Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,446)

Search Parameters:
Keywords = future warming

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 6273 KB  
Article
A Study on the Endangerment of Luminitzera littorea (Jack) Voigt in China Based on Its Global Potential Suitable Areas
by Lin Sun, Zerui Li and Liejian Huang
Plants 2025, 14(17), 2792; https://doi.org/10.3390/plants14172792 (registering DOI) - 5 Sep 2025
Abstract
The survival status of Lumnitzera littorea is near threatened globally and critically endangered in China. Clarifying its global distribution pattern and its changing trends under different future climate models is of great significance for the protection and restoration of its endangered status. To [...] Read more.
The survival status of Lumnitzera littorea is near threatened globally and critically endangered in China. Clarifying its global distribution pattern and its changing trends under different future climate models is of great significance for the protection and restoration of its endangered status. To build a model for this purpose, this study selected 73 actual distribution points of Lumnitzera littorea worldwide, combined with 12 environmental factors, and simulated its potential suitable habitats in six periods: the Last Interglacial (130,000–115,000 years ago), the Last Glacial Maximum (27,000–19,000 years ago), the Mid-Holocene (6000 years ago), the present (1970–2000), and the future 2050s (2041–2060) and 2070s (2061–2080). The results show that the optimal model parameter combination is the regularization multiplier RM = 4.0 and the feature combination FC (Feature class) = L (Linear) + Q (Quadratic) + P (Product). The MaxEnt model has a low omission rate and a more concise model structure. The AUC values in each period are between 0.981 and 0.985, indicating relatively high prediction accuracy. Min temperature of the coldest month, mean diurnal range, clay content, precipitation of the warmest quarter, and elevation are the dominant environmental factors affecting its distribution. The environmental conditions for min temperature of the coldest month at ≥19.6 °C, mean diurnal range at <7.66 °C, clay content at 34.14%, precipitation of the warmest quarter at ≥570.04 mm, and elevation at >1.39 m are conducive to Lumnitzera littorea’s survival and distribution. The global potential distribution areas are located along coasts. Starting from the paleoclimate, the plant’s distribution has gradually expanded, and its adaptability has gradually improved. In China, the range of potential highly suitable habitats is relatively narrow. Hainan Island is the core potential habitat, but there are fragmented areas in regions such as Guangdong, Guangxi, and Taiwan. The modern centroid of Lumnitzera littorea is located at (109.81° E, 2.56° N), and it will shift to (108.44° E, 3.22° N) in the later stage of the high-emission scenario (2070s (SSP585)). Under global warming trends, it has a tendency to migrate to higher latitudes. The development of the aquaculture industry and human deforestation has damaged the habitats of Lumnitzera littorea, and its population size has been sharply and continuously decreasing. The breeding and renewal system has collapsed, seed abortion and seedling establishment failure are common, and genetic variation is too scarce. This may indicate why Lumnitzera littorea is near threatened globally and critically endangered in China. Therefore, the protection and restoration strategies we propose are as follows: strengthen the legislative guarantee and law enforcement supervision of the native distribution areas of Lumnitzera littorea, expanding its population size outside the native environment, and explore measures to improve its seed germination rate, systematically collecting and introducing foreign germplasm resources to increase its genetic diversity. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

22 pages, 2560 KB  
Article
Challenging the Norm of Lawns in Public Urban Green Space: Insights from Expert Designers, Turf Growers and Managers
by Maria Ignatieva, Michael Hughes, Fahimeh Mofrad and Agata Cabanek
Land 2025, 14(9), 1814; https://doi.org/10.3390/land14091814 - 5 Sep 2025
Abstract
Lawns have evolved from medieval European grasslands into globally accepted urban green surfaces, serving recreational, aesthetic and cultural purposes. Today lawn surfaces are essential components of public urban green space (PUGS), fulfilling ecosystem services such as urban heat mitigation, carbon sequestration and social [...] Read more.
Lawns have evolved from medieval European grasslands into globally accepted urban green surfaces, serving recreational, aesthetic and cultural purposes. Today lawn surfaces are essential components of public urban green space (PUGS), fulfilling ecosystem services such as urban heat mitigation, carbon sequestration and social well-being. However, their ecological and resource-intensive disservices, particularly in dry climates, have prompted growing concerns among environmental scientists, urban planners and landscape designers. In water-scarce regions like Perth, Western Australia, traditional lawns face increasing scrutiny due to their high irrigation demands and limited ecological diversity. This study contributed to the transdisciplinary LAWN as Cultural and Ecological Phenomenon project, focusing on the perspectives of professionals, landscape architects, park managers, turf producers and researchers responsible for the planning, design and management of urban lawn in PUGS. Using qualitative methods (semi-structured in-depth interviews), the research explores expert insights on the values, challenges and future trajectories of lawn use in a warming, drying climate. The interviews included 21 participants. Findings indicate that while professionals acknowledge lawns’ continued relevance for sports and active recreation, water scarcity is a major concern influencing design and species selection. Alternatives such as drought-tolerant plants, hard landscaping and multifunctional green spaces are increasingly considered for non-sporting areas. Despite growing concerns, the ideal lawn is still envisioned as an expansive, green, soft surface, mirroring entrenched public preferences. This study underscores the need to balance environmental sustainability with public preference and cultural expectations of green lawns. Balancing expert insights with public attitudes is vital for developing adaptive, water-conscious landscape design strategies suited to future urban planning and environmental conditions in Mediterranean climates. Full article
Show Figures

Figure 1

22 pages, 1814 KB  
Article
Life Cycle Assessment of a Cassava-Based Ethanol–Biogas–CHP System: Unlocking Negative Emissions Through WDGS Valorization
by Juntian Xu, Linchi Jiang, Rui Li and Yulong Wu
Sustainability 2025, 17(17), 8007; https://doi.org/10.3390/su17178007 - 5 Sep 2025
Viewed by 34
Abstract
To address the high fossil energy dependency and the low-value utilization of stillage (WDGS) in conventional cassava-based ethanol production—factors that increase greenhouse gas emissions and limit overall sustainability—this study develops an integrated ethanol–biogas–CHP system that valorizes stillage and enhances energy recovery. Three process [...] Read more.
To address the high fossil energy dependency and the low-value utilization of stillage (WDGS) in conventional cassava-based ethanol production—factors that increase greenhouse gas emissions and limit overall sustainability—this study develops an integrated ethanol–biogas–CHP system that valorizes stillage and enhances energy recovery. Three process scenarios were designed and evaluated through life cycle assessment (LCA) and techno-economic analysis: Case-I (WDGS dried and sold as animal feed), Case-II (stillage anaerobically digested for biogas used for heat), and Case-III (biogas further utilized in a combined heat and power system). Process simulation was conducted in Aspen Plus V11, while environmental impacts were quantified with the CML 2001 methodology under a cradle-to-gate boundary across six categories, including global warming potential (GWP) and abiotic depletion potential (ADP). Results show that Case-III achieves the highest environmental and economic performance, with a net GWP of −1515.05 kg CO2-eq/ton ethanol and the greatest profit of 396.80 USD/ton of ethanol, attributed to internal energy self-sufficiency and surplus electricity generation. Sensitivity analysis further confirms Case-III’s robustness under variations in transportation distance and electricity demand. Overall, valorizing cassava stillage through biogas–CHP integration significantly improves the sustainability of ethanol production, offering a practical pathway toward low-carbon bioenergy with potential for negative emissions. This study fills a gap in previous life cycle research by jointly assessing WDGS utilization pathways with techno-economic evaluation, providing actionable insights for carbon-neutral bioenergy policies in cassava-producing regions. Certain limitations, such as software version and data accessibility, remain to be addressed in future work. Full article
Show Figures

Figure 1

15 pages, 2116 KB  
Article
Predicting the Potential Suitable Habitat of Solanum rostratum in China Using the Biomod2 Ensemble Modeling Framework
by Jiajie Wang, Jingdong Zhao, Lina Jiang, Xuejiao Han and Yuanjun Zhu
Plants 2025, 14(17), 2779; https://doi.org/10.3390/plants14172779 - 5 Sep 2025
Viewed by 110
Abstract
Solanum rostratum Dunal is a highly invasive species with strong environmental adaptability and reproductive capacity, posing serious threats to agroforestry ecosystems and human health. In this study, we compiled occurrence records of S. rostratum in China from online databases and sources in the [...] Read more.
Solanum rostratum Dunal is a highly invasive species with strong environmental adaptability and reproductive capacity, posing serious threats to agroforestry ecosystems and human health. In this study, we compiled occurrence records of S. rostratum in China from online databases and sources in the literature. We employed the Biomod2 ensemble modeling framework to predict the potential distribution of the species under current climatic conditions and four future climate scenarios (SSP126, SSP245, SSP370, and SSP585), and to identify the key environmental variables influencing its distribution. The ensemble model based on the committee averaging (EMca) approach achieved the highest predictive accuracy, with a true skill statistic (TSS) of 0.932 and an area under the curve (AUC) of 0.990. Under present climatic conditions, S. rostratum is predominantly distributed across northern China, particularly in Xinjiang, Inner Mongolia, and the northeastern provinces, covering a total suitable area of 1,191,586.55 km2, with highly suitable habitats accounting for 50.37% of this range. Under future climate scenarios, the species’ suitable range is projected to expand significantly, particularly under the high-emissions SSP585 scenario, with the distribution centroid expected to shift significantly toward high-altitude regions in Gansu Province. Precipitation and temperature emerged as the most influential environmental factors affecting habitat suitability. These findings indicate that ongoing global warming may facilitate the survival, reproduction, and rapid spread of S. rostratum across China in the coming decades. Full article
(This article belongs to the Special Issue Advances in Artificial Intelligence for Plant Research)
Show Figures

Figure 1

18 pages, 5150 KB  
Article
Spatiotemporal Dynamics of Annual Precipitation and Future Projections of China’s 400 mm Isohyet
by Yi Xiong, Zhangli Sun, Haoting Shen, Lin Tu, Kaihong Huang and Wendong Ou
Remote Sens. 2025, 17(17), 3078; https://doi.org/10.3390/rs17173078 - 4 Sep 2025
Viewed by 217
Abstract
The 400 mm isohyet in China serves as a critical geographical demarcation of dry and wet regions. Amidst intensifying global warming, this climatic boundary has undergone notable shifts, with significant implications for China’s agriculture, water resources, and ecosystems. This study integrates meteorological station [...] Read more.
The 400 mm isohyet in China serves as a critical geographical demarcation of dry and wet regions. Amidst intensifying global warming, this climatic boundary has undergone notable shifts, with significant implications for China’s agriculture, water resources, and ecosystems. This study integrates meteorological station data, the China Gridded Daily Precipitation dataset (CN05.1), and Integrated Multi-satellite Retrievals for the Global Precipitation Measurement (GPM IMERG) satellite observations to assess the spatiotemporal distribution of precipitation across mainland China and analyze the migration trend of the 400 mm isohyet. Furthermore, utilizing outputs from five models of the Coupled Model Intercomparison Project Phase 6 (CMIP6), we projected future trends of China’s annual mean precipitation and the 400 mm isohyet’s migration under three Shared Socioeconomic Pathways (SSPs: low, medium, and high radiative forcing scenarios) until the end of this century (2100). Results reveal that from 2001 to 2017, the 400 mm isohyet exhibited a prominent northwestward migration trend. This trend is projected to continue in the future. These findings provide a crucial reference for understanding the spatial distribution and changing dynamics of precipitation patterns in China, offering vital decision support for land resource planning and water resource management. Full article
Show Figures

Figure 1

10 pages, 2172 KB  
Article
Decreasing Trend of Great White Shark Carcharodon carcharias Records in the Mediterranean: A Significant Population Loss or Shifts in Migration Patterns?
by Alen Soldo and Cemal Turan
J. Mar. Sci. Eng. 2025, 13(9), 1704; https://doi.org/10.3390/jmse13091704 - 3 Sep 2025
Viewed by 233
Abstract
The Mediterranean subpopulation of great white sharks (Carcharodon carcharias) is elusive and likely in decline, though long-term trends remain uncertain due to opportunistic record-keeping, misidentifications, and changing observation effort. We investigated whether spatial changes in shark occurrences during the 21st century [...] Read more.
The Mediterranean subpopulation of great white sharks (Carcharodon carcharias) is elusive and likely in decline, though long-term trends remain uncertain due to opportunistic record-keeping, misidentifications, and changing observation effort. We investigated whether spatial changes in shark occurrences during the 21st century correspond with shifts in Atlantic bluefin tuna (Thunnus thynnus) distribution and habitat conditions. We compiled geographically validated sighting and capture records from 1900 onward, mapped 20th- and 21st-century hotspots, and overlaid these with bluefin tuna potential habitat and long-term sea surface temperature (SST) data. Results reveal a clear redistribution of great white shark hotspots: historic coastal focal areas (e.g., Balearic Islands, Maltese Islands, eastern Adriatic, Sea of Marmara) have diminished or disappeared, while offshore zones (southern Strait of Sicily–Gulf of Gabes) and the Aegean coast of Turkey have emerged as contemporary hotspots. These patterns appear to align closely with shifts in tuna feeding grounds and cooler SST (<18 °C). We highlight limitations in using opportunistic and citizen-reported data due to detection biases and misidentifications, underscoring the need for models that correct detectability. Our findings are consistent with the hypothesis of a link between predator distribution, prey dynamics, and changing ocean conditions, and point toward targeted strategies for future conservation and monitoring of this apex predator in a warming Mediterranean. Full article
(This article belongs to the Special Issue Abundance and Diversity of the Sea Fish Community)
Show Figures

Figure 1

21 pages, 9666 KB  
Article
Spatial Polarisation of Extreme Temperature Responses and Its Future Persistence in Guangxi, China: A Multiscale Analysis over 1940–2023
by Siyi Hu and Xiangling Tang
Atmosphere 2025, 16(9), 1046; https://doi.org/10.3390/atmos16091046 - 3 Sep 2025
Viewed by 189
Abstract
To explore the spatiotemporal evolution of extreme temperature events in Guangxi (1940–2023), reveal regional response mechanisms, and assess future trends of persistence under climate warming, a multi-scale analysis was conducted using ERA5 reanalysis data. Methodologies included RH tests for homogeneity correction, collaborative kriging [...] Read more.
To explore the spatiotemporal evolution of extreme temperature events in Guangxi (1940–2023), reveal regional response mechanisms, and assess future trends of persistence under climate warming, a multi-scale analysis was conducted using ERA5 reanalysis data. Methodologies included RH tests for homogeneity correction, collaborative kriging for data optimisation, Mann–Kendall tests for trend and abrupt change detection, Morlet wavelet analysis for cyclic pattern identification, Exploratory Spatio-Temporal Data Analysis (ESTDA) for spatial heterogeneity quantification, and Rescaled Range (R/S) analysis to calculate Hurst indices for future persistence assessment. Results showed the following: (1) The ERA5 dataset exhibited high applicability in Guangxi (R = 0.9989, RMSE = 1.9492 °C), supporting robust evidence of continuous warming—warm indices (e.g., SU25, TX90p) increased significantly (SU25 at 0.2044 d/10a), while cold indices (e.g., TN10p, FD0) declined (TN10p at −0.0519 d/10a); abrupt changes of cold indices were concentrated in 1942–1950, with warm indices accelerating post-2000 and TXx exhibited the highest warming rate (0.23 °C/decade). (2) Extreme temperature indices displayed a primary 19–21-year oscillation cycle (dominant in warm indices) and a secondary 13-year cycle (prominent in cold indices). (3) Spatial heterogeneity featured northwest–southeast cold–heat inversion, coastal–inland intensity gradients, and latitudinal zonation of extreme indices; ESTDA revealed intensified polarisation, with warm indices clustering in low-latitude regions (e.g., Baise) and cold indices declining homogeneously in mountainous areas (e.g., Guilin), indicating an irreversible transition to a warming steady state. (4) R/S analysis indicated all indices had Hurst indices of 0.65–0.92, reflecting persistent future trends consistent with historical evolution, with warm indices (e.g., TNn, SU25) showing stronger persistence (H > 0.85). This work clarifies the spatial polarisation mechanism and future persistence of extreme temperature dynamics in Guangxi, providing a multi-scale scientific basis for disaster early warning and adaptation planning in climate-sensitive karst-monsoon regions. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

13 pages, 1446 KB  
Article
Soil Chemical Properties Along an Elevational Gradient in the Alpine Shrublands of the Northeastern Tibetan Plateau
by Juan Zhang, Xiaofeng Ren, Erwen Xu, Alexander Myrick Evans, Wenmao Jing, Rongxin Wang, Xin Jia, Minhui Bi, Isaac Dennis Amoah, Michael Pohlmann, Cleophas Mecha and C. Ken Smith
Soil Syst. 2025, 9(3), 95; https://doi.org/10.3390/soilsystems9030095 - 2 Sep 2025
Viewed by 473
Abstract
The high-elevation ecosystems of the Tibetan Plateau provide crucial ecosystem services including watershed protection and water provision for downstream human and wildlife communities. Thus, understanding the relationship between soil properties and vegetation under different management regimes is important as a warming climate alters [...] Read more.
The high-elevation ecosystems of the Tibetan Plateau provide crucial ecosystem services including watershed protection and water provision for downstream human and wildlife communities. Thus, understanding the relationship between soil properties and vegetation under different management regimes is important as a warming climate alters these systems. This study assessed vegetation cover, quantified the distribution of soil nutrients, and examined the relationships among soil chemical properties and plant cover in the high-elevation shrublands (3300 to 3700 m) in the Qilian Mountains on the northeastern Tibetan Plateau of China. These vegetation surveys and soil sample collections were conducted on 15 shrubland plots at different soil depths and soil chemical properties were investigated at each elevation. The content of soil organic matter (SOM), total nitrogen (TN), available phosphorus (AP), and available potassium (AK) fluctuated along the elevational gradient, while soil pH was close to neutral (pH 7.4). At our sites, SOM and TN contents generally increased with elevation, and AK was positively correlated with Salix plant cover. Using PCA, we determined that PC1 captured 43% of the total variance, and SOM and TN were the top contributing features. As climate in the region warms and precipitation becomes more variable, understanding the current soil–vegetation equilibria and how vegetation may migrate in future years is important to predicting changes in this region, especially at high elevations. From a managerial perspective, our goal was to provide additional information for restoring and managing subalpine and alpine shrubland vegetation in the Qilian Mountains to ensure the future sustainable use of these systems. Full article
Show Figures

Figure 1

21 pages, 5382 KB  
Article
Bidirectional Regulatory Effects of Warming and Winter Snow Changes on Litter Decomposition in Desert Ecosystems
by Yangyang Jia, Rong Yang, Wan Duan, Hui Wang, Zhanquan Ji, Qianqian Dong, Wenhao Qin, Wenli Cao, Wenshuo Li and Niannian Wu
Plants 2025, 14(17), 2741; https://doi.org/10.3390/plants14172741 - 2 Sep 2025
Viewed by 154
Abstract
Temperature and precipitation are the primary factors restricting litter decomposition in desert ecosystems. The desert ecosystems in Central Asia are ecologically fragile regions, and the climate shows a trend of “warm and wet” due to the regional climate change. However, the influencing mechanisms [...] Read more.
Temperature and precipitation are the primary factors restricting litter decomposition in desert ecosystems. The desert ecosystems in Central Asia are ecologically fragile regions, and the climate shows a trend of “warm and wet” due to the regional climate change. However, the influencing mechanisms of warming and winter snow changes on litter decomposition are still poorly understood in desert ecosystems. Furthermore, the litter decomposition rate cannot be directly compared due to the large variations in litter quality across different ecosystems. Here, we simulated warming and altered winter snow changes in the field, continuously monitored litter decomposition rates of standard litter bags (i.e., red tea and green tea) and a dominant plant species (i.e., Erodium oxyrrhynchum) during a snow-cover and non-snow-cover period over five months. We found that warming and increased snow cover increased the litter decomposition rate of red tea, green tea, and Erodium oxyrhinchum, and had significant synergistic effects on litter decomposition. The effects of warming and winter snow changes on litter decomposition were more pronounced in April, when the hydrothermal conditions were the best. The decomposition rates of all three litter types belowground were higher than those on the soil surface, highlighting the important roles of soil microbes in accelerating litter decomposition. Furthermore, we found that warming and winter snow changes altered litter decomposition by influencing soil enzyme activities related to soil carbon cycling during the snow-cover period, while influencing soil enzyme activities related to soil phosphorus cycling during the non-snow-cover period. And, notably, decreased snow cover promoted soil enzyme activities during the snow-cover period. More interestingly, our results indicated that the decomposition rate (k) was the lowest, but the stability factor (S) was the highest in the Gurbantünggüt Desert based on the cross-ecosystem comparison using the “Tea Bag Index” method. Overall, our results highlighted the critical roles of warming and winter snow changes on litter decomposition. In future research, the consideration of relationships between litter decomposition and soil carbon sequestration will advance our understanding of soil carbon cycling under climate change in desert ecosystems. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

23 pages, 7050 KB  
Article
Measurement System for Current Transformer Calibration from 50 Hz to 150 kHz Using a Wideband Power Analyzer
by Mano Rom, Helko E. van den Brom, Ernest Houtzager, Ronald van Leeuwen, Dennis van der Born, Gert Rietveld and Fabio Muñoz
Sensors 2025, 25(17), 5429; https://doi.org/10.3390/s25175429 - 2 Sep 2025
Viewed by 297
Abstract
Accurate and reliable characterization of current transformer (CT) performance is essential for maintaining grid stability and power quality in modern electrical networks. CT measurements are key to effective monitoring of harmonic distortions, supporting regulatory compliance and ensuring the safe operation of the grid. [...] Read more.
Accurate and reliable characterization of current transformer (CT) performance is essential for maintaining grid stability and power quality in modern electrical networks. CT measurements are key to effective monitoring of harmonic distortions, supporting regulatory compliance and ensuring the safe operation of the grid. This paper addresses a method for the characterization of CTs across an extended frequency range from 50 Hz up to 150 kHz, driven by increasing power quality issues introduced by renewable energy installations and non-linear loads. Traditional CT calibration approaches involve measurement setups that offer ppm-level uncertainty but are complex to operate and limited in practical frequency range. To simplify and expand calibration capabilities, a calibration system employing a sampling ammeter (power analyzer) was developed, enabling the direct measurement of CT secondary currents of an unknown CT and a reference CT without any further auxiliary equipment. The resulting expanded magnitude ratio uncertainties for the wideband CT calibration system are 10 ppm (k=2) up to 10 kHz and less than 120 ppm from 10 kHz to 150 kHz; these uncertainties do not include the uncertainty of the reference CT. Additionally, the operational conditions and setup design choices, such as instrument warm-up duration, grounding methods, measurement shunt selection, and cable type, were evaluated for their impact on measurement uncertainty and repeatability. The results highlight the significance of minimizing parasitic impedances at higher frequencies and maintaining consistent testing conditions. The developed calibration setup provides a robust foundation for future standardization efforts and practical guidance to characterize CT performance in the increasingly important supraharmonic frequency range. Full article
Show Figures

Figure 1

17 pages, 1914 KB  
Systematic Review
Fatigue Resistance of RAP-Modified Asphalt Mixes Versus Conventional Mixes Using the Indirect Tensile Test: A Systematic Review
by Giuseppe Loprencipe, Laura Moretti and Mario Saltaren Daniel
Designs 2025, 9(5), 104; https://doi.org/10.3390/designs9050104 - 1 Sep 2025
Viewed by 285
Abstract
The use of Reclaimed Asphalt Pavement (RAP) in asphalt mixtures offers environmental and economic advantages by reducing reliance on virgin aggregates and minimizing construction waste. However, the aged binder in RAP increases mixture stiffness, which can compromise fatigue resistance. This systematic review evaluates [...] Read more.
The use of Reclaimed Asphalt Pavement (RAP) in asphalt mixtures offers environmental and economic advantages by reducing reliance on virgin aggregates and minimizing construction waste. However, the aged binder in RAP increases mixture stiffness, which can compromise fatigue resistance. This systematic review evaluates the influence of RAP content on fatigue performance compared to conventional mixtures, with a focus on the Indirect Tensile Test (IDT) as the primary assessment method. Following the parameters of Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, five studies published between 2014 and 2024 were identified through searches in Web of Science, ScienceDirect, ASCE, and Scopus. Study quality was assessed using the Cochrane Risk of Bias tool. The results indicate that although RAP enhances rutting resistance, higher contents (>30%) often lead to reduced fatigue performance due to binder hardening and reduced mixture flexibility. The incorporation of rejuvenators—such as heavy paraffinic extracts—and modifiers, including high-modulus agents, polymers, and epoxy binders, can partially restore aged binder properties and improve performance. Sustainable innovations, such as lignin-based industrial by-products and warm-mix asphalt technologies, show promise in balancing mechanical performance with reduced environmental impact. Variability in material sources, modification strategies, and test protocols limits direct comparability among studies, underscoring the need for standardized evaluation frameworks. Overall, this review highlights that optimizing RAP content and selecting effective rejuvenation or modification strategies are essential for achieving durable, cost-effective, and environmentally responsible asphalt pavements. Future research should integrate advanced laboratory methods with performance-based design to enable high RAP utilization without compromising fatigue resistance. Full article
Show Figures

Figure 1

11 pages, 21448 KB  
Article
Hungry Caterpillars: Massive Outbreaks of Achaea lienardi in Hluhluwe-iMfolozi Park, South Africa
by Debbie Jewitt
Wild 2025, 2(3), 34; https://doi.org/10.3390/wild2030034 - 1 Sep 2025
Viewed by 293
Abstract
Achaea lienardi is a polyphagous moth occurring in sub-Saharan Africa. It is a fruit-sucking moth, causing secondary damage to fruit such as citrus and peaches, while the larval stage can cause significant tree defoliation, including in several indigenous trees, wattle, Eucalyptus, and [...] Read more.
Achaea lienardi is a polyphagous moth occurring in sub-Saharan Africa. It is a fruit-sucking moth, causing secondary damage to fruit such as citrus and peaches, while the larval stage can cause significant tree defoliation, including in several indigenous trees, wattle, Eucalyptus, and castor oil plants, amongst others. In February and March of 2025, a massive outbreak of the caterpillars was observed in the Hluhluwe-iMfolozi Park in South Africa, feeding primarily on Tamboti trees (Spirostachys africana). Satellite imagery from the previous five years was examined, but no similar large defoliation events were observed during this period. Climate data for the last five years (September 2019–March 2025) were collated and examined to determine the conditions supporting the outbreak. Above average winter rainfall, early spring rains, sustained rains, and high humidity in January and February, with warm nighttime temperatures, likely acted in concert to create favourable conditions for the caterpillar outbreak. This outbreak coincided with historic outbreaks of the African armyworm (Spodoptera exempta) in the summer rainfall areas of South Africa where precipitation, temperature, solar radiation, and humidity were found to be critical factors affecting armyworm outbreaks. Further research is required to determine specific criteria to enable predictions of future outbreaks. Full article
Show Figures

Figure 1

26 pages, 13921 KB  
Article
Glacier Mass Change in the Nyainqêntanglha Mountain of the Tibetan Plateau in the Early 21st Century
by Drolma Lhakpa, Yao Xiao, Dron Tse and Junjun Zhang
Remote Sens. 2025, 17(17), 3034; https://doi.org/10.3390/rs17173034 - 1 Sep 2025
Viewed by 366
Abstract
The glaciers of the Nyainqêntanglha Mountains serve not only as sensitive indicators of climate change, but also as important water sources for downstream rivers. In this study, we quantitatively analyzed the glacier mass balance of the entirety of the Nyainqêntanglha Mountains using TerraSAR-X/TanDEM-X [...] Read more.
The glaciers of the Nyainqêntanglha Mountains serve not only as sensitive indicators of climate change, but also as important water sources for downstream rivers. In this study, we quantitatively analyzed the glacier mass balance of the entirety of the Nyainqêntanglha Mountains using TerraSAR-X/TanDEM-X and SRTM DEM data and compared the mass balance between glaciers in the western and eastern parts of the range, revealing the spatial heterogeneity in glacier mass loss. Finally, data from nine meteorological stations in the region were used to investigate regional climate changes and their impacts on glacier variation. The results show that from 2000 to 2013, the average annual glacier surface elevation in the Nyainqêntanglha Mountains decreased by 0.48 ± 0.02 m, with a mass balance of −0.55 ± 0.04 m water equivalent per year. The majority of glacier mass loss occurred in areas with slopes between 40° and 70°. The mass loss of clean glaciers in the eastern region was higher than that in the western region, whereas at high elevations, the mass loss of debris-covered glaciers was more severe in the western region than in the east. Overall, the debris cover on the glaciers has not yet reached the critical thickness required to effectively mitigate melting, and mass input in the accumulation zones is uneven, scattered, and limited, resulting in weak replenishment capacity. Against the backdrop of continued warming, regional precipitation is insufficient to provide the necessary accumulation, making glaciers more sensitive to rising temperatures. This study not only reveals pronounced spatial differences in glacier mass loss and their climatic drivers but also provides new scientific evidence for understanding water resource security, hydrological responses and potential snow avalanche hazards on the Tibetan Plateau, offering important implications for regional water management and future climate adaptation. Full article
Show Figures

Figure 1

14 pages, 3693 KB  
Article
Study on Historical Vegetation Dynamics in the Artificial Forest Area of Bashang, China: Implications for Modern Ecological Restoration
by Hongjuan Jia, Han Wang and Zhiqiang Yin
Forests 2025, 16(9), 1392; https://doi.org/10.3390/f16091392 - 1 Sep 2025
Viewed by 185
Abstract
In recent years, China has invested substantial funds in ecological restoration, achieving significant accomplishments. The forest coverage rate in the Chengde Bashang area, located in the transitional zone between the monsoon and non-monsoon regions, has now reached 82%. However, the area has also [...] Read more.
In recent years, China has invested substantial funds in ecological restoration, achieving significant accomplishments. The forest coverage rate in the Chengde Bashang area, located in the transitional zone between the monsoon and non-monsoon regions, has now reached 82%. However, the area has also encountered a series of environmental issues, including lake shrinkage, soil salinization, and large-scale die-offs of planted forests. Whether the forests in this region can achieve sustainable development in the future, and whether ecological restoration should prioritize tree planting or grass cultivation, are critical questions that require attention. By studying the historical vegetation dynamics in afforested areas, we can better understand the relationship between climatic environmental changes and vegetation, providing baseline data for future ecological restoration. This study utilized AMS 14C dates to establish a chronological framework for the core and employed pollen to investigate vegetation dynamics over the past 5000 years in the artificial Larix Mill. forest area. The vegetation and environmental history of this core can be divided into three zones: Zone 1 (5100–4100 a B.P.): vegetation was dominated by pine and spores, with low herbaceous pollen content. Zone 2 (4100–1400 a B.P.): vegetation was primarily herbaceous. Zone 3 (1400 a B.P.–present): arboreal pollen content increased slightly, but herbaceous plants remained dominant. This period included the warm–dry Medieval Warm Period (1400–900 a B.P.), the cold–humid Little Ice Age (900–300 a B.P.), and the recent 300 years of anthropogenic disturbance. Notably, the large-scale afforestation efforts in recent decades are clearly reflected in the profile. A comparative analysis of records from the monsoon–non-monsoon transition zone reveals that, except for Angulinao Lake, other records were dominated by herbaceous vegetation over the past 2000 years. Additionally, the Mu Us Sandy Land, Hunshandake Sandy Land, Hulunbuir Sandy Land, and Horqin Sandy Land in China have experienced aeolian sand accumulation over the same period. Given the anticipated warming–desiccation trend, phytoremediation strategies should favor xerophytic shrubs and herbaceous over monospecific forest plantations. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

16 pages, 10653 KB  
Review
Bibliometric Insights into the Impact of Vegetation on Water Erosion in the Qinghai–Tibet Plateau Under Climate Change
by Hao Peng, Xingshuai Mei, Tongde Chen, Yanan Hu and Xiaodong Ma
Water 2025, 17(17), 2579; https://doi.org/10.3390/w17172579 - 1 Sep 2025
Viewed by 364
Abstract
In the past 25 years, the Qinghai–Tibet Plateau has experienced a significant climate transition, which directly triggers vegetation degradation. Vegetation degradation also aggravated the water erosion process in the Qinghai–Tibet Plateau. The accelerated warming from 2011 led to the emergence of degraded patches [...] Read more.
In the past 25 years, the Qinghai–Tibet Plateau has experienced a significant climate transition, which directly triggers vegetation degradation. Vegetation degradation also aggravated the water erosion process in the Qinghai–Tibet Plateau. The accelerated warming from 2011 led to the emergence of degraded patches in the central region. The spatial heterogeneity of erosion intensity in the degraded area of Northwest China is significantly enhanced by the extreme climate events after 2021. In recent years, under the influence of human activities, vegetation degradation has aggravated the water erosion phenomenon. Based on the above content, this study analyzes the literature on the impact of vegetation on water erosion in the Qinghai–Tibet Plateau under climate change from 2008 to 2025 from the perspective of bibliometrics. CiteSpace software v.6.3.R1 was used to visualize the knowledge map of the 206 selected articles, and the research hotspots, topics, and development process in this field were analyzed. The results show that the main research hotspots in this field are climate change, basin, CO2 consumption, etc., which can be divided into eight main research topics; after three stages of development, the research relationship between climate–vegetation–water erosion has gradually become clear. By identifying research gaps, future research can consider three aspects: cross-scale multi-dimensional analysis, technical method innovation, and policy collaborative research to address the dual challenges of vegetation degradation and water erosion in the Qinghai–Tibet Plateau under the dual pressures of climate change and human activities. Full article
(This article belongs to the Special Issue Soil Erosion and Soil and Water Conservation, 2nd Edition)
Show Figures

Figure 1

Back to TopTop