Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = fruit-slicing game

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1350 KB  
Article
Optimization of Dynamic SSVEP Paradigms for Practical Application: Low-Fatigue Design with Coordinated Trajectory and Speed Modulation and Gaming Validation
by Yan Huang, Lei Cao, Yongru Chen and Ting Wang
Sensors 2025, 25(15), 4727; https://doi.org/10.3390/s25154727 - 31 Jul 2025
Viewed by 492
Abstract
Steady-state visual evoked potential (SSVEP) paradigms are widely used in brain–computer interface (BCI) systems due to their reliability and fast response. However, traditional static stimuli may reduce user comfort and engagement during prolonged use. This study proposes a dynamic stimulation paradigm combining periodic [...] Read more.
Steady-state visual evoked potential (SSVEP) paradigms are widely used in brain–computer interface (BCI) systems due to their reliability and fast response. However, traditional static stimuli may reduce user comfort and engagement during prolonged use. This study proposes a dynamic stimulation paradigm combining periodic motion trajectories with speed control. Using four frequencies (6, 8.57, 10, 12 Hz) and three waveform patterns (sinusoidal, square, sawtooth), speed was modulated at 1/5, 1/10, and 1/20 of each frequency’s base rate. An offline experiment with 17 subjects showed that the low-speed sinusoidal and sawtooth trajectories matched the static accuracy (85.84% and 83.82%) while reducing cognitive workload by 22%. An online experiment with 12 subjects participating in a fruit-slicing game confirmed its practicality, achieving recognition accuracies above 82% and a System Usability Scale score of 75.96. These results indicate that coordinated trajectory and speed modulation preserves SSVEP signal quality and enhances user experience, offering a promising approach for fatigue-resistant, user-friendly BCI application. Full article
(This article belongs to the Special Issue EEG-Based Brain–Computer Interfaces: Research and Applications)
Show Figures

Figure 1

Back to TopTop