Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,659)

Search Parameters:
Keywords = functionalized graphene

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4816 KB  
Article
DFT Insights into the Adsorption of Organophosphate Pollutants on Mercaptobenzothiazole Disulfide-Modified Graphene Surfaces
by Kayim Pineda-Urbina, Gururaj Kudur Jayaprakash, Juan Pablo Mojica-Sánchez, Andrés Aparicio-Victorino, Zeferino Gómez-Sandoval, José Manuel Flores-Álvarez and Ulises Guadalupe Reyes-Leaño
Compounds 2025, 5(4), 43; https://doi.org/10.3390/compounds5040043 - 22 Oct 2025
Abstract
Organophosphate pesticides are among the most persistent and toxic contaminants in aquatic environments, requiring effective strategies for detection and remediation. In this work, density functional theory (DFT) calculations were employed to investigate the adsorption of nine representative organophosphates (glyphosate, malathion, diazinon, azinphos-methyl, fenitrothion, [...] Read more.
Organophosphate pesticides are among the most persistent and toxic contaminants in aquatic environments, requiring effective strategies for detection and remediation. In this work, density functional theory (DFT) calculations were employed to investigate the adsorption of nine representative organophosphates (glyphosate, malathion, diazinon, azinphos-methyl, fenitrothion, parathion-methyl, disulfoton, tokuthion, and ethoprophos) on mercaptobenzothiazole disulfide (MBTS) and MBTS-functionalized graphene (G–MBTS). All simulations were performed in aqueous solution using the SMD solvation model with dispersion corrections and counterpoise correction for basis set superposition error. MBTS alone displayed a range of affinities, suggesting potential selectivity across the organophosphates, with adsorption energies ranging from 0.27 to 1.05 eV, malathion being the strongest binder and glyphosate the weakest. Anchoring of MBTS to graphene was found to be highly favorable (1.26 eV), but the key advantage is producing stable adsorption platforms that promote planar orientations and ππ/dispersive interactions. But the key advantage is not stronger binding but the tuning of interfacial electronic properties: all G–MBTS–OP complexes show uniform, narrow HOMO-LUMO gaps (∼0.79 eV) and systematically larger charge redistribution. These features are expected to enhance electrochemical readout even when adsorption strength was comparable or slightly lower (0.47–0.88 eV) relative to MBTS alone. A Quantum Theory of Atoms in Molecules (QTAIM) analysis of the G–MBTS–malathion complex revealed a dual stabilization mechanism: multiple weak C–H⋯π interactions with graphene combined with stronger S⋯O and hydrogen-bonding interactions with MBTS. These results advance the molecular-level understanding of pesticide–surface interactions and highlight MBTS-functionalized graphene as a promising platform for the selective detection of organophosphates in water. Full article
Show Figures

Figure 1

20 pages, 1357 KB  
Review
Materials Prepared via Pickering Emulsions Stabilized by Graphene Oxide: Overview and Prospects
by Manman Liu, Wenle Zhu and Huili Wang
Materials 2025, 18(20), 4790; https://doi.org/10.3390/ma18204790 - 20 Oct 2025
Viewed by 234
Abstract
Pickering emulsions, employing solid or colloidal particles rather than surfactants to stabilize the oil-water interface, have attracted considerable attention owing to their enhanced stability and the potential for designing functional materials. In particular, Graphene Oxide (GO) has emerged as an effective stabilizer for [...] Read more.
Pickering emulsions, employing solid or colloidal particles rather than surfactants to stabilize the oil-water interface, have attracted considerable attention owing to their enhanced stability and the potential for designing functional materials. In particular, Graphene Oxide (GO) has emerged as an effective stabilizer for such emulsions, owing to its unique physicochemical properties. This review systematically outlines the stabilization mechanisms of GO-based Pickering emulsions, providing fundamental insights that support further development in the field. We comprehensively examine recent advances in the preparation and characterization of GO-stabilized emulsions and highlight their broad applications, including the synthesis of advanced materials and uses across various industrial sectors. Finally, we discuss current challenges and suggest promising directions for future research on GO-stabilized Pickering emulsions. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Graphical abstract

18 pages, 4813 KB  
Article
Machine Learning-Assisted DFT Screening of Nitrogen-Doped Graphene Diatomic Catalysts for Nitrogen Reduction Reaction
by Xiulin Wang, Suofu Nie, Huichao Yao, Sida Wu, Yanze Li, Junli Feng, Yiyan Sui, Yuqing Zhang, Xinwei Wang and Xiuxia Zhang
Molecules 2025, 30(20), 4131; https://doi.org/10.3390/molecules30204131 - 20 Oct 2025
Viewed by 183
Abstract
This research seeks to investigate extremely efficient catalysts for the nitrogen reduction process (NRR), utilizing machine learning (ML)-aided density functional theory (DFT) computations. Specifically, we investigate dual transition metal atoms anchored on hexagonal nitrogen-doped graphene (TM1-TM2@N6G) as [...] Read more.
This research seeks to investigate extremely efficient catalysts for the nitrogen reduction process (NRR), utilizing machine learning (ML)-aided density functional theory (DFT) computations. Specifically, we investigate dual transition metal atoms anchored on hexagonal nitrogen-doped graphene (TM1-TM2@N6G) as prospective high-activity catalysts for the NRR. The findings indicate that the synergistic effect of dual transition metal atoms in the TM1-TM2@N6G catalyst overcomes the intrinsic constraints of the linear relationship among intermediates, facilitating the activation and adsorption of N2, thereby exhibiting significant potential for ammonia synthesis through N2 reduction. Particularly, four catalysts screened by ML and DFT exhibit good stability and excellent selectivity and activation towards N2. Among them, the catalysts Ti-Cr@N6G, Ti-Mo@N6G, and Ti-Pd@N6G possess two reaction pathways with minimum reaction energies of 0.55 eV, 0.50 eV, and 0.40 eV, respectively. Remarkably, Ti-Co@N6G, which features a single reaction pathway, exhibits a reaction energy lower than 0.05 eV, allowing the NRR to proceed spontaneously. It is noteworthy that incorporating ML into DFT calculations facilitates the rapid screening of all transition metal combinations, significantly accelerating the research on catalytic performance and optimizing the selection of catalysts. Full article
(This article belongs to the Special Issue Renewable Energy, Fuels and Chemicals from Biomass, 2nd Edition)
Show Figures

Figure 1

15 pages, 10603 KB  
Article
Atomistic Doping Effects on the Ideal Strength of Graphene/Aluminum Interfaces
by Wei Wang, Can Cui, Fangfang Xia, Weiwei Xu, Tieqiang Gang and Lijie Chen
Materials 2025, 18(20), 4753; https://doi.org/10.3390/ma18204753 - 16 Oct 2025
Viewed by 244
Abstract
Generally, atomic doping is an effective method to address the weak bonding strength of the graphene/aluminum (Gr/Al) composite interface structure caused by physical adsorption, thereby enhancing the mechanical properties of the interface structure. In this paper, the nanoscopic influence mechanisms of atomic (M, [...] Read more.
Generally, atomic doping is an effective method to address the weak bonding strength of the graphene/aluminum (Gr/Al) composite interface structure caused by physical adsorption, thereby enhancing the mechanical properties of the interface structure. In this paper, the nanoscopic influence mechanisms of atomic (M, including 12 types of atoms (elements)) doping in the aluminum matrix (Al) on the ideal strength of the Gr/Al interface structures are investigated based on density functional theory. The analysis of the electronic properties of the typical interface structures reveals that doping with scandium (Sc), copper (Cu) and manganese (Mn) atoms can all improve the interface binding energy of the Gr/Al structures, but their effects on the ideal strength are different. Sc doping disrupts the symmetry of the graphene structure so as to enhance the interface binding energy, but the ideal strength of the Gr/Al structures is decreased. For Cu doping it shows good compatibility with the Al matrix and the interface binding energy is enhanced through Cu alloying with the Al matrix, while the ideal strength of the interface remains basically unchanged. As for Mn doping, it causes the charge to accumulate around the Mn atoms and a resonance peak between the dZ2 orbitals of Mn and the px orbitals of Al to form, thereby improving the ideal strength of the interface structure. This study provides valuable insights for the design of Gr/Al composites by elucidating the underlying mechanisms for enhancing interface mechanical properties. Full article
(This article belongs to the Topic Advances in Computational Materials Sciences)
Show Figures

Figure 1

23 pages, 2355 KB  
Review
Environmentally Friendly PLA-Based Conductive Composites: Electrical and Mechanical Performance
by Nassima Naboulsi, Fatima Majid and Mohamed Louzazni
J. Compos. Sci. 2025, 9(10), 571; https://doi.org/10.3390/jcs9100571 - 16 Oct 2025
Viewed by 363
Abstract
This review investigates recent progress in the field of PLA-based conductive composites for 3D printing. First, it introduces PLA as a biodegradable thermoplastic polymer, describing its processing and recycling methods and highlighting its environmental advantages over conventional polymers. In order to evaluate its [...] Read more.
This review investigates recent progress in the field of PLA-based conductive composites for 3D printing. First, it introduces PLA as a biodegradable thermoplastic polymer, describing its processing and recycling methods and highlighting its environmental advantages over conventional polymers. In order to evaluate its printability, PLA is briefly compared to other commonly used thermoplastics in additive manufacturing. The review then examines the incorporation of conductive fillers such as carbon black, carbon nanotubes, graphene, and metal particles into the PLA matrix, with a particular focus on the percolation threshold and its effect on conductivity. Critical challenges such as filler dispersion, agglomeration, and conductivity anisotropy are also highlighted. Recent results are summarized to identify promising formulations that combine improved electrical performance with acceptable mechanical integrity, while also emphasizing the structural and morphological characteristics that govern these properties. Finally, potential applications in the fields of electronics, biomedicine, energy, and electromagnetic shielding are discussed. From an overall perspective, the review highlights that while PLA-based conductive composites show great potential for sustainable functional materials, further progress is needed to improve reproducibility, optimize processing parameters, and ensure reliable large-scale applications. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

13 pages, 3509 KB  
Article
Sol–Gel Synthesis and Multi-Technique Characterization of Graphene-Modified Ca2.95Eu0.05Co4Ox Nanomaterials
by Serhat Koçyiğit
Polymers 2025, 17(20), 2767; https://doi.org/10.3390/polym17202767 - 16 Oct 2025
Viewed by 291
Abstract
This study employs a multi-technique approach to elucidate how graphene incorporation affects phase formation, microstructure, and thermal behavior in PVA-assisted sol–gel synthesized Ca2.95Eu0.05Co4Ox nanomaterials. XRD confirms the preservation of the primary phases (hexagonal CaCO3 and [...] Read more.
This study employs a multi-technique approach to elucidate how graphene incorporation affects phase formation, microstructure, and thermal behavior in PVA-assisted sol–gel synthesized Ca2.95Eu0.05Co4Ox nanomaterials. XRD confirms the preservation of the primary phases (hexagonal CaCO3 and cubic CoO) alongside a distinct graphene (002) reflection; a systematic low-angle shift of the calcite (104) peak evidences partial relaxation of residual lattice strain with increasing graphene content, while Scherrer analysis indicates tunable crystallite size. Raman spectroscopy corroborates graphene incorporation through pronounced D (~1300 cm−1) and G (~1580 cm−1) bands and supports the XRD-identified phase coexistence via cobalt-oxide and calcite vibrations in the 200–700 cm−1 region, also indicating increased defect/disorder with graphene loading. SEM shows grain refinement, denser/bridged lamellar textures, and reduced porosity at low–moderate graphene contents (1–3 wt.%), contrasted by agglomeration-driven heterogeneity at higher loadings (5–7 wt.%). EDX reveals increasing carbon with Ca/Co redistribution at accessible surfaces, and TG–DSC corroborates the removal of oxygen-containing groups and oxidative combustion of graphene at mid temperatures. Collectively, Raman–XRD-consistent evidence demonstrates that graphene provides a tunable handle over lattice strain, crystallite size, and grain-boundary architecture, establishing a processing–composition basis for optimizing functional (e.g., electrical/thermoelectric) performance. Full article
(This article belongs to the Special Issue Polymers in Inorganic Chemistry: Synthesis and Applications)
Show Figures

Figure 1

15 pages, 3846 KB  
Article
Optimizing Biodegradable Poly(D,L-lactide) Scaffolds Reinforced with Graphene Oxide for Bone Tissue Regeneration
by Esperanza Díaz, Ander García, Xabier León, Yolanda Merodio, Sylvie Ribeiro and Senentxu Lanceros-Méndez
Biomimetics 2025, 10(10), 700; https://doi.org/10.3390/biomimetics10100700 - 15 Oct 2025
Viewed by 373
Abstract
This study investigates the potential of porous poly(D,L-lactide) (PDLLA) scaffolds reinforced with graphene oxide (GO) for bone tissue engineering applications. Scaffolds were fabricated using thermally induced phase separation (TIPS) and characterized in terms of morphology, biodegradation, thermal and mechanical properties, and cytocompatibility. The [...] Read more.
This study investigates the potential of porous poly(D,L-lactide) (PDLLA) scaffolds reinforced with graphene oxide (GO) for bone tissue engineering applications. Scaffolds were fabricated using thermally induced phase separation (TIPS) and characterized in terms of morphology, biodegradation, thermal and mechanical properties, and cytocompatibility. The incorporation of GO enhanced both mechanical strength and thermal stability, likely due to hydrogen bonding and electrostatic interactions between GO’s functional groups (carbonyl, carboxyl, epoxide, and hydroxyl) and PDLLA chains. In vitro degradation studies showed that GO accelerated degradation, while scaffolds with higher GO content retained superior mechanical strength. Cytotoxicity assays confirmed the biocompatibility of all scaffold variants, supporting their suitability for biomedical applications. Overall, the findings demonstrate how GO incorporation can modulate scaffold composition and performance. This provides insights for the design of improved systems for bone tissue regeneration. Full article
(This article belongs to the Special Issue Biomimicry and Functional Materials: 5th Edition)
Show Figures

Figure 1

9 pages, 1622 KB  
Communication
Scalable Graphene–MoS2 Lateral Contacts for High-Performance 2D Electronics
by Woonggi Hong
Materials 2025, 18(20), 4689; https://doi.org/10.3390/ma18204689 - 13 Oct 2025
Viewed by 448
Abstract
As the scaling of silicon-based CMOS technology approaches its physical limits, two-dimensional (2D) materials have emerged as promising alternatives for future electronic devices. Among them, MoS2 is a leading candidate due to its fascinating semiconducting nature and compatibility with CMOS processes. However, [...] Read more.
As the scaling of silicon-based CMOS technology approaches its physical limits, two-dimensional (2D) materials have emerged as promising alternatives for future electronic devices. Among them, MoS2 is a leading candidate due to its fascinating semiconducting nature and compatibility with CMOS processes. However, high contact resistance at the metal–MoS2 interface remains a major bottleneck, limiting device performance. In this study, we report the fabrication and characterization of graphene–MoS2 (Gr–MoS2) lateral heterostructure FETs, where monolayer graphene, synthesized by inductively coupled plasma chemical vapor deposition (ICP-CVD), is directly used as the source and drain. Bilayer MoS2 is selectively grown along graphene edges via edge-guided CVD, forming a chemically bonded in-plane junction without transfer steps. Electrical measurements reveal that the Gr–MoS2 FETs exhibit a threefold increase in average field-effect mobility (3.9 vs. 1.1 cm2 V−1 s−1) compared to conventional MoS2 FETs. Y-function analysis shows that the contact resistance is significantly reduced from 85.8 kΩ to 20.5 kΩ at VG = 40 V. These improvements are attributed to the replacement of the conventional metal–MoS2 contact with a graphene–metal contact. Our results demonstrate that lateral heterostructure engineering with graphene provides an effective and scalable strategy for high-performance 2D electronics. Full article
(This article belongs to the Special Issue Advances in Flexible Electronics and Electronic Devices)
Show Figures

Figure 1

28 pages, 1877 KB  
Review
Functionalized Carbon-Based Materials for Uranium Extraction: A Review
by Maqbool Hussain, Liang Zhao, Xusheng Zhang, Chen Yang, Yi Cui, Zhisheng Yu and Jianzhong Zheng
Separations 2025, 12(10), 283; https://doi.org/10.3390/separations12100283 - 13 Oct 2025
Viewed by 353
Abstract
The development of effective materials for uranium extraction from seawater is vital for advancing sustainable energy solutions. However, the efficient recovery of uranium from seawater presents significant challenges due to its extremely low concentration, the presence of competing ions, and the complex marine [...] Read more.
The development of effective materials for uranium extraction from seawater is vital for advancing sustainable energy solutions. However, the efficient recovery of uranium from seawater presents significant challenges due to its extremely low concentration, the presence of competing ions, and the complex marine environment. To address these issues, various materials such as inorganic and organic sorbents, chelating resins, nanostructured sorbents, and composite materials have been explored. More recently, the functionalization of carbon-based materials for enhanced adsorption properties has attracted much interest because of their high specific surface area, excellent chemical and thermal stability, and tunable porosity. These materials include activated carbon, graphene oxide, biochar, carbon cloths, carbon nanotubes, and carbon aerogels. The enhancement of carbonaceous materials is typically achieved through surface functionalization with chelating groups and the synthesis of composite materials that integrate other high-performance sorbents. This review aims to summarize the work of these functionalized carbon materials, focusing on their adsorption capacity, selectivity, and durability for uranium adsorption. This is followed by a discussion on the binding mechanisms of uranium with major chelating functional groups grafted on carbonaceous sorbents. Finally, an outlook for future research is suggested. We hope that this review will be helpful to researchers engaged in related studies. Full article
Show Figures

Graphical abstract

12 pages, 4292 KB  
Article
Interaction Between Air Entraining Agent and Graphene Oxide and Its Effect on Bubble Behavior of Cement-Based Materials
by Min Qiao, Guofeng Chen, Yajie Fang, Yuxin Li and Mei Shi
Buildings 2025, 15(19), 3631; https://doi.org/10.3390/buildings15193631 - 9 Oct 2025
Viewed by 197
Abstract
Nanomaterials play a beneficial role in regulating the function of cement-based materials. The effects and mechanism of graphene oxide (GO) on foam behavior in solutions and air-entraining behavior of cement mortar were studied, and its effect on the microstructure of cement mortar was [...] Read more.
Nanomaterials play a beneficial role in regulating the function of cement-based materials. The effects and mechanism of graphene oxide (GO) on foam behavior in solutions and air-entraining behavior of cement mortar were studied, and its effect on the microstructure of cement mortar was also investigated. The results show that a synergy between GO’s hydrophobicity and the air-entraining agent’s hydrophobic chains drove more agent molecules to adsorb onto the GO surface, subsequently spreading and aggregating across the bubbles. GO effectively assisted the air entraining agent to refine the bubble size, improved the bubble stability of aqueous solutions, and had excellent air entraining performance in the fresh cement mortar, as well as the optimum air-void adjustment performance of hardened cement mortars. With the addition of 0.4‰ GO, the loss rate of gas content in the GO mixed mortar was 10.3%, which was 55.8% lower than that when only using AEA. The addition of 0.4‰ of GO effectively increased the volume fraction of the cement mortar system. GO reduced the pore volume in the mortar through the filling effect and nucleation effect to reduce the total porosity and refine the microstructure of the mortar. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

36 pages, 1058 KB  
Systematic Review
Functionalization Strategies of Chitosan-Based Scaffolds with Growth Factors for Bone Regeneration: A Systematic Review
by Jan Kiryk, Mateusz Michalak, Zuzanna Majchrzak, Marzena Laszczyńska, Sylwia Kiryk, Sylwia Szotek, Hanna Gerber, Izabela Nawrot-Hadzik, Jacek Matys and Maciej Dobrzyński
Mar. Drugs 2025, 23(10), 396; https://doi.org/10.3390/md23100396 - 9 Oct 2025
Viewed by 640
Abstract
Bioactive agents can stimulate osteogenesis, angiogenesis, and cell proliferation; therefore, their application in bone regeneration offers significant therapeutic potential. The aim of this systematic review was to evaluate strategies for applying chitosan-based scaffolds with growth factors in bone regeneration. A structured literature search [...] Read more.
Bioactive agents can stimulate osteogenesis, angiogenesis, and cell proliferation; therefore, their application in bone regeneration offers significant therapeutic potential. The aim of this systematic review was to evaluate strategies for applying chitosan-based scaffolds with growth factors in bone regeneration. A structured literature search was conducted in July 2025 across the PubMed, Scopus, and Web of Science databases. Search terms included combinations of (chitosan scaffold) AND (growth factor OR BMP-2 OR VEGF OR FGF OR TGF-beta OR periostin OR PDGF OR IGF-1 OR EGF OR ANG-1 OR ANG-2 OR GDF-5 OR SDF-1 OR osteopontin). The study selection process followed PRISMA 2020 guidelines and the PICO framework. Out of 367 records, 226 were screened, and 17 studies met the eligibility criteria for qualitative analysis. BMP-2 was the most frequently investigated growth factor, studied in both in vitro and in vivo models, with rats and rabbits as the most common animal models. Scaffold compositions varied, incorporating hydroxyapatite, heparin, polyethylene glycol diacrylate, octacalcium phosphate-mineralized graphene, silk fibroin, and aloe vera. Growth factors were introduced using diverse methods, including microspheres, chemical grafting, covalent coupling, protein carriers, and nanohydroxyapatite mesopores. Most studies reported enhanced bone regeneration, although differences in models, scaffold composition, and delivery methods preclude definitive conclusions. The addition of growth factors generally improved osteoblast proliferation, angiogenesis, bone density, and expression of osteogenic markers (RunX2, COL1, OPN, OCN). Combining two bioactive agents further amplified osteoinduction and vascularization. Sustained-release systems, particularly those using heparin or hydroxyapatite, prolonged biological activity and improved regenerative outcomes. In conclusion, functionalization of chitosan-based scaffolds with growth factors shows promising potential for bone regeneration. Controlled-release systems and combinations of different bioactive molecules may offer synergistic effects on osteogenesis and angiogenesis. Further research should focus on optimizing scaffold compositions and delivery methods to tailor bioactive agent release for specific clinical applications. Full article
(This article belongs to the Section Biomaterials of Marine Origin)
Show Figures

Graphical abstract

15 pages, 3884 KB  
Article
Effect of B/N Doping on Enhanced Hydrogen Storage in Transition Metal-Modified Graphene: A First-Principles DFT Study
by Qian Nie, Lei Wang, Ye Chen and Zhengwei Nie
Materials 2025, 18(19), 4635; https://doi.org/10.3390/ma18194635 - 8 Oct 2025
Viewed by 433
Abstract
Hydrogen energy is viewed as a promising green energy source because of its high energy density, abundant availability, and clean combustion results. Hydrogen storage is the critical link in a hydrogen economy. Using first-principles density functional theory calculations, this work explored the role [...] Read more.
Hydrogen energy is viewed as a promising green energy source because of its high energy density, abundant availability, and clean combustion results. Hydrogen storage is the critical link in a hydrogen economy. Using first-principles density functional theory calculations, this work explored the role of B and N in modulating the binding properties of transition metal-modified graphene. The hydrogen storage performance of Sc-, Ti-, and V-modified B-doped graphene was evaluated. Boron doping induces an electron-deficient state, enhancing interactions between transition metals and graphene. Sc, Ti, and V preferentially adsorbed at the carbon ring’s hollow site in B-doped graphene, with their binding energies being 1.87, 1.74, and 1.69 eV higher than those in pure graphene, respectively. These systems can stably adsorb up to 5, 4, and 4 H2 molecules, with average adsorption energies of −0.528, −0.645, and −0.620 eV/H2, respectively. The hydrogen adsorption mechanism was dominated by orbital interactions and polarization effects. Among the systems studied, Sc-modified B-doped graphene exhibited superior hydrogen storage characteristics, making it a promising candidate for reversible applications. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Gaseous Storage)
Show Figures

Graphical abstract

17 pages, 1807 KB  
Article
First-Principles Study on the Microheterostructures of N-GQDs@Si3N4 Composite Ceramics
by Wei Chen, Yetong Li, Yucheng Ma, Enguang Xu, Rui Lou, Zhuohao Sun, Yu Tian and Jianjun Zhang
Coatings 2025, 15(10), 1172; https://doi.org/10.3390/coatings15101172 - 7 Oct 2025
Viewed by 335
Abstract
In the previous research that aimed to enhance the toughness and tribological properties of silicon nitride ceramics, a lignin precursor was added to the ceramic matrix, which achieved conversion through pyrolysis and sintering, resulting in a silicon nitride-based composite ceramic containing nitrogen-doped graphene [...] Read more.
In the previous research that aimed to enhance the toughness and tribological properties of silicon nitride ceramics, a lignin precursor was added to the ceramic matrix, which achieved conversion through pyrolysis and sintering, resulting in a silicon nitride-based composite ceramic containing nitrogen-doped graphene quantum dots (N-GQDs). This composite material demonstrated excellent comprehensive mechanical properties and friction-wear performance. Based on the existing experimental results, the first-principles plane wave mode conservation pseudopotential method of density functional theory was adopted in this study to build a microscopic heterostructure model of Si3N4-based composite ceramics containing N-GQDs. Meanwhile, the surface energy of Si3N4 and the system energy of the N-GQDs@Si3N4 heterostructure were calculated. The calculation results showed that when the distance between N-GQDs and Si3N4 in the heterostructure was 2.3 Å, the structural energy was the smallest and the structure was the steadiest. This is consistent with the previous experimental results and further validates the coating mechanism of N-GQDs covering the Si3N4 column-shaped crystals. Simultaneously, based on the results of the previous experiments, the stress of the heterostructure composed of Si3N4 particles coated with different numbers of layers of nitrogen quantum dots was calculated to predict the optimal lignin doping amount. It was found that when the doping amount was between 1% and 2%, the best microstructure and mechanical properties were obtained. This paper provides a new method for studying the graphene quantum dot coating structure. Full article
Show Figures

Figure 1

18 pages, 4346 KB  
Article
Tunable Ultra-Wideband VO2–Graphene Hybrid Metasurface Terahertz Absorption Devices Based on Dual Regulation
by Kele Chen, Zhengning Wang, Meizhang Guan, Shubo Cheng, Hongyu Ma, Zao Yi and Boxun Li
Photonics 2025, 12(10), 987; https://doi.org/10.3390/photonics12100987 - 5 Oct 2025
Cited by 1 | Viewed by 472
Abstract
In this study, a dynamically tunable terahertz device based on a VO2–graphene hybrid metasurface is proposed, which realizes the dual functions of ultra-wideband absorption and efficient transmission through VO2 phase transformation. At 345 K (metallic state), the device attains an [...] Read more.
In this study, a dynamically tunable terahertz device based on a VO2–graphene hybrid metasurface is proposed, which realizes the dual functions of ultra-wideband absorption and efficient transmission through VO2 phase transformation. At 345 K (metallic state), the device attains an absorption efficiency exceeding 90% (average 97.06%) in the range of 2.25–6.07 THz (bandwidth 3.82 THz), showing excellent absorption performance. At 318 K (insulated state), the device achieves 67.66–69.51% transmittance in the 0.1–2.14 THz and 7.51–10 THz bands while maintaining a broadband absorption of 3.6–5.08 THz (an average of 81.99%). Compared with traditional devices, the design breaks through the performance limitations by integrating phase change material control with 2D materials. The patterned graphene design simplifies the fabrication process. System analysis reveals that the device is polarization-insensitive and tunable via graphene Fermi energy and relaxation time. The device’s excellent temperature response and wide angular stability provide a novel solution for terahertz switching, stealth technology, and sensing applications. Full article
(This article belongs to the Special Issue Photonics Metamaterials: Processing and Applications)
Show Figures

Figure 1

19 pages, 5468 KB  
Article
Molecular Dynamics Simulation of Surface Wettability of Tobermorite Modified by Functionalized Graphene Sheets
by Te Liang, Fenglei Han, Qi Luo, Dongshuai Hou, Xuefu Zhang, Wenbing Yu and Keping Zhang
Coatings 2025, 15(10), 1166; https://doi.org/10.3390/coatings15101166 - 5 Oct 2025
Viewed by 269
Abstract
The durability of cement-based materials can be reduced by the invasion of water and ions from external environments. This can be alleviated by reducing the surface wettability. To evaluate the anti-wetting performances of different graphene-based materials, a molecular dynamics simulation was performed to [...] Read more.
The durability of cement-based materials can be reduced by the invasion of water and ions from external environments. This can be alleviated by reducing the surface wettability. To evaluate the anti-wetting performances of different graphene-based materials, a molecular dynamics simulation was performed to investigate the wetting behaviors of water and NaCl droplets on a tobermorite surface coated with graphene and functionalized graphene (G-NH2 and G-CH3). The results demonstrate that functionalized graphene displays weak surface binding with water and ions, significantly weakening droplet wettability. Moreover, functionalized graphene surfaces exhibit reduced ion immobilization capacity compared with a pristine tobermorite surface. It obviously increases the number of free ionic hydration shells, thus amplifying the influence of ionic cage restriction. Specifically for the G-CH3 surface, the contact angle of the NaCl droplet reaches 94.8°, indicating significant hydrophobicity. Furthermore, the adhesion between functionalized graphene and tobermorite is attributed to the interlocking characteristics of these materials. Hopefully, this study can provide nanoscale insights for the design of functionalized graphene coatings to improve the durability of cement-based materials under harsh environments. Full article
Show Figures

Figure 1

Back to TopTop