Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,068)

Search Parameters:
Keywords = fungal identification

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3504 KB  
Article
New Application for the Early Detection of Wound Infections Using a Near-Infrared Fluorescence Device and Forward-Looking Thermal Camera
by Ha Jong Nam, Se Young Kim and Hwan Jun Choi
Diagnostics 2025, 15(17), 2221; https://doi.org/10.3390/diagnostics15172221 - 1 Sep 2025
Abstract
Background: Timely and accurate identification of wound infections is essential for effective management, yet remains clinically challenging. This study evaluated the utility of a near-infrared autofluorescence imaging system (Fluobeam®, Fluoptics, Grenoble, France) and a thermal imaging system (FLIR®, Teledyne [...] Read more.
Background: Timely and accurate identification of wound infections is essential for effective management, yet remains clinically challenging. This study evaluated the utility of a near-infrared autofluorescence imaging system (Fluobeam®, Fluoptics, Grenoble, France) and a thermal imaging system (FLIR®, Teledyne LLC, Thousand Oaks, CA, USA) for detecting bacterial and fungal infections in chronic wounds. Fluobeam® enables real-time visualization of microbial autofluorescence without exogenous contrast agents, whereas FLIR® detects localized thermal changes associated with infection-related inflammation. Methods: This retrospective clinical study included 33 patients with suspected wound infections. All patients underwent autofluorescence imaging using Fluobeam® and concurrent thermal imaging with FLIR®. Imaging findings were compared with microbiological culture results, clinical signs of infection, and semi-quantitative microbial burdens. Results: Fluobeam® achieved a sensitivity of 78.3% and specificity of 80.0% in detecting culture-positive infections. Fluorescence signal intensity correlated strongly with microbial burden (r = 0.76, p < 0.01) and clinical indicators, such as exudate, swelling, and malodor. Pathogens with high metabolic fluorescence, including Pseudomonas aeruginosa and Candida spp., were consistently identified. Representative cases demonstrate the utility of fluorescence imaging in guiding targeted debridement and enhancing intraoperative decision-making. Conclusions: Near-infrared autofluorescence imaging with Fluobeam® and thermal imaging with FLIR® offer complementary, noninvasive diagnostic insights into microbial burden and host inflammatory response. The combined use of these modalities may improve infection detection, support clinical decision-making, and enhance wound care outcomes. Full article
(This article belongs to the Section Medical Imaging and Theranostics)
Show Figures

Figure 1

13 pages, 4342 KB  
Article
Phyllosphere Arthropods Facilitate Secondary Dispersal of Putative Mycoparasite Simplicillium: A Potential Biocontrol Strategy for Soybean Rust
by Takuma Nada, Yasuhiro Ishiga and Izumi Okane
Microorganisms 2025, 13(9), 2035; https://doi.org/10.3390/microorganisms13092035 - 31 Aug 2025
Abstract
Soybean rust, caused by Phakopsora pachyrhizi, is a major foliar disease that often escapes fungicide control, necessitating alternative strategies. We investigated whether phyllosphere arthropods, such as mites and thrips, facilitate the secondary dispersal of the mycoparasitic fungus Simplicillium under controlled conditions. Detached [...] Read more.
Soybean rust, caused by Phakopsora pachyrhizi, is a major foliar disease that often escapes fungicide control, necessitating alternative strategies. We investigated whether phyllosphere arthropods, such as mites and thrips, facilitate the secondary dispersal of the mycoparasitic fungus Simplicillium under controlled conditions. Detached soybean leaves inoculated with P. pachyrhizi were subjected to either arthropod-exposed or arthropod-excluded treatments. Simplicillium isolates were significantly more abundant in the presence of arthropods. Molecular identification revealed identical ITS genotypes of S. lamellicola from both infected pustules and thrips, indicating vector-mediated fungal transmission. While some Simplicillium strains persisted epiphytically without vectors, their spread was minimal. These results highlight a promising approach to enhance the effectiveness of Simplicillium-based biocontrol through natural arthropod-mediated dissemination, warranting field validation of this self-disseminating strategy. Full article
Show Figures

Figure 1

23 pages, 1470 KB  
Review
Agarwood in the Modern Era: Integrating Biotechnology and Pharmacology for Sustainable Use
by Aqsa Baig, Adeel Akram and Ming-Kuem Lin
Int. J. Mol. Sci. 2025, 26(17), 8468; https://doi.org/10.3390/ijms26178468 (registering DOI) - 30 Aug 2025
Abstract
Agarwood, valued for its resin, has long been used in perfumery, incense, and traditional medicine. Its resin is primarily derived from species of Aquilaria and is produced through a still-unknown process in response to biotic or abiotic stress. Concerns regarding agarwood’s sustainability and [...] Read more.
Agarwood, valued for its resin, has long been used in perfumery, incense, and traditional medicine. Its resin is primarily derived from species of Aquilaria and is produced through a still-unknown process in response to biotic or abiotic stress. Concerns regarding agarwood’s sustainability and conservation have emerged because of the substantial loss of natural resources due to overharvesting and illegal trade. To address these concerns, artificial techniques are being used to produce agarwood. The mechanism underlying agarwood production must be elucidated to enhance yield. The authentication of agarwood species is challenging because of morphological similarities between pure and hybrid Aquilaria species. Techniques such as DNA barcoding, molecular marker assessment, and metabolomics can ensure accurate identification, facilitating conservation. Artificial intelligence and machine learning can support this process by enabling rapid, automated identification on the basis of genetic and phytochemical data. Advances in resin induction methods (e.g., fungal inoculation) and chemical induction treatments are improving yield and quality. Endophytic fungi and bacteria promote resin production at minimal harm to the tree. Agarwood’s pharmacological potential—antimicrobial, anti-inflammatory, and anticancer effects—has driven research into bioactive compounds such as sesquiterpenes and flavonoids for the development of novel drugs. This systematic review synthesized current evidence on species authentication, induction techniques, and pharmacological properties. The findings may guide future research aimed at ensuring sustainable use and enhancing the medicinal value of agarwood. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

14 pages, 1014 KB  
Article
Microbiological Profiles of Patients with Acute Periprosthetic Joint Infection Undergoing Debridement, Antibiotics, Irrigation and Implant Retention (DAIR)
by Alberto Alfieri Zellner, Niclas Watzlawik, Jonas Roos, Gunnar Thorben Rembert Hischebeth, Ernst Molitor, Alexander Franz and Frank Sebastian Fröschen
Antibiotics 2025, 14(9), 873; https://doi.org/10.3390/antibiotics14090873 (registering DOI) - 30 Aug 2025
Viewed by 119
Abstract
Background: Periprosthetic joint infection (PJI) is one of the most serious complications following total joint arthroplasty. The debridement, antibiotics, irrigation, and implant retention (DAIR) procedure is commonly employed to treat acute, early-stage infections, but its success is highly variable, influenced by factors [...] Read more.
Background: Periprosthetic joint infection (PJI) is one of the most serious complications following total joint arthroplasty. The debridement, antibiotics, irrigation, and implant retention (DAIR) procedure is commonly employed to treat acute, early-stage infections, but its success is highly variable, influenced by factors such as pathogen virulence and antibiotic susceptibility profiles. This study aimed to evaluate the impact of pathogens responsible for these infections on the outcome of DAIR. Methods: This retrospective, single-center study analyzed the microbiological profiles of 116 patients (66 hips and 50 knees) treated for acute periprosthetic joint infections (PJIs) with DAIR between 2018 and 2022. Acute PJI was defined as a duration of symptom less than three weeks, according to the criteria established by the Tsukayama and Izakovicova classification. Preoperative joint aspirations, intraoperatively collected tissue samples, and sonication of the exchanged mobile parts were analyzed for each case. We differentiated between monomicrobial PJI, polymicrobial PJI (defined as the identification of more than one microorganism from preoperative joint fluid aspiration or intraoperative samples), and difficult-to-treat (DTT) pathogens. Results: In this cohort, the following pathogen profiles were identified: culture-negative cases accounted for 11.1% of infections, while 64.2% were attributed to Gram-positive bacteria, 19.8% to Gram-negative bacteria, and 4.9% to fungal pathogens. Among the identified microorganisms, coagulase-negative staphylococci (CNS) were the most frequently detected, exhibiting a notable oxacillin resistance rate of 52.9% and rifampicin resistance rate of 28.7%. Additionally, no significant difference in revision-free implant survival was found between patients with DTT pathogens and/or polymicrobial PJI and those without such infections. Conclusions: This study highlights that pathogens in prosthetic joint infections (PJIs) do not solely determine outcomes, as patient-specific factors (comorbidities, implant type) may also play a key role. Regional variations in pathogens and antibiotic resistance patterns should guide empirical therapy. For instance, this study found a high reliance on vancomycin due to high oxacillin resistance in CNS, the most frequent causative pathogen. Full article
(This article belongs to the Special Issue Orthopedic Infections: Epidemiology and Antimicrobial Treatment)
Show Figures

Figure 1

19 pages, 3792 KB  
Article
Biological and Genomic Insights into Fusarium acuminatum Causing Needle Blight in Pinus tabuliformis
by Linin Song, Yuying Xu, Tianjin Liu, He Wang, Xinyue Wang, Changxiao Fu, Xiaoling Xie, Yakubu Saddeeq Abubakar, Abah Felix, Ruixian Yang, Xinhong Jing, Guodong Lu, Jiandong Bao and Wenyu Ye
J. Fungi 2025, 11(9), 636; https://doi.org/10.3390/jof11090636 - 29 Aug 2025
Viewed by 206
Abstract
Chinese pine, Pinus tabuliformis, is one of the most important garden plants in northern China, and the planting of this species is of great significance for the improvement of the ecological environment. In this study, different fungi were isolated and purified from [...] Read more.
Chinese pine, Pinus tabuliformis, is one of the most important garden plants in northern China, and the planting of this species is of great significance for the improvement of the ecological environment. In this study, different fungi were isolated and purified from diseased Pinus tabuliformis samples collected in Xi’an city, Shaanxi Province. Of these fungal isolates, only one (isolate AP-3) was pathogenic to the healthy host plant. The pathogenic isolate was identified as Fusarium acuminatum by morphological characteristics and ITS and TEF-1α sequence analyses. The optimal growth conditions for this isolate were further analyzed as follows: Optimal temperature of 25 °C, pH of 11, soluble starch and sodium nitrate as the most preferred carbon and nitrogen sources, respectively. By combining Oxford Nanopore Technologies (ONT) long-read sequencing with Illumina short-read sequencing technologies, we obtained a 41.50 Mb genome assembly for AP-3, with 47.97% GC content and 3.04% repeats. This consisted of 14 contigs with an N50 of 4.64 Mb and a maximum length of 6.45 Mb. The BUSCO completeness of the genome assembly was 98.94% at the fungal level and 97.83% at the Ascomycota level. The genome assembly contained 13,408 protein-coding genes, including 421 carbohydrate-active enzymes (CAZys), 120 cytochrome P450 enzymes (CYPs), 3185 pathogen-host interaction (PHI) genes, and 694 candidate secreted proteins. To our knowledge, this is the first report of F. acuminatum causing needle blight of P. tabuliformis. This study not only uncovered the pathogen responsible for needle blight of P. tabuliformis, but also provided a systematic analysis of its biological characteristics. These findings provide an important theoretical basis for disease control in P. tabuliformis and pave the way for further research into the fungal pathogenicity mechanisms and management strategies. Full article
Show Figures

Figure 1

12 pages, 1649 KB  
Article
Untargeted GC-MS Metabolic Profiling of Anaerobic Gut Fungi Reveals Putative Terpenoids and Strain-Specific Metabolites
by Lazarina V. Butkovich, Candice L. Swift, Chaevien S. Clendinen, Heather M. Olson, Samuel O. Purvine, Oliver B. Vining and Michelle A. O’Malley
Metabolites 2025, 15(9), 578; https://doi.org/10.3390/metabo15090578 - 29 Aug 2025
Viewed by 173
Abstract
Background/Objectives: Anaerobic gut fungi (Neocallimastigomycota) are biotechnologically relevant, lignocellulose-degrading microbes with under-explored biosynthetic potential for secondary metabolites. Untargeted metabolomic profiling with gas chromatography–mass spectrometry (GC-MS) was applied to two gut fungal strains, Anaeromyces robustus and Caecomyces churrovis, to establish a foundational [...] Read more.
Background/Objectives: Anaerobic gut fungi (Neocallimastigomycota) are biotechnologically relevant, lignocellulose-degrading microbes with under-explored biosynthetic potential for secondary metabolites. Untargeted metabolomic profiling with gas chromatography–mass spectrometry (GC-MS) was applied to two gut fungal strains, Anaeromyces robustus and Caecomyces churrovis, to establish a foundational metabolomic dataset to identify metabolites and provide insights into gut fungal metabolic capabilities. Methods: Gut fungi were cultured anaerobically in rumen-fluid-based media with a soluble substrate (cellobiose), and metabolites were extracted using the Metabolite, Protein, and Lipid Extraction (MPLEx) method, enabling metabolomic and proteomic analysis from the same cell samples. Samples were derivatized and analyzed via GC-MS, followed by compound identification by spectral matching to reference databases, molecular networking, and statistical analyses. Results: Distinct metabolites were identified between A. robustus and C. churrovis, including 2,3-dihydroxyisovaleric acid produced by A. robustus and maltotriitol, maltotriose, and melibiose produced by C. churrovis. C. churrovis may polymerize maltotriose to form an extracellular polysaccharide, like pullulan. GC-MS profiling potentially captured sufficiently volatile products of proteomically detected, putative non-ribosomal peptide synthetases and polyketide synthases of A. robustus and C. churrovis. The triterpene squalene and triterpenoid tetrahymanol were putatively identified in A. robustus and C. churrovis. Their conserved, predicted biosynthetic genes—squalene synthase and squalene tetrahymanol cyclase—were identified in A. robustus, C. churrovis, and other anaerobic gut fungal genera. Conclusions: This study provides a foundational, untargeted metabolomic dataset to unmask gut fungal metabolic pathways and biosynthetic potential and to prioritize future efforts for compound isolation and identification. Full article
(This article belongs to the Section Microbiology and Ecological Metabolomics)
Show Figures

Figure 1

18 pages, 3689 KB  
Article
Biocontrol Potential of Rhizobacteria Against Passalora fulva and Tuta absoluta: A Sustainable Approach for Tomato Protection
by Said Bahoch, Abdessamad Elaasri, Salahddine Chafiki, Fouad Elame, Ahmed Wifaya, El hassan Mayad, Rachid Bouharroud and Redouan Qessaoui
Plants 2025, 14(17), 2672; https://doi.org/10.3390/plants14172672 - 27 Aug 2025
Viewed by 294
Abstract
Plant growth-promoting rhizobacteria (PGPR) offer a sustainable strategy for enhancing crop productivity and suppressing phytopathogens. In this study, seven bacterial isolates obtained from the rhizosphere of healthy tomato plants were evaluated for their antagonistic activity against the fungal pathogen Passalora fulva, the [...] Read more.
Plant growth-promoting rhizobacteria (PGPR) offer a sustainable strategy for enhancing crop productivity and suppressing phytopathogens. In this study, seven bacterial isolates obtained from the rhizosphere of healthy tomato plants were evaluated for their antagonistic activity against the fungal pathogen Passalora fulva, the leaf miner Tuta absoluta, and their effects on tomato growth. In vitro dual-culture assays revealed that isolates IQR1, IQR2, IQR3, and IQR5 significantly inhibited P. fulva mycelial growth, with inhibition rates exceeding 35%. Volatile organic compounds (VOCs) produced by the bacterial isolates exhibited considerable antifungal activity, with IQR5, IQR1, and IQR2 achieving over 84% inhibition. Molecular identification based on 16S rDNA sequencing indicated that these isolates belong to distinct taxa: Leucobacter aridicolis (ON799334.1) (genus Leucobacter), Paenochrobactrum sp. (JF804769.1) (genus Paenochrobactrum), an uncultured bacterium (JQ337400.1) (genus Psychrobacter), and marine bacterium AK6_052 (KF816539.1) (genus Brevundimonas). Under greenhouse conditions, isolates IQR3, IQR5, and IQR1 reduced disease incidence of P. fulva to 20–26%. The same isolates also promoted plant growth, enhancing stem height and collar diameter. In addition, IQR5 significantly reduced T. absoluta larval density and foliar damage, with the number of larvae per leaflet decreasing to 1.42, compared to 3.20 in the control. These findings highlight the potentials of these rhizobacterial strains—particularly IQR5—as effective biocontrol agents and biofertilizers for integrated pest and disease management in tomato cultivation. Full article
(This article belongs to the Special Issue Plant–Rhizosphere Interactions)
Show Figures

Figure 1

10 pages, 5953 KB  
Case Report
Catastrophic Cerebral Infarctions in a Pediatric Patient with Acute Lymphoblastic Leukemia Due to Mucorales Infection
by Alexander M. Aldejohann, Antonio Uribe Munoz, Miriam A. Füller, Grit Walther, Oliver Kurzai, Frieder Schaumburg, Ronald Sträter, Jenny Potratz, Julia Sandkötter, Daniel Ebrahimi-Fakhari, Christian P. Stracke, Laura Beck, Christian Thomas and Andreas H. Groll
J. Fungi 2025, 11(9), 618; https://doi.org/10.3390/jof11090618 - 25 Aug 2025
Viewed by 391
Abstract
Mucormycosis is a rare invasive fungal disease in pediatric patients with hematological malignancies and is associated with poor outcomes. We present a fulminant and ultimately fatal case of rhino-orbito-cerebral mucormycosis, addressing important issues including clinical signs and symptoms, diagnostic approaches and the challenges [...] Read more.
Mucormycosis is a rare invasive fungal disease in pediatric patients with hematological malignancies and is associated with poor outcomes. We present a fulminant and ultimately fatal case of rhino-orbito-cerebral mucormycosis, addressing important issues including clinical signs and symptoms, diagnostic approaches and the challenges of timely diagnosis. The patient was an 11-year old girl undergoing re-induction chemotherapy for Central Nervous System relapse of B-cell precursor acute lymphoblastic leukemia. She presented six days into the second course of chemotherapy in profound neutropenia with aggravating headaches, painful abducens nerve palsy and anisocoria. At first (day −3), no significant radiological or ophthalmological correlations were found, and methyl–prednisolone was started due to suspected vasculitis following ICU admission. After further clinical deterioration, a second MRI scan (day 0) revealed a prolonged occlusion of the left carotid artery, which was successfully stented in a neuroradiological intervention (day +1). However, during the next day the child developed clinical signs indicating severe cerebral dysfunction. An emergency CT scan showed complete infarction of the left hemisphere including a progredient perfusion deficit and beginning brain edema. Based on the unfavorable prognosis, best supportive care was initiated, and the patient deceased on day +2. Pathological and microbiological workup identified thrombotic infarction in all major cerebral arteries. While microscopy was suspicious for mucormycosis, nested PCR from retained blood specimens confirmed the genus Lichtheimia. Final NGS on brain tissue led to the identification of Lichtheimia ramosa. This case illustrates the rapidity and severity of Mucorales infection. It shows the importance of early clinical suspicion and the need for an aggressive laboratory testing algorithms. The stratification of risk factors and definition of red flags may be a future task fighting these infections. Full article
(This article belongs to the Collection Pathogenic Fungal Infections in Cancer and Transplant Patients)
Show Figures

Figure 1

5 pages, 361 KB  
Proceeding Paper
Detection and Species Distribution of Fungal Pathogens Associated with Otomycosis in a Tertiary Health Center in Kano, Nigeria
by Khadija Muhammad Kawu, Muhammad Ibrahim Getso, Taysir Ramadan, Alhassan Abdullahi Sharif, Kanishka Hrishi Das, Al-Mukhtar Yahuza Adamu and Mansur Aliyu
Biol. Life Sci. Forum 2025, 46(1), 4; https://doi.org/10.3390/blsf2025046004 - 22 Aug 2025
Viewed by 206
Abstract
Otomycosis is the commonest cause of otitis externa seen in otorhinolaryngology clinics, especially in tropical and subtropical regions of the world. Diagnosis is usually made clinically and confirmed by laboratory identification of fungal elements. We conducted a cross-sectional and hospital-based epidemiological study that [...] Read more.
Otomycosis is the commonest cause of otitis externa seen in otorhinolaryngology clinics, especially in tropical and subtropical regions of the world. Diagnosis is usually made clinically and confirmed by laboratory identification of fungal elements. We conducted a cross-sectional and hospital-based epidemiological study that aimed to determine the prevalence, distribution and antifungal susceptibility profile of common aetiologic agents of otomycosis in Kano, northwestern Nigeria. We collected clinical samples from 300 patients who presented with symptoms of external ear infection, out of which 117 subjects (39.0%) were mycologically positive. Aspergillus species were the predominant isolate, with 90 (77.0%), followed by Candida species at 27 (23.0%). Otomycosis accounts for 39% of otitis externa seen in our center, mostly presenting with pruritus and otalgia. Raising the awareness of the general population to the predisposing factors may significantly reduce the incidence of otomycosis. Full article
Show Figures

Figure 1

28 pages, 2057 KB  
Article
Bioactive Properties of Selected European Phellinus Species: A Comprehensive Study
by Grzegorz Świderski, Monika Kalinowska, Ewa Zapora, Marek Wołkowycki, Marcin Stocki, Ewa Ciszkowicz, Aleksandra Bocian, Marcin Jaromin, Mirosław Tyrka, Katarzyna Lecka-Szlachta, Elżbieta Wołejko, Urszula Wydro, Małgorzata Pawłowska, Paweł Golianek, Małgorzata Zawadzka, Qëndrim Ramshaj, Carolina Elena Girometta and Mitko Karadelev
Int. J. Mol. Sci. 2025, 26(16), 8013; https://doi.org/10.3390/ijms26168013 - 19 Aug 2025
Viewed by 261
Abstract
This study conducted a multi-directional evaluation of the chemical potential and biological properties of selected European fungal species of the genus Phellinus. We investigated 30 samples belonging to 22 Phellinus species. Fruiting bodies were collected, among other specimens, in the Białowieża Forest [...] Read more.
This study conducted a multi-directional evaluation of the chemical potential and biological properties of selected European fungal species of the genus Phellinus. We investigated 30 samples belonging to 22 Phellinus species. Fruiting bodies were collected, among other specimens, in the Białowieża Forest (Poland); Village Kozhle (North Macedonia); Estremadura, Sesimbra, and Lagoa de Albufeira (Portugal); Zlatari close to Prishtina (Kosovo); and Spoleto and the Bosco Siro Negri State Nature Reserve (Italy). Morphological identification of the collected fungi was carried out, and genetic tests were performed to confirm the identity of the collected specimens. Methanol extracts for biological activity tests were prepared. Screening of antimicrobial activity of 30 methanolic extracts was performed on strains of bacteria (Klebsiella pneumoniae, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, and Kocuria rhizophila) and fungi (Candida albicans). Antioxidant activity tests (DPPH and ABTS) were also performed. The three most biologically active fungi species were selected (Phellinus igniarius, Fomitiporia robusta, and Porodaedalea pini) for further research. The chemical composition of the extracts was determined using GC-MS analysis. Thermal decomposition studies and spectroscopic analysis of the dry fruiting bodies were performed. The extracts were tested for their antimicrobial activity against antibiotic-resistant bacteria. Cytotoxic activity was also tested. Full article
(This article belongs to the Special Issue Molecular Insight into Plant Bioactive Compounds)
Show Figures

Figure 1

33 pages, 1549 KB  
Review
Exploring a Therapeutic Gold Mine: The Antifungal Potential of the Gold-Based Antirheumatic Drug Auranofin
by Jingyi Ma, Wendy van de Sande and Bernhard Biersack
Int. J. Mol. Sci. 2025, 26(16), 7909; https://doi.org/10.3390/ijms26167909 - 16 Aug 2025
Viewed by 370
Abstract
Human fungal infections comprise systemic mycoses as well as various skin diseases. Rising case numbers along with inefficient therapies and the appearance of drug-resistant strains unleashed a considerable health problem over the last years. Thus, the identification and development of new antifungal drugs [...] Read more.
Human fungal infections comprise systemic mycoses as well as various skin diseases. Rising case numbers along with inefficient therapies and the appearance of drug-resistant strains unleashed a considerable health problem over the last years. Thus, the identification and development of new antifungal drugs is mandatory, which can include the design of new antifungals, or, more time saving, the repurposing of known drugs already applied for the therapy of other human diseases. The orally applicable gold-based drug auranofin has been used for the treatment of rheumatoid arthritis since the 1980s. However, auranofin also showed marked activity against various cancers, microbes, parasites, and viruses. Facing a pressing need to find new drug candidates against mycoses, especially against those listed in the WHO fungal pathogen priority list, we have summarized the eminent antifungal activities of auranofin in this review. Given its established safety profile and broad-spectrum activity, auranofin represents a promising candidate for repurposing in antifungal therapy. The mechanism of action of auranofin was correlated with thioredoxin reductase inhibition, but other modes of action such as interference with mitochondrial protein import and NADH kinase were also described and discussed. A selection of promising antifungal gold complexes was also provided. Pertinent literature is covered until 2025. Full article
Show Figures

Figure 1

35 pages, 1649 KB  
Review
Candidemia: An Update on Epidemiology, Risk Factors, Diagnosis, Susceptibility, and Treatment
by Juan Pablo Cabrera-Guerrero, Eduardo García-Salazar, Graciela Hernandez Silva, Alberto Chinney Herrera, Erick Martínez-Herrera, Rodolfo Pinto-Almazán, María Guadalupe Frías-De-León and Carlos Alberto Castro-Fuentes
Pathogens 2025, 14(8), 806; https://doi.org/10.3390/pathogens14080806 - 14 Aug 2025
Viewed by 1011
Abstract
Candidemia is a highly prevalent invasive fungal infection caused primarily by C. albicans, C. parapsilosis, C. glabrata (currently Nakaseomyces glabratus), C. tropicalis, and C. krusei (currently Pichia kudriavzevii). Risk factors for the development of candidemia include steroid-induced immunosuppression [...] Read more.
Candidemia is a highly prevalent invasive fungal infection caused primarily by C. albicans, C. parapsilosis, C. glabrata (currently Nakaseomyces glabratus), C. tropicalis, and C. krusei (currently Pichia kudriavzevii). Risk factors for the development of candidemia include steroid-induced immunosuppression used in solid organ or hematopoietic transplantation, and neutropenia secondary to infectious or tumorous processes. Alterations in the gut microbiota in people living with HIV, caused by antiretroviral therapy, increase the possibility of colonization by C. albicans. Likewise, the presence of a central venous catheter, parenteral nutrition, and abdominal surgery stand out as the main risk factors for the development of candidemia. New diagnostic tools have been developed for the diagnosis of this mycosis that allow the identification of the main species, from improvements in conventional stains such as calcofluor white, which increases sensitivity, as well as technologies such as T2 Candida, MoiM assay, biomarker panel (1,3 β-D-glucan, C-reactive protein, presepsin, and procalcitonin), and, more recently, the development of biosensors for the identification of Candida spp. Regarding treatment, the use of micafungin and anidulafungin in patients with obesity defined by a BMI > 30 kg/m2 has shown higher survival rates and therapeutic success. Meanwhile, newer antifungals such as rezafungin and fosmanogepix have demonstrated excellent results in the treatment of these patients. Therefore, this review aims to update the epidemiology and risk factors of candidemia, as well as analyze the diagnostic tools and treatments currently available. Full article
(This article belongs to the Special Issue An Update on Fungal Infections)
Show Figures

Figure 1

24 pages, 1548 KB  
Review
Onychomycosis in Diabetics: A Common Infection with Potentially Serious Complications
by Aditya K. Gupta, Amanda Liddy, Lee Magal, Avner Shemer, Elizabeth A. Cooper, Ditte Marie L. Saunte and Tong Wang
Life 2025, 15(8), 1285; https://doi.org/10.3390/life15081285 - 13 Aug 2025
Viewed by 813
Abstract
Onychomycosis is a prevalent and clinically relevant complication among individuals with diabetes. It is associated with an elevated risk of secondary fungal and bacterial infections, foot ulceration, and, in advanced cases, amputation. Factors contributing to the increased prevalence of onychomycosis in this population [...] Read more.
Onychomycosis is a prevalent and clinically relevant complication among individuals with diabetes. It is associated with an elevated risk of secondary fungal and bacterial infections, foot ulceration, and, in advanced cases, amputation. Factors contributing to the increased prevalence of onychomycosis in this population include age, peripheral vascular disease, poor glycemic control, neuropathy, suboptimal foot hygiene, and nail trauma. While dermatophytes are the most common pathogens, diabetic patients are more prone to mixed infections involving Candida species with varying antifungal susceptibility profiles, necessitating accurate identification to guide therapy. Prompt diagnosis and early intervention are important to prevent complications. Systemic antifungals such as terbinafine and itraconazole are considered first-line therapies, particularly for moderate to severe onychomycosis. However, drug interactions, renal, hepatic, and metabolic comorbidities may necessitate individualized treatment plans. For patients with mild to moderate disease, or contraindications to oral therapy, topical agents such as efinaconazole or tavaborole offer viable alternatives. Adjunctive measures, including education on foot hygiene, prompt treatment of tinea pedis, and environmental sanitization, are important in preventing recurrence and reinfection. This review summarizes the epidemiology, diagnosis, and treatment considerations for onychomycosis in diabetic patients, emphasizing the need for individualized care to improve outcomes in this high-risk population. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

10 pages, 590 KB  
Article
Fungal Pathogens in Pet Dogs and Cats in Grenada: Identification and Antifungal Susceptibility
by Erica Hazel-Ann Brathwaite, Kamashi Kumar, Grace Dolphin-Bond, Wayne Sylvester, Victor Amadi and Andy Alhassan
J. Fungi 2025, 11(8), 590; https://doi.org/10.3390/jof11080590 - 12 Aug 2025
Viewed by 561
Abstract
Considering the clinical relevance of commensal yeasts (Malassezia and Candida) and zoophilic dermatophytes (Microsporum canis and Trichophyton mentagrophytes) in dogs and cats, this study determines the prevalence of fungal species involved in ear and superficial skin infections in dogs [...] Read more.
Considering the clinical relevance of commensal yeasts (Malassezia and Candida) and zoophilic dermatophytes (Microsporum canis and Trichophyton mentagrophytes) in dogs and cats, this study determines the prevalence of fungal species involved in ear and superficial skin infections in dogs and cats in Grenada and examines their antifungal susceptibility. The etiological agents were isolated from ear, skin, and hair samples of suspected clinical fungal cases using Sabouraud Dextrose Agar (SAB). The isolates’ identification comprised morphological, biochemical, and molecular methods encompassing micro-/macroscopy analysis. Biochemically, yeast isolates were identified by the BD Phoenix M50 microbial identification system, and additional validation of all fungal isolates was performed by polymerase chain reaction (PCR) and sequencing of the ITS region. Furthermore, the E-Test (Epsilometer Test) was used to determine the susceptibility patterns for four azole drugs: ketoconazole, itraconazole, fluconazole, and voriconazole. A total of 405 samples (266 ear, 61 skin, and 78 hair) were collected from 136 dogs and 43 cats. The identified species were Malassezia pachydermatis, Candida tropicalis, and Trichophyton spp. All isolates demonstrated (100%) resistant activity to fluconazole. Importantly, this knowledge will significantly contribute to our understanding of the epidemiology of fungal infections as well as provide guidelines for preventive measures against fungal infections in Grenada. Full article
Show Figures

Figure 1

15 pages, 3777 KB  
Article
Talaromyces pinophilus Strain HD25G2 as a Novel Biocontrol Agent of Fusarium culmorum, the Causal Agent of Root and Crown Rot of Soft Wheat
by Amel Bennacer, Fatma Sahir-Halouane, Micaela Alvarez, Zahia Oukali, Nour El Houda Bennacer, Abdelhamid Foughalia and Josué Delgado
J. Fungi 2025, 11(8), 588; https://doi.org/10.3390/jof11080588 - 11 Aug 2025
Viewed by 681
Abstract
Fusarium culmorum is the causal agent of root rot and crown rot in soft wheat. The aim of this study was to investigate the control mechanism of Talaromyces pinophilus HD25G2 as a biocontrol agent against F. culmorum. This involved the isolation and [...] Read more.
Fusarium culmorum is the causal agent of root rot and crown rot in soft wheat. The aim of this study was to investigate the control mechanism of Talaromyces pinophilus HD25G2 as a biocontrol agent against F. culmorum. This involved the isolation and molecular identification of Fusarium and Talaromyces strains from soft wheat. The assay included the inhibition test of F. culmorum mycelial growth on potato dextrose agar and soft wheat media at two water activity values (0.98 and 0.95), its production of mycotoxins, and the fungal cell wall-degrading enzymes implicated in the antagonistic effect of T. pinophilus. The results showed that T. pinophilus and its extract free of cells reduced the growth of F. culmorum by over 55%. Interestingly, the T. pinophilus HD25G2 showed high chitinase, protease, and cellulose production on solid media. In addition, chitinolytic and proteolytic activities were estimated at the values of 1.72 ± 0.02UI and 0.49 ± 0.01UI, respectively. However, the mycotoxin evaluation assay revealed that F. culmorum HD15C10 produced zearalenone (ZEA) and the biocontrol agent enhanced its production, but the early inoculation of T. pinophilus, before F. culmorum growth onset, inhibited 100% its growth and, therefore, prevented the presence of ZEA. Hence, this strain can be proposed as a biocontrol agent against F. culmorum, and it can be further investigated for biocontrol of Fusarium root and crown rot in vivo. Full article
(This article belongs to the Special Issue Plant Pathogens and Mycotoxins)
Show Figures

Graphical abstract

Back to TopTop