Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (277)

Search Parameters:
Keywords = fuzzy sliding mode control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2551 KB  
Article
Deep-Reinforcement-Learning-Based Sliding Mode Control for Optimized Energy Management in DC Microgrids
by Monia Charfeddine, Mongi Ben Moussa and Khalil Jouili
Mathematics 2025, 13(19), 3212; https://doi.org/10.3390/math13193212 - 7 Oct 2025
Viewed by 371
Abstract
A hybrid control architecture is proposed for enhancing the stability and energy management of DC microgrids (DCMGs) integrating photovoltaic generation, batteries, and supercapacitors. The approach combines nonlinear Sliding Mode Control (SMC) for fast and robust DC bus voltage regulation with a Deep Q-Learning [...] Read more.
A hybrid control architecture is proposed for enhancing the stability and energy management of DC microgrids (DCMGs) integrating photovoltaic generation, batteries, and supercapacitors. The approach combines nonlinear Sliding Mode Control (SMC) for fast and robust DC bus voltage regulation with a Deep Q-Learning (DQL) agent that learns optimal high-level policies for charging, discharging, and load management. This dual-layer design leverages the real-time precision of SMC and the adaptive decision-making capability of DQL to achieve dynamic power sharing and balanced state-of-charge levels across storage units, thereby reducing asymmetric wear. Simulation results under variable operating scenarios showed that the proposed method significantly improvedvoltage stability, loweredthe occurrence of deep battery discharges, and decreased load shedding compared to conventional fuzzy-logic-based energymanagement, highlighting its effectiveness and resilience in the presence of renewable generation variability and fluctuating load demands. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

31 pages, 1677 KB  
Review
A Taxonomy of Robust Control Techniques for Hybrid AC/DC Microgrids: A Review
by Pooya Parvizi, Alireza Mohammadi Amidi, Mohammad Reza Zangeneh, Jordi-Roger Riba and Milad Jalilian
Eng 2025, 6(10), 267; https://doi.org/10.3390/eng6100267 - 6 Oct 2025
Viewed by 740
Abstract
Hybrid AC/DC microgrids have emerged as a promising solution for integrating diverse renewable energy sources, enhancing efficiency, and strengthening resilience in modern power systems. However, existing control schemes exhibit critical shortcomings that limit their practical effectiveness. Traditional linear controllers, designed around nominal operating [...] Read more.
Hybrid AC/DC microgrids have emerged as a promising solution for integrating diverse renewable energy sources, enhancing efficiency, and strengthening resilience in modern power systems. However, existing control schemes exhibit critical shortcomings that limit their practical effectiveness. Traditional linear controllers, designed around nominal operating points, often fail to maintain stability under large load and generation fluctuations. Optimization-based methods are highly sensitive to model inaccuracies and parameter uncertainties, reducing their reliability in dynamic environments. Intelligent approaches, such as fuzzy logic and ML-based controllers, provide adaptability but suffer from high computational demands, limited interpretability, and challenges in real-time deployment. These limitations highlight the need for robust control strategies that can guarantee reliable operation despite disturbances, uncertainties, and varying operating conditions. Numerical performance indices demonstrate that the reviewed robust control strategies outperform conventional linear, optimization-based, and intelligent controllers in terms of system stability, voltage and current regulation, and dynamic response. This paper provides a comprehensive review of recent robust control strategies for hybrid AC/DC microgrids, systematically categorizing classical model-based, intelligent, and adaptive approaches. Key research gaps are identified, including the lack of unified benchmarking, limited experimental validation, and challenges in integrating decentralized frameworks. Unlike prior surveys that broadly cover microgrid types, this work focuses exclusively on hybrid AC/DC systems, emphasizing hierarchical control architectures and outlining future directions for scalable and certifiable robust controllers. Also, comparative results demonstrate that state of the art robust controllers—including H∞-based, sliding mode, and hybrid intelligent controllers—can achieve performance improvements for metrics such as voltage overshoot, frequency settling time, and THD compared to conventional PID and droop controllers. By synthesizing recent advancements and identifying critical research gaps, this work lays the groundwork for developing robust control strategies capable of ensuring stability and adaptability in future hybrid AC/DC microgrids. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

20 pages, 4430 KB  
Article
Path Tracking Controller and System Design for Agricultural Tractors Based on Improved Stanley and Sliding Mode Algorithms Considering Sideslip Compensation
by Anzhe Wang, Xin Ji, Qi Song, Xinhua Wei, Wenming Chen and Kun Wang
Agronomy 2025, 15(10), 2329; https://doi.org/10.3390/agronomy15102329 - 1 Oct 2025
Viewed by 467
Abstract
Global agriculture is confronting unprecedented pressures from population growth, diminishing arable land, and severe rural labor scarcity, necessitating the advancement of intelligent agricultural equipment. As a core component of precision farming, unmanned agricultural tractors demand highly accurate and robust path tracking control. However, [...] Read more.
Global agriculture is confronting unprecedented pressures from population growth, diminishing arable land, and severe rural labor scarcity, necessitating the advancement of intelligent agricultural equipment. As a core component of precision farming, unmanned agricultural tractors demand highly accurate and robust path tracking control. However, conventional methods often fail to cope with unstructured terrain and dynamic wheel slip under real field conditions. This paper proposes an extended state observer (ESO)-based improved Stanley guidance law, which incorporates real-time sideslip angle observation, adaptive preview-based path curvature compensation, and a sliding mode heading controller. The ESO estimates lateral slip caused by varying soil conditions, while the modified Stanley law utilizes look-ahead path information to proactively adjust the desired heading angle during high-curvature turns. Both co-simulation in Matlab-Carsim and field experiments demonstrate that the proposed method significantly reduces lateral tracking error and overshoot, outperforming classical algorithms such as fuzzy Stanley and sliding mode controller, especially in U-turn scenarios and under low-adhesion conditions. Full article
(This article belongs to the Special Issue Research Progress in Agricultural Robots in Arable Farming)
Show Figures

Figure 1

45 pages, 13450 KB  
Review
System Integration to Intelligent Control: State of the Art and Future Trends of Electric Vehicle Regenerative Braking Systems
by Bin Huang, Wenbin Yu, Zhuang Wu, Ansheng Yang and Jinyu Wei
Energies 2025, 18(19), 5109; https://doi.org/10.3390/en18195109 - 25 Sep 2025
Viewed by 572
Abstract
With the rapid development of the electric vehicle (EV) industry, the regenerative braking system (RBS) has become a pivotal technology for enhancing overall vehicle energy efficiency and safety. This article systematically reviews recent research advances, spanning macro-architecture, drive and energy-storage hardware, control strategies, [...] Read more.
With the rapid development of the electric vehicle (EV) industry, the regenerative braking system (RBS) has become a pivotal technology for enhancing overall vehicle energy efficiency and safety. This article systematically reviews recent research advances, spanning macro-architecture, drive and energy-storage hardware, control strategies, and evaluation frameworks. It focuses on comparing the mechanisms and performance of six categories of intelligent control algorithms—fuzzy logic, neural networks, model predictive control, sliding-mode control, adaptive control, and learning-based algorithms—and, leveraging the structural advantages of four-wheel independent drive (4WID) electric vehicles, quantitatively analyzes improvements in energy-recovery efficiency and coordinated vehicle-dynamics control. The review further discusses how high-power-density motors, hybrid energy storage, brake-by-wire systems, and vehicle-road cooperation are pushing the upper limits of RBS performance, while revealing current technical bottlenecks in high-power recovery at low speeds, battery thermal safety, high-dimensional real-time optimization, and unified evaluation standards. A closed-loop evolutionary roadmap is proposed, consisting of the following stages: system integration, intelligent control, scenario prediction, hardware upgrading, and standard evaluation. This roadmap emphasizes the central roles of deep reinforcement learning, hierarchical model predictive control (MPC), and predictive energy management in the development of next-generation RBS. This review provides a comprehensive and forward-looking reference framework, aiming to accelerate the deployment of efficient, safe, and intelligent regenerative braking technologies. Full article
Show Figures

Figure 1

25 pages, 1657 KB  
Review
Control Algorithms for Intelligent Agriculture: Applications, Challenges, and Future Directions
by Shiyu Qin, Shengnan Zhang, Wenjun Zhong and Zhixia He
Processes 2025, 13(10), 3061; https://doi.org/10.3390/pr13103061 - 25 Sep 2025
Viewed by 597
Abstract
Facing global pressures such as population growth, shrinking arable land, and climate change, intelligent agriculture has emerged as a critical pathway toward sustainable and efficient agricultural production. Control algorithms serve as the core enabler of this transition, finding applications in crop production, pest [...] Read more.
Facing global pressures such as population growth, shrinking arable land, and climate change, intelligent agriculture has emerged as a critical pathway toward sustainable and efficient agricultural production. Control algorithms serve as the core enabler of this transition, finding applications in crop production, pest management, agricultural machinery, and resource optimization. This review systematically examines the performance and applications of both traditional (e.g., PID, fuzzy logic) and advanced control algorithms (e.g., neural networks, model predictive control, adaptive control, active disturbance rejection control, and sliding mode control) in agriculture. While traditional methods are valued for simplicity and robustness, advanced algorithms better handle nonlinearity, uncertainty, and multi-objective optimization, enhancing both precision and resource efficiency. However, challenges such as environmental heterogeneity, hardware limitations, data scarcity, real-time requirements, and multi-objective conflicts hinder widespread adoption. This review contributes a structured, critical synthesis of these algorithms, highlighting their comparative strengths and limitations, and identifies key research gaps that distinguish it from prior reviews. Future directions include lightweight algorithms, digital twins, multi-sensor integration, and edge computing, which together promise to enhance the scalability and sustainability of intelligent agricultural systems. Full article
(This article belongs to the Section Automation Control Systems)
Show Figures

Figure 1

36 pages, 5224 KB  
Article
Adaptive Robust Optimal Control for UAV Taxiing Systems with Uncertainties
by Erdong Wu, Peng Wang and Zheng Guo
Drones 2025, 9(10), 668; https://doi.org/10.3390/drones9100668 - 23 Sep 2025
Cited by 1 | Viewed by 545
Abstract
The ground taxiing phase is a crucial stage for the autonomous takeoff and landing of fixed-wing unmanned aerial vehicles (UAVs), and its trajectory tracking accuracy and stability directly determine the success of the UAV’s autonomous takeoff and landing. Therefore, researching the adaptive robust [...] Read more.
The ground taxiing phase is a crucial stage for the autonomous takeoff and landing of fixed-wing unmanned aerial vehicles (UAVs), and its trajectory tracking accuracy and stability directly determine the success of the UAV’s autonomous takeoff and landing. Therefore, researching the adaptive robust optimal control technology for UAV taxiing is of great significance for enhancing the autonomy and environmental adaptability of UAVs. This study integrates the linear quadratic regulator (LQR) with sliding mode control (SMC). A compensation control signal is generated by the SMC to mitigate the potential effects of uncertain parameters and random external disturbances, which is then added onto the LQR output to achieve a robust optimal controller. On this basis, through ANFIS (Adaptive Neuro-Fuzzy Inference System), the nonlinear mapping relationship between multiple state parameters such as speed, lateral/heading deviation and the weight matrix of the LQR controller is learned, realizing a data-driven adaptive adjustment mechanism for controller parameters to improve the tracking accuracy and anti-interference stability of the UAV’s taxiing trajectory. Full article
Show Figures

Figure 1

16 pages, 2961 KB  
Article
Adaptive Fuzzy Sliding-Mode Control for Ship Path Tracking Based on a Fixed-Time Disturbance Observer
by Yibu Li, Changchun Bao and Rui Guo
J. Mar. Sci. Eng. 2025, 13(9), 1788; https://doi.org/10.3390/jmse13091788 - 16 Sep 2025
Viewed by 336
Abstract
We propose a control method that integrates adaptive fuzzy sliding-mode control (AF-SMC) with a fixed-time disturbance observer (FTDO) to address modeling errors, external disturbances, and input saturation in ship path tracking. The designed adaptive fuzzy system dynamically adjusts the SMC gain to enhance [...] Read more.
We propose a control method that integrates adaptive fuzzy sliding-mode control (AF-SMC) with a fixed-time disturbance observer (FTDO) to address modeling errors, external disturbances, and input saturation in ship path tracking. The designed adaptive fuzzy system dynamically adjusts the SMC gain to enhance adaptability to parameter variations and modeling errors. Furthermore, the proposed method enables rapid estimation of the total uncertainty term by incorporating an FTDO, ensuring fixed-time estimation and feedforward compensation of the total matched uncertainty without requiring prior knowledge of the disturbance bound. Lyapunov stability analysis was employed to verify the bounded stability of the closed-loop system. Simulation results indicate that the proposed method provides high control accuracy and robustness. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

23 pages, 3047 KB  
Article
Trajectory Tracking Control for Wheeled Mobile Robots with Unknown Slip Rates Based on Improved Rapid Variable Exponential Reaching Law and Sliding Mode Observer
by Zexu Li, Jun Guo, Taiyuan Wang, Xiufang Xiong, Yong Feng and Xingshu Li
Machines 2025, 13(9), 765; https://doi.org/10.3390/machines13090765 - 27 Aug 2025
Viewed by 644
Abstract
Aiming at the trajectory tracking control problem of wheeled mobile robots under unknown slip ratio conditions, this paper designs a trajectory tracking controller based on an improved rapid variable power reaching law and a sliding mode observer. First, a kinematic model of the [...] Read more.
Aiming at the trajectory tracking control problem of wheeled mobile robots under unknown slip ratio conditions, this paper designs a trajectory tracking controller based on an improved rapid variable power reaching law and a sliding mode observer. First, a kinematic model of the wheeled mobile robot is established, explicitly considering the influence of slip ratio. Then, a sliding mode observer is developed for online estimation of the slip ratio, addressing the difficulty of direct slip ratio measurement. On this basis, a trajectory tracking controller is designed based on the improved rapid variable power reaching law, enabling fast tracking of multiple complex trajectories under slip conditions. Simulation and experimental results show that the proposed trajectory tracking controller not only effectively eliminates the influence of unknown slip disturbances on trajectory tracking, improving smoothness and tracking accuracy but also greatly accelerates the convergence process. The shortest convergence time is only 20.56% of that achieved by a fuzzy PID trajectory tracking controller and 61.43% of that achieved by a rapid double power reaching law trajectory tracking controller with a sliding mode observer. Full article
(This article belongs to the Section Robotics, Mechatronics and Intelligent Machines)
Show Figures

Figure 1

16 pages, 1362 KB  
Article
A Robust Fuzzy Adaptive Control Scheme for PMSM with Sliding Mode Dynamics
by Guangyu Cao, Zhihan Chen, Daoyuan Wang, Xiujing Zhao and Fanwei Meng
Processes 2025, 13(8), 2635; https://doi.org/10.3390/pr13082635 - 20 Aug 2025
Cited by 1 | Viewed by 571
Abstract
A key trade-off persists in the control of permanent magnet synchronous motors (PMSMs): achieving fast finite-time convergence often exacerbates control chattering, while conventional chattering-suppression methods can compromise the system’s dynamic response. The existing literature often addresses these challenges in isolation. The core original [...] Read more.
A key trade-off persists in the control of permanent magnet synchronous motors (PMSMs): achieving fast finite-time convergence often exacerbates control chattering, while conventional chattering-suppression methods can compromise the system’s dynamic response. The existing literature often addresses these challenges in isolation. The core original contribution of this research lies in proposing a novel robust fuzzy adaptive control scheme that effectively resolves this trade-off through a synergistic design. The contributions are as follows: (1) A novel reaching law is formulated to significantly accelerate error convergence, achieving finite-time stability and improving upon conventional reaching law designs. (2) A super-twisting sliding mode observer is integrated into the control loop, providing accurate real-time estimation of load torque disturbances, which is used for feedforward compensation to drastically improve the system’s disturbance rejection capability. (3) A fuzzy adaptive mechanism is developed to dynamically tune key gains in the sliding mode law. This approach effectively suppresses chattering without sacrificing response speed, enhancing system robustness. (4) The stability and convergence of the proposed controller are rigorously analyzed. Simulations, comparing the proposed method with conventional adaptive sliding mode control (ASMC), demonstrate its marked superiority in control accuracy, transient behavior, and disturbance rejection. This work provides an integrated solution that balances rapidity and smoothness for high-performance motor control, offering significant theoretical and engineering value. Full article
(This article belongs to the Special Issue Design and Analysis of Adaptive Identification and Control)
Show Figures

Figure 1

32 pages, 5721 KB  
Review
Control Strategies for Two-Wheeled Self-Balancing Robotic Systems: A Comprehensive Review
by Huaqiang Zhang and Norzalilah Mohamad Nor
Robotics 2025, 14(8), 101; https://doi.org/10.3390/robotics14080101 - 26 Jul 2025
Cited by 1 | Viewed by 2558
Abstract
Two-wheeled self-balancing robots (TWSBRs) are underactuated, inherently nonlinear systems that exhibit unstable dynamics. Due to their structural simplicity and rich control challenges, TWSBRs have become a standard platform for validating and benchmarking various control algorithms. This paper presents a comprehensive and structured review [...] Read more.
Two-wheeled self-balancing robots (TWSBRs) are underactuated, inherently nonlinear systems that exhibit unstable dynamics. Due to their structural simplicity and rich control challenges, TWSBRs have become a standard platform for validating and benchmarking various control algorithms. This paper presents a comprehensive and structured review of control strategies applied to TWSBRs, encompassing classical linear approaches such as PID and LQR, modern nonlinear methods including sliding mode control (SMC), model predictive control (MPC), and intelligent techniques such as fuzzy logic, neural networks, and reinforcement learning. Additionally, supporting techniques such as state estimation, observer design, and filtering are discussed in the context of their importance to control implementation. The evolution of control theory is analyzed, and a detailed taxonomy is proposed to classify existing works. Notably, a comparative analysis section is included, offering practical guidelines for selecting suitable control strategies based on system complexity, computational resources, and robustness requirements. This review aims to support both academic research and real-world applications by summarizing key methodologies, identifying open challenges, and highlighting promising directions for future development. Full article
(This article belongs to the Section Industrial Robots and Automation)
Show Figures

Figure 1

34 pages, 1638 KB  
Review
Recent Advances in Bidirectional Converters and Regenerative Braking Systems in Electric Vehicles
by Hamid Naseem and Jul-Ki Seok
Actuators 2025, 14(7), 347; https://doi.org/10.3390/act14070347 - 14 Jul 2025
Cited by 2 | Viewed by 3529
Abstract
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy [...] Read more.
As electric vehicles (EVs) continue to advance toward widespread adoption, innovations in power electronics are playing a pivotal role in improving efficiency, performance, and sustainability. This review presents recent progress in bidirectional converters and regenerative braking systems (RBSs), highlighting their contributions to energy recovery, battery longevity, and vehicle-to-grid integration. Bidirectional converters support two-way energy flow, enabling efficient regenerative braking and advanced charging capabilities. The integration of wide-bandgap semiconductors, such as silicon carbide and gallium nitride, further enhances power density and thermal performance. The paper evaluates various converter topologies, including single-stage and multi-stage architectures, and assesses their suitability for high-voltage EV platforms. Intelligent control strategies, including fuzzy logic, neural networks, and sliding mode control, are discussed for optimizing braking force and maximizing energy recuperation. In addition, the paper explores the influence of regenerative braking on battery degradation and presents hybrid energy storage systems and AI-based methods as mitigation strategies. Special emphasis is placed on the integration of RBSs in advanced electric vehicle platforms, including autonomous systems. The review concludes by identifying current challenges, emerging trends, and key design considerations to inform future research and practical implementation in electric vehicle energy systems. Full article
(This article belongs to the Special Issue Feature Papers in Actuators for Surface Vehicles)
Show Figures

Figure 1

22 pages, 397 KB  
Review
Compliant Force Control for Robots: A Survey
by Minglei Zhu, Dawei Gong, Yuyang Zhao, Jiaoyuan Chen, Jun Qi and Shijie Song
Mathematics 2025, 13(13), 2204; https://doi.org/10.3390/math13132204 - 6 Jul 2025
Cited by 2 | Viewed by 3580
Abstract
Compliant force control is a fundamental capability for enabling robots to interact safely and effectively with dynamic and uncertain environments. This paper presents a comprehensive survey of compliant force control strategies, intending to enhance safety, adaptability, and precision in applications such as physical [...] Read more.
Compliant force control is a fundamental capability for enabling robots to interact safely and effectively with dynamic and uncertain environments. This paper presents a comprehensive survey of compliant force control strategies, intending to enhance safety, adaptability, and precision in applications such as physical human–robot interaction, robotic manipulation, and collaborative tasks. The review begins with a classification of compliant control methods into passive and active approaches, followed by a detailed examination of direct force control techniques—including hybrid and parallel force/position control—and indirect methods such as impedance and admittance control. Special emphasis is placed on advanced compliant control strategies applied to structurally complex robotic systems, including aerial, mobile, cable-driven, and bionic robots. In addition, intelligent compliant control approaches are systematically analyzed, encompassing neural networks, fuzzy logic, sliding mode control, and reinforcement learning. Sensorless compliance techniques are also discussed, along with emerging trends in hardware design and intelligent control methodologies. This survey provides a holistic view of the current landscape, identifies key technical challenges, and outlines future research directions for achieving more robust, intelligent, and adaptive compliant force control in robotic systems. Full article
(This article belongs to the Special Issue Intelligent Control and Applications of Nonlinear Dynamic System)
Show Figures

Figure 1

30 pages, 3374 KB  
Review
Review and Outlook of Fuel Cell Power Systems for Commercial Vehicles, Buses, and Heavy Trucks
by Xingxing Wang, Jiaying Ji, Junyi Li, Zhou Zhao, Hongjun Ni and Yu Zhu
Sustainability 2025, 17(13), 6170; https://doi.org/10.3390/su17136170 - 4 Jul 2025
Cited by 1 | Viewed by 2429
Abstract
The power system, which is also one of the most crucial parts of fuel cell cars, marks the biggest distinction between them and conventional automobiles. Fuel cell hybrid power systems are reviewed in this paper along with their current state of research. Three [...] Read more.
The power system, which is also one of the most crucial parts of fuel cell cars, marks the biggest distinction between them and conventional automobiles. Fuel cell hybrid power systems are reviewed in this paper along with their current state of research. Three different kinds of fuel cell hybrid power systems—fuel cell–battery, fuel cell–supercapacitor, and fuel cell–battery–supercapacitor—are thoroughly compared and analyzed, and they are systematically explained in the three areas of passenger cars, buses, and heavy duty trucks. Existing fuel cell hybrid systems and energy strategies are systematically reviewed and summarized, including predictive control strategies based on game theory, power allocation strategies, fuzzy control strategies, and adaptive super twisted sliding mode control (ASTSMC) energy management techniques. This study offers recommendations and direction for the future direction of fuel cell hybrid power system research and development. Full article
(This article belongs to the Special Issue Powertrain Design and Control in Sustainable Electric Vehicles)
Show Figures

Figure 1

27 pages, 5382 KB  
Article
PI-DÆ: An Adaptive PID Controller Utilizing a New Adaptive Exponent (Æ) Algorithm to Solve Derivative Term Issues
by Juan M. Barrera-Fernández, Juan Pablo Manzo Hernández, Kevin Miramontes Escobedo, Alberto Vázquez-Cervantes and Julio-César Solano-Vargas
Algorithms 2025, 18(7), 391; https://doi.org/10.3390/a18070391 - 27 Jun 2025
Viewed by 906
Abstract
This study proposes an enhanced derivative control strategy, named PI-DÆ, designed to overcome key limitations of the derivative (D) term, such as noise amplification, derivative kick (D-k), and tuning difficulties. These [...] Read more.
This study proposes an enhanced derivative control strategy, named PI-DÆ, designed to overcome key limitations of the derivative (D) term, such as noise amplification, derivative kick (D-k), and tuning difficulties. These issues often arise in high-frequency or rapidly changing systems, in which traditional PID controllers struggle. The proposed solution introduces a novel adaptive exponent algorithm (Æ) that dynamically modulates the D term based on the evolving relationship between system output and setpoint. This yields the PI-DÆ controller, which adapts in real time to changing conditions. The results show significant performance improvements. Simulation results on two systems demonstrate that PI-DÆ achieves a 90% faster response time, a 35% reduction in peak time, and a 100% improvement in settling time compared with conventional PID controllers, all while maintaining a near-zero steady-state error even under external disturbances. Unlike more-complex alternatives such as fuzzy logic, neural networks, or sliding mode control, PI-DÆ retains the simplicity and robustness of PID, avoiding high computational costs or intricate setups. This adaptive exponent strategy offers a practical and scalable enhancement to classical PID, improving performance and robustness without added complexity, and thus provides a promising control solution for real-world applications in which simplicity, adaptability, and reliability are essential. Full article
(This article belongs to the Special Issue Algorithmic Approaches to Control Theory and System Modeling)
Show Figures

Figure 1

18 pages, 2094 KB  
Article
Fuzzy-Adaptive Nonsingular Terminal Sliding Mode Control for the High-Speed Aircraft Actuator Trajectory Tracking
by Tieniu Chen, Xiaozhou He, Yunjiang Lou, Houde Liu, Lunfei Liang and Kunfeng Zhang
Aerospace 2025, 12(7), 578; https://doi.org/10.3390/aerospace12070578 - 26 Jun 2025
Cited by 1 | Viewed by 645
Abstract
High-speed aircraft actuators are critical for precise control of aerodynamic surfaces, demanding fast response, accuracy, and robustness against uncertainties and disturbances. However, the complex nonlinear dynamics of these systems pose significant challenges for conventional control methods. Sliding mode control (SMC) offers robust performance [...] Read more.
High-speed aircraft actuators are critical for precise control of aerodynamic surfaces, demanding fast response, accuracy, and robustness against uncertainties and disturbances. However, the complex nonlinear dynamics of these systems pose significant challenges for conventional control methods. Sliding mode control (SMC) offers robust performance and rapid transient response but is hindered by chattering, which can degrade performance. To address this, this paper proposes an innovative nonlinear control strategy that integrates global nonsingular terminal sliding mode control (NTSMC) for finite-time convergence with fuzzy logic-based adaptive gain tuning to mitigate chattering and suppress oscillations. A prototype actuator and experimental platform were developed to validate the approach. Experimental results demonstrate superior dynamic response and disturbance rejection compared to traditional methods, highlighting the effectiveness of the proposed control strategy. Full article
Show Figures

Figure 1

Back to TopTop