spread OFDM (DFT-S-OFDM) to cope with the diverse operational conditions of the power amplifiers (PAs) in different user equipment (UEs). CP-OFDM leads to higher throughput when the PAs are operating in their linear region, which is mostly the case for cell-interior users, whereas DFT-S-OFDM is more appealing when PAs are exhibiting non-linear behavior, which is associated with cell-edge users. Therefore, existing waveform selection solutions rely on predefined signal-to-noise ratio (SNR) thresholds that are computed offline. However, the varying user and channel dynamics, as well as their interactions with power control, require an adaptable threshold selection mechanism. In this paper, we propose an intelligent waveform-switching mechanism based on deep reinforcement learning (DRL) that learns optimal switching thresholds for the current operational conditions. In this proposal, a learning agent aims at maximizing a function built using available throughput percentiles in real networks. Said percentiles are weighted so as to improve the cell-edge users’ service without dramatically reducing the cell average. Aggregated measurements of signal-to-noise ratio (SNR) and timing advance (TA), available in real networks, are used in the procedure. In addition, the solution accounts for the switching cost, which is related to the interruption of the communication after every switch due to implementation issues, which has not been considered in existing solutions. Results show that our proposed scheme achieves remarkable gains in terms of throughput for cell-edge users without degrading the average throughput. Full article
(This article belongs to the Special Issue Future Wireless Communication Networks: 3rd Edition)
Show Figures

Figure 1

10 pages, 2337 KB  
Article
Neutral Impact of SARS-CoV-2 Coinfection on the Recombination-Driven Evolution of Endemic HCoV-OC43
by Xueling Zheng, Yinyan Zhou, Yue Yu, Shi Cheng, Feifei Cao, Zhou Sun, Jun Li and Xinfen Yu
Viruses 2025, 17(9), 1263; https://doi.org/10.3390/v17091263 - 18 Sep 2025
Viewed by 199
Abstract
Knowledge gaps exist on whether SARS-CoV-2 co-infection alters recombination frequency or induces phylogenetic incongruities in endemic β-coronaviruses (HCoV-OC43, HCoV-HKU1), limiting our understanding of cross-species evolution. Among 7213 COVID-19 and 1590 non-COVID-19 acute respiratory cases (2021–2022) screened via multiplex PCR, β-coronavirus co-infections (SARS-CoV-2 + [...] Read more.
Knowledge gaps exist on whether SARS-CoV-2 co-infection alters recombination frequency or induces phylogenetic incongruities in endemic β-coronaviruses (HCoV-OC43, HCoV-HKU1), limiting our understanding of cross-species evolution. Among 7213 COVID-19 and 1590 non-COVID-19 acute respiratory cases (2021–2022) screened via multiplex PCR, β-coronavirus co-infections (SARS-CoV-2 + HCoV-OC43/HKU1) and single HCoV-OC43/HKU1 infections were identified. Whole-genome sequencing (Illumina NovaSeq) was performed. Phylogenies were reconstructed using Bayesian inference (MrBayes). Recombination was assessed via Bootscan analysis (SimPlot). Co-infection prevalence was low (0.51%, mainly HCoV-HKU1: 0.28%, HCoV-OC43: 0.11%). HCoV-OC43 diverged into lineage 1 (genotype K) and a novel recombinant lineage 2 (genotypes F/J/G/I segments), exhibiting accelerated evolution. HCoV-HKU1 remained genetically stable (genotype B). Co-infection status did not influence evolutionary outcomes. While SARS-CoV-2 co-infection may favor transmission of endemic HCoVs, their evolution appears driven by population-level selection, not co-infection. HCoV-OC43 underwent recombination-driven diversification, contrasting sharply with HCoV-HKU1’s stasis, highlighting distinct evolutionary strategies. Integrated genomic and clinical surveillance is critical for tracking coronavirus adaptation. Full article
(This article belongs to the Special Issue COVID-19 Complications and Co-infections)
Show Figures

Figure 1

16 pages, 7132 KB  
Article
A Radar Waveform Design Method Based on Multicarrier Phase Coding for Suppressing Autocorrelation Sidelobes
by Ji Li, Liu Ye and Wei Wang
Sensors 2025, 25(18), 5801; https://doi.org/10.3390/s25185801 - 17 Sep 2025
Viewed by 254
Abstract
Multicarrier phase-coded radar waveforms show significant potential in broadband radar applications by integrating phase coding with orthogonal frequency division multiplexing (OFDM) technology. However, their inherent high autocorrelation sidelobe levels limit system performance. To address this challenge, this paper proposes a two-stage joint optimization [...] Read more.
Multicarrier phase-coded radar waveforms show significant potential in broadband radar applications by integrating phase coding with orthogonal frequency division multiplexing (OFDM) technology. However, their inherent high autocorrelation sidelobe levels limit system performance. To address this challenge, this paper proposes a two-stage joint optimization waveform design method. In the first stage, we construct an AC-MCPC signal by introducing chaotic coding in the time domain and applying a hamming window in the frequency domain, achieving effective sidelobe suppression. In the second stage, to achieve even lower sidelobe levels, we further propose the AC-MCPC-g signal. While retaining chaotic coding in the time domain, we employ a genetic algorithm in the frequency domain to optimize the window function parameters, thereby further reducing the sidelobe levels of the AC-MCPC signal. The results indicate that the AC-MCPC signal has significantly reduced sidelobes compared to the MCPC signal, while the AC-MCPC-g signal has achieved further suppression based on the AC-MCPC. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

16 pages, 2398 KB  
Article
A Novel PTS Technique with Side Information Blind Detector Based on Minimized Error Accumulation for PAPR Reduction in Coded Underwater Acoustic OFDM Systems
by Siyu Xing, Bo Wei, Yanting Yu, Yiqi Bai and Jiawei Yin
Sensors 2025, 25(18), 5763; https://doi.org/10.3390/s25185763 - 16 Sep 2025
Viewed by 254
Abstract
In this paper, a partial transmit sequence (PTS) technique with a side information (SI) blind detector based on minimized error accumulation for PAPR reduction in the coded underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) communication system is proposed. Due to the complexity [...] Read more.
In this paper, a partial transmit sequence (PTS) technique with a side information (SI) blind detector based on minimized error accumulation for PAPR reduction in the coded underwater acoustic (UWA) orthogonal frequency division multiplexing (OFDM) communication system is proposed. Due to the complexity of UWA channels, channel coding is inevitably employed to ensure accurate information transmission. However, the error correction capability of channel coding usually has a certain margin; the decoder will fail to provide the expected coding gain for the system when the number of error bits exceeds the error correction capability. Therefore, by utilizing the accumulation impact of bit errors inherent in channel coding, it can be regarded as an indicator vector for the SI blind detector, enabling autonomous identification of the weighted phase factor vector sequence index without prior information. Thus, there is no need to reserve the SI transmission symbols, as required by the conventional PTS (C-PTS) scheme, effectively reducing the probability of large-scale bit error caused by the wrong SI. The experimental results show that the BER performance of the system has seen an improvement of about one order of magnitude compared to C-PTS. Consequently, the proposed technique enhances system bandwidth utilization and communication efficiency, ensuring the real-time performance of the underwater acoustic communication (UAC) OFDM system. Full article
(This article belongs to the Special Issue Underwater Vision Sensing System: 2nd Edition)
Show Figures

Figure 1

13 pages, 2327 KB  
Article
Single-Shot Sub-Picosecond Ultrafast Microscopic Imaging Utilizing Spatial-Frequency Multiplexing for Ultrafast Laser-Induced Plasma Visualization
by Hang Li, Yahui Li, Yang Shang, Mengmeng Yue, Duan Luo, Yanhua Xue, Guilong Gao and Jinshou Tian
Nanomaterials 2025, 15(18), 1410; https://doi.org/10.3390/nano15181410 - 12 Sep 2025
Viewed by 379
Abstract
Ultrafast laser processing can produce micro/nanostructures, which is of great interest in advanced manufacturing. Ultrafast laser-induced events include non-equilibrium dynamic phenomena, occurring on the femtosecond to picosecond time scale and nanometer to micron space scale. Single-shot ultrafast imaging can provide multiple time-correlated evolution [...] Read more.
Ultrafast laser processing can produce micro/nanostructures, which is of great interest in advanced manufacturing. Ultrafast laser-induced events include non-equilibrium dynamic phenomena, occurring on the femtosecond to picosecond time scale and nanometer to micron space scale. Single-shot ultrafast imaging can provide multiple time-correlated evolution frames in one non-repeatable event with a temporal resolution of sub-picoseconds. However, previous approaches suffer from degraded spatial resolution, which is a bottleneck in microscopic imaging. For the spatial-frequency multiplexing methods based on structured illumination, a reconstruction strategy was proposed utilizing the frames’ conjugate symmetry in the Fourier domain. The spatial resolution is double that of the traditional algorithm by evaluating with synthetic data, revealing that the reconstruction resolution can reach the diffraction limitation. A two-frame microscopic system was constructed with a frame interval of 300 fs and a maximum spatial resolution of 1.4 μm. The interaction between a femtosecond laser and a fused silica glass plate was captured in a single shot and the dynamic evolution of the induced plasma was observed, verifying the application feasibility in ultrafast laser processing, providing experimental observations for interaction mechanism research and theoretical model optimization. Full article
(This article belongs to the Special Issue Ultrafast Laser Micro-Nano Welding: From Principles to Applications)
Show Figures

Figure 1

20 pages, 1307 KB  
Article
Designand Implementation of a Novel Wideband HF Communication System Based on NC-OFDM and Probabilistic Shaping
by Rifei Yang, Yong Bai and Zhuhua Hu
Sensors 2025, 25(17), 5596; https://doi.org/10.3390/s25175596 - 8 Sep 2025
Viewed by 841
Abstract
This paper proposes a novel wideband high-frequency (HF) communication system supporting video transmission based on non-contiguous orthogonal frequency division multiplexing (NC-OFDM) and probabilistic shaping (PS). The HF spectrum is currently very crowded; to find a free continuous frequency band around 500 KHz for [...] Read more.
This paper proposes a novel wideband high-frequency (HF) communication system supporting video transmission based on non-contiguous orthogonal frequency division multiplexing (NC-OFDM) and probabilistic shaping (PS). The HF spectrum is currently very crowded; to find a free continuous frequency band around 500 KHz for video transmission is almost impossible. So this paper investigates how to exploit spectrum holes in the HF band with NC-OFDM technology. We propose a transmission scheme over a wideband HF channel modeled by the Institute for Telecommunication Sciences (ITS) channel model with valid bandwidth up to 1 MHz. In order to improve the reliability of proposed scheme, this paper further investigates the probabilistic shaping-based coding modulation. Simulation results show that the designed wideband HF NC-OFDM communication system can meet the data rate required for video transmission. In addition, the probabilistic shaping-based coding modulation provides a significant performance improvement over uncoded systems and the probabilistic shaping offers an extra 0.6 dB shaping gain in the wideband HF channel compared to equal probability constellation systems. Full article
Show Figures

Figure 1

14 pages, 3345 KB  
Article
Equivalent Self-Noise Suppression of DAS System Integrated with Multi-Core Fiber Based on Phase Matching Scheme
by Jiabei Wang, Hongcan Gu, Peng Wang, Wen Liu, Gaofei Yao, Yandong Pang, Jing Wu, Dan Xu, Su Wu, Junbin Huang and Canran Xu
Appl. Sci. 2025, 15(17), 9806; https://doi.org/10.3390/app15179806 - 7 Sep 2025
Viewed by 616
Abstract
Multi-core fiber (MCF) has drawn increasing attention for its potential application in distributed acoustic sensing (DAS) due to the compact optical structure of integrating several fiber cores in the same cladding, which indicates an intrinsic space-division-multiplexed (SDM) capability in a single piece of [...] Read more.
Multi-core fiber (MCF) has drawn increasing attention for its potential application in distributed acoustic sensing (DAS) due to the compact optical structure of integrating several fiber cores in the same cladding, which indicates an intrinsic space-division-multiplexed (SDM) capability in a single piece of fiber. In this paper, a dual-channel DAS integrated with MCF is presented, of which the equivalent self-noise characteristic is analyzed. The equivalent self-noise of the system can be effectively suppressed by signal superposition with the phase matching method. Considering that the noise correlation among the cores is not zero, the signal-to-noise (SNR) gain after signal superposition is less than the theoretical value. The dual-channel DAS system is set up by a piece of 2 km long seven-core MCF, in which the dual-sensing channels are constructed by a four-core series and three-core series, respectively. The total noise correlation coefficient of the seven cores is 11.28, while the equivalent self-noise of the system can be suppressed by 6.32 dB with signal superposition. An equivalent self-noise suppression method based on a linear delay phase matching scheme is proposed for noise decorrelation in the DAS MCF system. After noise decorrelation, the suppression of the equivalent self-noise of the system can reach the theoretical value of 8.45 dB with a time delay of 1 ms, indicating a noise correlation among the seven cores of almost zero. The feasibility of the equivalent self-noise suppression method for the DAS system is verified for both single-frequency and broadband signals, which is of great significance for the detection of weak vibration signals based on a DAS system. Full article
Show Figures

Figure 1

28 pages, 1078 KB  
Article
Performance Analysis of OCDM in ISAC Scenario
by Pengfei Xu, Mao Li, Tao Zhan, Fengkui Gong, Yue Xiao and Xia Lei
Sensors 2025, 25(17), 5481; https://doi.org/10.3390/s25175481 - 3 Sep 2025
Viewed by 523
Abstract
The rapid evolution of communication systems, exemplified by the Internet of Things (IoT), demands increasingly stringent reliability in both communication and sensing. While Orthogonal Frequency Division Multiplexing (OFDM) struggles to meet the challenges posed by complex scenarios, Orthogonal Chirp Division Multiplexing (OCDM) has [...] Read more.
The rapid evolution of communication systems, exemplified by the Internet of Things (IoT), demands increasingly stringent reliability in both communication and sensing. While Orthogonal Frequency Division Multiplexing (OFDM) struggles to meet the challenges posed by complex scenarios, Orthogonal Chirp Division Multiplexing (OCDM) has gained attention for its robustness and spectral efficiency in Integrated Sensing and Communication (ISAC) systems. However, its sensing mechanism remains insufficiently explored. This paper presents a theoretical analysis of the communication and sensing performance of OCDM waveforms within the ISAC framework. Specifically, a closed-form BER expression under equalization is derived, alongside the ambiguity function and detection performance evaluation under matched filter (MF) and Generalized Likelihood Ratio Test (GLRT) detectors with a constant false alarm rate (CFAR) criterion. Simulation results demonstrate that OCDM offers comparable sensing performance to OFDM while achieving superior communication robustness in complex environments. Full article
(This article belongs to the Special Issue Feature Papers in Communications Section 2025)
Show Figures

Figure 1

17 pages, 1180 KB  
Article
Optimized DSP Framework for 112 Gb/s PM-QPSK Systems with Benchmarking and Complexity–Performance Trade-Off Analysis
by Julien Moussa H. Barakat, Abdullah S. Karar and Bilel Neji
Eng 2025, 6(9), 218; https://doi.org/10.3390/eng6090218 - 2 Sep 2025
Viewed by 473
Abstract
In order to enhance the performance of 112 Gb/s polarization-multiplexed quadrature phase-shift keying (PM-QPSK) coherent optical receivers, a novel digital signal processing (DSP) framework is presented in this study. The suggested method combines cutting-edge signal processing techniques to address important constraints in long-distance, [...] Read more.
In order to enhance the performance of 112 Gb/s polarization-multiplexed quadrature phase-shift keying (PM-QPSK) coherent optical receivers, a novel digital signal processing (DSP) framework is presented in this study. The suggested method combines cutting-edge signal processing techniques to address important constraints in long-distance, high data rate coherent systems. The framework uses overlap frequency domain equalization (OFDE) for chromatic dispersion (CD) compensation, which offers a cheaper computational cost and higher dispersion control precision than traditional time-domain equalization. An adaptive carrier phase recovery (CPR) technique based on mean-squared differential phase (MSDP) estimation is incorporated to manage phase noise induced by cross-phase modulation (XPM), providing dependable correction under a variety of operating situations. When combined, these techniques significantly increase Q factor performance, and optimum systems can handle transmission distances of up to 2400 km. The suggested DSP approach improves phase stability and dispersion tolerance even in the presence of nonlinear impairments, making it a viable and effective choice for contemporary coherent optical networks. The framework’s competitiveness was evaluated by comparing it against the most recent, cutting-edge DSP methods that were released after 2021. These included CPR systems that were based on kernels, transformers, and machine learning. The findings show that although AI-driven approaches had the highest absolute Q factors, they also required a large amount of computing power. On the other hand, the suggested OFDE in conjunction with adaptive CPR achieved Q factors of up to 11.7 dB over extended distances with a significantly reduced DSP effort, striking a good balance between performance and complexity. Its appropriateness for scalable, long-haul 112 Gb/s PM-QPSK systems is confirmed by a complexity versus performance trade-off analysis, providing a workable and efficient substitute for more resource-intensive alternatives. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

25 pages, 2103 KB  
Article
A Phase-Coded FMCW-Based Integrated Sensing and Communication System Design for Maritime Search and Rescue
by Delong Xing, Chi Zhang and Yongwei Zhang
Sensors 2025, 25(17), 5403; https://doi.org/10.3390/s25175403 - 1 Sep 2025
Viewed by 481
Abstract
Maritime search and rescue (SAR) demands reliable sensing and communication under sea clutter. Emerging integrated sensing and communication (ISAC) technology provides new opportunities for the development and modernization of maritime radio communication, particularly in relation to search and rescue. This study investigated the [...] Read more.
Maritime search and rescue (SAR) demands reliable sensing and communication under sea clutter. Emerging integrated sensing and communication (ISAC) technology provides new opportunities for the development and modernization of maritime radio communication, particularly in relation to search and rescue. This study investigated the dual-function capability of a phase-coded frequency modulated continuous wave (FMCW) system for search and rescue at sea, in particular for life signs detection in the presence of sea clutter. The detection capability of the FMCW system was enhanced by applying phase-modulated codes on chirps, and radar-centric communication function is supported simultaneously. Various phase-coding schemes including Barker, Frank, Zadoff-Chu (ZC), and Costas were assessed by adopting the peak sidelobe level and integrated sidelobe level of the ambiguity function of the established signals. The interplay of sea waves was represented by a compound K-distribution model. A multiple-input multiple-output (MIMO) architecture with the ZC code was adopted to detect multiple objects with a high resolution for micro-Doppler determination by taking advantage of spatial coherence with beamforming. The effectiveness of the proposed method was validated on the 4-transmit, 4-receive (4 × 4) MIMO system with ZC coded FMCW signals. Monte Carlo simulations were carried out incorporating different combinations of targets and user configurations with a wide range of signal-to-noise ratio (SNR) settings. Extensive simulations demonstrated that the mean squared error (MSE) of range estimation remained low across the evaluated SNR setting, while communication performance was comparable to that of a baseline orthogonal frequency-division multiplexing (OFDM)-based system. The high performance demonstrated by the proposed method makes it a suitable maritime search and rescue solution, in particular for vision-restricted situations. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

17 pages, 2946 KB  
Article
Generalized Frequency Division Multiplexing—Based Direct Mapping—Multiple-Input Multiple-Output Mobile Electroencephalography Communication Technique
by Chin-Feng Lin and Kun-Yu Chen
Appl. Sci. 2025, 15(17), 9451; https://doi.org/10.3390/app15179451 - 28 Aug 2025
Viewed by 370
Abstract
Electroencephalography (EEG) communication technology with ultra-low power consumption, high transmission data rates, and low latency plays a significant role in mHealth, telemedicine, and Internet of Medical Things (IoMT). In this paper, generalized frequency division multiplexing (GFDM)-based direct mapping (DM) multi-input—multi-output (MIMO) mobile EEG [...] Read more.
Electroencephalography (EEG) communication technology with ultra-low power consumption, high transmission data rates, and low latency plays a significant role in mHealth, telemedicine, and Internet of Medical Things (IoMT). In this paper, generalized frequency division multiplexing (GFDM)-based direct mapping (DM) multi-input—multi-output (MIMO) mobile EEG communication technology (MECT) is proposed for implementation with the above-mentioned applications. The (2000, 1000) low-density parity-check (LDPC) code, four-quadrature amplitude modulation (4-QAM), a power assignment mechanism, and the 3rd Generation Partnership Project (3GPP) cluster delay line (CDL) channel model D were integrated into the proposed EEGCT. The transmission bit error rates (BERs), mean square errors (MSEs), and Pearson-correlation coefficients (PCCs) of the original and received EEG signals were evaluated. Simulation results show that, with a signal to noise ratio (SNR) of 14.51 dB, with a channel estimation error (CEE) of 5%, the BER, MSE, and PCC of the original and received EEG signals were 9.9777 × 10−8, 1.440 × 10−5 and 0.999999998, respectively, whereas, with an SNR of 15.0004 dB and a CEE of 10%, they were 9.9777 × 10−8, 1.4368 × 10−5, and 0.999999997622151, respectively. As the BER value, and PS saving are 9.9777 × 10−8, and 40%, respectively. With the CEE changes from 0% to 5%, and 5% to 10%, the N0 values of the proposed MECT decrease by approximately 0.0022 and 0.002, respectively. The MECT has excellent EEG signal transmission performance. Full article
(This article belongs to the Special Issue Communication Technology for Smart Mobility Systems)
Show Figures

Figure 1

Back to TopTop