Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (949)

Search Parameters:
Keywords = gNB

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2261 KB  
Article
A Virtual Reality-Based Multimodal Approach to Diagnosing Panic Disorder and Agoraphobia Using Physiological Measures: A Machine Learning Study
by Han Wool Jung, Hyun Park, Seon-Woo Lee, Ki Won Jang, Sangkyu Nam, Jong Sub Lee, Moo Eob Ahn, Sang-Kyu Lee, Yeo Jin Kim and Daeyoung Roh
Diagnostics 2025, 15(17), 2239; https://doi.org/10.3390/diagnostics15172239 - 3 Sep 2025
Viewed by 145
Abstract
Objectives: Virtual reality (VR) has emerged as a promising tool for assessing anxiety-related disorders through immersive exposure and physiological monitoring. This study aimed to evaluate whether multimodal data, including heart rate variability (HRV), skin conductance response (SCR), and self-reported anxiety, collected during [...] Read more.
Objectives: Virtual reality (VR) has emerged as a promising tool for assessing anxiety-related disorders through immersive exposure and physiological monitoring. This study aimed to evaluate whether multimodal data, including heart rate variability (HRV), skin conductance response (SCR), and self-reported anxiety, collected during VR exposure could classify patients with panic disorder and agoraphobia using machine learning models. Methods: Seventy-six participants (38 patients with panic disorder and agoraphobia, 38 healthy controls) completed 295 total VR exposure sessions. Each session involved two road and two supermarket scenarios designed to induce anxiety. Inside the sessions, self-reported anxiety was measured along with physiological signals recorded by photoplethysmography and SCR sensors. HRV measures of heart rate, standard deviation of normal-to-normal intervals, and low-frequency to high-frequency ratio were extracted along with SCR peak frequency and average amplitude. These features were analyzed using Gaussian Naïve Bayes (GNB), k-Nearest Neighbors (k-NN), Logistic Ridge Regression (LRR), C-Support Vector Machine (SVC), Random Forest (RF), and Stochastic Gradient Boosting (SGB) classifiers. Results: The best model achieved an accuracy of 0.83. Most models showed specificity and precision ≥0.80, while sensitivity varied across models, with several reaching ≥0.82. Performance was stable across major hyperparameters, VR-stimulus settings, and medication status. The patients reported higher subjective anxiety but exhibited blunted physiological responses, particularly in SCR amplitude. Self-reported anxiety demonstrated higher feature importance scores compared to other physiological properties. Conclusion: VR exposure with self-reported anxiety and physiological measures may serve as a feasible diagnostic aid for panic disorder and agoraphobia. Further refinement is needed to improve sensitivity and clinical applicability. Full article
(This article belongs to the Special Issue A New Era in Diagnosis: From Biomarkers to Artificial Intelligence)
Show Figures

Figure 1

24 pages, 2933 KB  
Article
M344 Suppresses Histone Deacetylase-Associated Phenotypes and Tumor Growth in Neuroblastoma
by Gabrielle L. Brumfield, Kenadie R. Doty, Shelby M. Knoche, Alaina C. Larson, Benjamin D. Gephart, Don W. Coulter and Joyce C. Solheim
Int. J. Mol. Sci. 2025, 26(17), 8494; https://doi.org/10.3390/ijms26178494 - 1 Sep 2025
Viewed by 247
Abstract
Neuroblastoma (NB) is an aggressive pediatric cancer, with high-risk patients facing a five-year survival rate of ~50%. Standard therapies, including surgery, chemotherapy, radiation, and immunotherapy, are associated with significant long-term toxicities and frequent relapse. Histone deacetylase (HDAC) inhibitors have emerged as promising agents [...] Read more.
Neuroblastoma (NB) is an aggressive pediatric cancer, with high-risk patients facing a five-year survival rate of ~50%. Standard therapies, including surgery, chemotherapy, radiation, and immunotherapy, are associated with significant long-term toxicities and frequent relapse. Histone deacetylase (HDAC) inhibitors have emerged as promising agents for cancer therapy, given their role in modulating gene expression and tumor phenotypes. This study evaluated M344 [4-(dimethylamino)-N-(7-(hydroxyamino)-7-oxoheptyl)benzamide], an HDAC inhibitor, for its efficacy and mechanisms of action against NB. Analysis of clinical NB Gene Expression Omnibus data revealed advanced-stage tumors exhibit higher HDAC expression relative to early-stage samples. M344 treatment effectively increased histone acetylation, induced G0/G1 cell cycle arrest, and activated caspase-mediated cell death. Relative to vorinostat, an HDAC inhibitor in clinical use for lymphoma and clinical trials for NB, M344 displayed superior cytostatic, cytotoxic, and migration-inhibitory effects. In vivo, metronomic M344 dosing suppressed tumor growth and extended survival. Combination therapy with M344 and topotecan improved topotecan tolerability, while M344 co-administration with cyclophosphamide reduced tumor rebound post-therapy. In total, M344 demonstrated strong therapeutic potential for NB, offering improved tumor suppression, reduced off-target toxicities, and enhanced control of tumor growth post-therapy. These findings support further investigation of HDAC inhibitors, such as M344, for clinical application in NB treatment. Full article
(This article belongs to the Special Issue Editorial Board Members’ Collection Series: "Enzyme Inhibition")
Show Figures

Figure 1

32 pages, 2911 KB  
Review
Selective Deoxygenation of Biomass Polyols into Diols
by Juan Carlos Serrano-Ruiz
Molecules 2025, 30(17), 3559; https://doi.org/10.3390/molecules30173559 - 30 Aug 2025
Viewed by 345
Abstract
The transition to a sustainable chemical industry necessitates efficient valorization of biomass, with polyols serving as versatile, renewable feedstocks. This comprehensive review, focusing on advancements within the last five years, critically analyzes the selective hydrogenolysis of key biomass-derived polyols—including glycerol, erythritol, xylitol, and [...] Read more.
The transition to a sustainable chemical industry necessitates efficient valorization of biomass, with polyols serving as versatile, renewable feedstocks. This comprehensive review, focusing on advancements within the last five years, critically analyzes the selective hydrogenolysis of key biomass-derived polyols—including glycerol, erythritol, xylitol, and sorbitol—into valuable diols. Emphasis is placed on the intricate catalytic strategies developed to control C–O bond cleavage, preventing undesired C–C scission and cyclization. The review highlights the design of bifunctional catalysts, often integrating noble metals (e.g., Pt, Ru, Ir) with oxophilic promoters (e.g., Re, W, Sn) on tailored supports (e.g., TiO2, Nb2O5, N-doped carbon), which have led to significant improvements in selectivity towards specific diols such as 1,2-propanediol (1,2-PD), 1,3-propanediol (1,3-PD), and ethylene glycol (EG). While substantial progress in mechanistic understanding and catalyst performance has been achieved, challenges persist regarding catalyst stability under harsh hydrothermal conditions, the economic viability of noble metal systems, and the processing of complex polyol mixtures from lignocellulosic hydrolysates. Future directions for this field underscore the imperative for more robust, cost-effective catalysts, advanced computational tools, and intensified process designs to facilitate industrial-scale production of bio-based diols. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

9 pages, 977 KB  
Proceeding Paper
Boosting Software Fault Prediction Accuracy with Ensemble Learning
by Ashu Mehta, Isha Batra and Anggun Fergina
Eng. Proc. 2025, 107(1), 63; https://doi.org/10.3390/engproc2025107063 - 27 Aug 2025
Abstract
Software defects are natural quality characteristics of software that are difficult to eliminate completely, even with concerted efforts. In addition to Bayes Net, in this study, C4.5 Decision Tree, Multilayer Perceptron (MLP), and Random Forests (RFs) are used. Moreover, an ensemble strategy with [...] Read more.
Software defects are natural quality characteristics of software that are difficult to eliminate completely, even with concerted efforts. In addition to Bayes Net, in this study, C4.5 Decision Tree, Multilayer Perceptron (MLP), and Random Forests (RFs) are used. Moreover, an ensemble strategy with GNB, BNB, RF, and MLP is proposed to enhance the prediction accuracy. Results from empirical evaluations indicate that the F1 score, accuracy, precision, and recall of this strategy are higher than those of any individual approach, providing strong evidence for the ensemble model as an effective method for improving defect prediction performance. The ensemble approach could be a promising pathway to bolster the software quality process, mainly in machine learning-based fault prediction. Full article
Show Figures

Figure 1

24 pages, 11100 KB  
Article
ATRX Promotes Transcription Initiation of HSV-1 Immediate Early Genes During Early Lytic Infection
by Laura E. M. Dunn, Mackenzie M. Clark and Joel D. Baines
Viruses 2025, 17(9), 1169; https://doi.org/10.3390/v17091169 - 27 Aug 2025
Viewed by 684
Abstract
Herpes simplex virus 1 (HSV-1) transcribes its genome using host RNA polymerase II (Pol II) in a temporally regulated cascade. We previously proposed a model of Transient Immediate Early gene Mediated Repression (TIEMR), in which early repression of immediate early (IE) genes is [...] Read more.
Herpes simplex virus 1 (HSV-1) transcribes its genome using host RNA polymerase II (Pol II) in a temporally regulated cascade. We previously proposed a model of Transient Immediate Early gene Mediated Repression (TIEMR), in which early repression of immediate early (IE) genes is relieved to initiate the cascade. Given the rapid association of promyelocytic leukaemia nuclear body (PML-NB) components with incoming HSV-1 genomes, we sought to investigate their roles in TIEMR. siRNA knockdown revealed that depletion of ATRX, but not PML, significantly reduced nascent transcription from viral IE promoters at 1.5 hpi, while DAXX knockdown increased transcription. ChIP-Seq showed ATRX localizes to both transcriptionally active IE genes and restricted non-IE genes, suggesting diverse functions. Notably, ATRX occupancy at active IE promoters correlated with G-quadruplex (G4) motifs, and G4 stabilization mimicked ATRX knockdown by reducing transcription initiation. These findings uncover a previously unrecognized pro-transcriptional role for ATRX at IE genes and suggest that ATRX promotes escape from TIEMR by facilitating transcription initiation and preventing G4-mediated repression. Full article
(This article belongs to the Special Issue Herpesvirus Transcriptional Control)
Show Figures

Figure 1

34 pages, 17975 KB  
Article
Moderate Rare Metal Enrichment by Auto-Assimilation in the Neoproterozoic Gabal Um Samra Granites, Eastern Desert, Egypt
by Heba S. Mubarak, Mokhles K. Azer, Adel A. Surour, Hilmy E. Moussa, Paul D. Asimow and Mona Kabesh
Minerals 2025, 15(9), 898; https://doi.org/10.3390/min15090898 - 24 Aug 2025
Viewed by 430
Abstract
The Gabal Um Samra (GUS) compound intrusion in the Eastern Desert of Egypt consists of a co-magmatic series of syenogranite and alkali feldspar granite. Accessory minerals (e.g., zircon, monazite, allanite) are abundant. Geochemically, the GUS intrusion is a classic A-type granite. It is [...] Read more.
The Gabal Um Samra (GUS) compound intrusion in the Eastern Desert of Egypt consists of a co-magmatic series of syenogranite and alkali feldspar granite. Accessory minerals (e.g., zircon, monazite, allanite) are abundant. Geochemically, the GUS intrusion is a classic A-type granite. It is extensively fractionated, enriched in large ion lithophile elements and high field strength elements, and depleted in Ba, Sr, K, and Ti. Normalized rare earth element patterns are nearly flat, without any lanthanide tetrad anomalies, but with distinct negative Eu anomalies (Eu/Eu* = 0.14–0.22) due to feldspar fractionation. Paired Zr-Hf and Y-Ho element systematics indicate igneous rather than hydrothermal processes. The petrogenesis of the comparatively unaltered GUS intrusion offers an opportunity to refine the standard model for post-collisional felsic magmatism in the Neoproterozoic Arabian–Nubian Shield. It is explained by the partial melting of juvenile crust induced by lithospheric delamination, followed by extensive fractional crystallization. A quantitative mass-balance model shows that the granite varieties of the GUS intrusion plausibly represent liquids along a single liquid line of descent; but, if so, the more evolved, later pulses display anomalous enrichment in Rb, Nb, Ta, U, and REE. The most plausible source for this enrichment is the extraction of small-degree residual melts from earlier pulses and the mixing of the melts into the later pulses, an energetically favorable process we call “auto-assimilation”. A quantitative model shows that the residual liquid after 97.5% crystallization of the syenogranite can fit the major oxide and trace element data in the alkali feldspar granite if 0.07% by mass of this melt is added to the evolving system for each 1% crystal fractionation by mass. The GUS intrusion represents an example of moderate rare metal enrichment and concentration to sub-economic grade by auto-assimilation. Similar processes may affect intrusions that feature higher grade mineralization, but the evidence is often obscured by the extensive alteration of those deposits. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

24 pages, 9686 KB  
Article
The Petrogenesis of Early Permian Granodiorites in the Northern Segment of the Changning-Menglian Suture Zone, Western Yunnan, and Their Tectonic Implications
by Jiajia Liu, Zhen Jia, Jiyuan Wang, Feng Zhao, Junbao Luo, Feiyang Xu and Fuchuan Chen
Minerals 2025, 15(9), 894; https://doi.org/10.3390/min15090894 - 23 Aug 2025
Viewed by 463
Abstract
The Changning-Menglian suture zone, as the remnant of the main Paleo-Tethyan oceanic basin in its southern segment, lacks direct magmatic evidence constraining the timing of subduction initiation in its northern segment. The petrogenesis and tectonic setting of the newly discovered Early Permian (~280 [...] Read more.
The Changning-Menglian suture zone, as the remnant of the main Paleo-Tethyan oceanic basin in its southern segment, lacks direct magmatic evidence constraining the timing of subduction initiation in its northern segment. The petrogenesis and tectonic setting of the newly discovered Early Permian (~280 Ma) Wayao granodiorite in the northern segment remain unclear, hindering our understanding of the timing of subduction initiation and processes of the Paleo-Tethyan Ocean in the Changning-Menglian suture zone. This study presents systematic petrographic, zircon U-Pb geochronological, whole-rock major and trace element geochemical, and Sr-Nd-Hf isotopic analyses on the newly discovered Early Permian granodiorite in the Wayao area, northern segment of the Changning-Menglian suture zone, western Yunnan. Zircon U-Pb dating yields a crystallization age of ca. 280 Ma, confirming its emplacement during the Early Permian. The petrogeochemical characteristics indicate that it belongs to the metaluminous, calc-alkaline series of I-type granite. It is enriched in large-ion lithophile elements (LILEs; e.g., Rb, Th, U, La, Pb) and depleted in high-field-strength elements (HFSEs; e.g., Ba, Nb, Sr, Ti), exhibiting a pronounced negative Eu anomaly. Whole-rock Sr-Nd isotopes (εNd(t) = −5.6–−6.1) and zircon Hf isotopes (εHf(t) = −1.34–−10.01) suggest that the magma was predominantly derived from the partial melting of ancient crustal material (primarily metamorphosed basic rocks, such as amphibolite), with a minor addition of mantle-derived components (magma mixing). Combined with petrogeochemical discriminant diagrams (e.g., Sr/Y vs. Y, Rb vs. Yb + Ta) and the regional geological context, this granodiorite is interpreted to have formed in an active continental margin tectonic setting associated with the eastward subduction of the Paleo-Tethys Ocean (represented by the Changning-Menglian Ocean). This discovery fills the gap in the record of Early Permian subduction-related magmatic rocks in the northern segment of the Changning-Menglian suture zone. It provides crucial petrological evidence constraining that the eastward subduction and consumption of the northern Paleo-Tethys Ocean had already commenced by the Early Permian. Full article
Show Figures

Figure 1

12 pages, 776 KB  
Article
Exceptionally High Cystic Fibrosis-Related Morbidity and Mortality in Infants and Young Children in India: The Need for Newborn Screening and CF-Specific Capacity Building
by Priyanka Medhi, Grace R. Paul, Madhan Kumar, Grace Rebekah, Philip M. Farrell, Jolly Chandran, Rekha Aaron, Aaron Chapla and Sneha D. Varkki
Int. J. Neonatal Screen. 2025, 11(3), 67; https://doi.org/10.3390/ijns11030067 - 22 Aug 2025
Viewed by 372
Abstract
Early diagnosis of cystic fibrosis (CF) through newborn screening (NBS) improves clinical outcomes, but in countries like India, delayed diagnosis increases morbidity, mortality, and likely underestimates infant deaths from CF. We performed a retrospective study at a single center in south India from [...] Read more.
Early diagnosis of cystic fibrosis (CF) through newborn screening (NBS) improves clinical outcomes, but in countries like India, delayed diagnosis increases morbidity, mortality, and likely underestimates infant deaths from CF. We performed a retrospective study at a single center in south India from 2017 to 2025 reviewing children diagnosed with CF before one year of age. Patient demographic, clinical, and genetic data were analyzed to characterize early clinical features and identify factors linked to mortality. Of 56 infants diagnosed with CF, 59% survived (median current age 55 months) while 41% died (median age of death 5 months). Key clinical indicators included sibling death with CF-like symptoms, rapid weight loss, and persistent respiratory or nutritional complications. Mortality risk under one year was significantly linked to hypoalbuminemia (OR 9.7), severe malnutrition (OR 4.4), severe anemia (hemoglobin < 7 g/dL) requiring blood transfusions (OR 3.0), and peripheral edema (OR 4.2). A triad of anemia, hypoalbuminemia, and edema was found to strongly predict death (OR 4.2). Integrating clinical checklists of these manifestations into primary healthcare may improve prompt referrals for earlier diagnosis and treatment. Continued education and advocacy for NBS are essential to reduce potentially preventable CF-related deaths in young children. Full article
Show Figures

Figure 1

14 pages, 864 KB  
Article
Blood Cultures Time-to-Positivity as an Antibiotic Stewardship Tool in Immunocompromised Children with Gram-Negative Bacteraemia
by Julià Gotzens, Aina Colom-Balañà, Manuel Monsonís, Laia Alsina, María Antonia Ruiz-Cobo, María Ríos-Barnés, Anna Gamell, Eneritz Velasco-Arnaiz, Irene Martínez-de-Albéniz, Victoria Fumadó, Clàudia Fortuny, Antoni Noguera-Julian and Sílvia Simó-Nebot
Antibiotics 2025, 14(8), 847; https://doi.org/10.3390/antibiotics14080847 - 21 Aug 2025
Viewed by 477
Abstract
Background/Objectives: Children and adolescents with haematologic malignancies or other causes of immunosuppression are at high risk of severe infections. Determining the probability of Gram-negative bacilli bloodstream infections (GNB-BSI) within 24 h of blood culture (BC) incubation could support early antibiotic de-escalation, compared [...] Read more.
Background/Objectives: Children and adolescents with haematologic malignancies or other causes of immunosuppression are at high risk of severe infections. Determining the probability of Gram-negative bacilli bloodstream infections (GNB-BSI) within 24 h of blood culture (BC) incubation could support early antibiotic de-escalation, compared to the current guidelines recommending de-escalation after 48–72 h. Methods: Retrospective, observational single-centre study describing BC time-to-positivity (TTP) in GNB-BSI in a paediatric cohort of immunocompromised children. Results: In 128 episodes (100 patients), TTP was less than 24 h in >95% cases. TTP did not differ based on sex, underlying disease, degree of neutropenia, or PICU admission. Antibiotic initiation prior to BC collection and microbiological aetiology (microbiological aetiology different from Pseudomonas aeruginosa, Escherichia coli, Klebsiella pneumoniae, or Enterobacter cloacae) were the only identified risk factors associated with BC growth beyond 24 h. No patients with late BC growth died or required PICU admission. Conclusions: If BC remains negative after 24 h of incubation, GNB-BSI is unlikely in immunocompromised children and adolescents with fever. These results support early de-escalation strategies, shortening unnecessary exposure to broader-spectrum antibiotics, and potentially decreasing adverse events and costs. Full article
(This article belongs to the Special Issue Inappropriate Use of Antibiotics in Pediatrics)
Show Figures

Figure 1

14 pages, 3015 KB  
Article
Analysis of Heat Transfer in the Welding Processes of Naval Metallic Sheets from an Occupational Safety Perspective
by Roberto José Hernández de la Iglesia, José L. Calvo-Rolle, Héctor Quintian-Pardo and Julia C. Mirza-Rosca
Safety 2025, 11(3), 78; https://doi.org/10.3390/safety11030078 - 18 Aug 2025
Viewed by 359
Abstract
Ship repair is hazardous, often presenting unsuitable working areas and risks due to the ship’s configuration. Welding tasks are particularly dangerous due to the high temperatures generated, high enough to melt the metal in structural elements, bulkheads, linings, and tanks. This study investigates [...] Read more.
Ship repair is hazardous, often presenting unsuitable working areas and risks due to the ship’s configuration. Welding tasks are particularly dangerous due to the high temperatures generated, high enough to melt the metal in structural elements, bulkheads, linings, and tanks. This study investigates the consequences of temperature distribution during the welding of naval plates and proposes some accident prevention measures. Industry working conditions were reproduced, including the materials, procedures, and tools used, as well as the certified personnel employed. DH 36-grade naval steel, with a composition of C max. 0.18%, Mn 0.90–1.60%, P 0.035%, S 0.04%, Si 0.10–0.50%, Ni max 0.4%, Cr max 0.25%, Mo 0.08%, Cu max 0.35%, Cb (Nb) 0.05%, and V 0.1%, was welded via FCAW-G (Gas-Shielded Flux-Cored Arc Welding), selected for this study because it is one of the most widely practiced in the naval industry. The main sensor used in the experiments was an FLIR model E50 thermographic camera, and thermal waxes were employed. The results for each thickness case are presented in both graphical and tabular form to provide accurate and actionable guidelines, prioritizing safety. After studying the butt jointing of naval plates of various thicknesses (8, 10, and 15 mm), safe distances to maintain were proposed to avoid risks in the most unfavorable cases: 350 mm from the welding seam to avoid burn injuries to unprotected areas of the body and 250 mm from the welding seam to avoid producing flammable gases. These numbers are less accurate but easier to remember, which prevents errors in the face of hazards throughout a long working day. Full article
Show Figures

Figure 1

26 pages, 2899 KB  
Article
Radio Coverage Assessment and Indoor Communication Enhancement in Hospitals: A Case Study at CHUCB
by Óscar Silva, Emanuel Bordalo Teixeira, Ana Corceiro, Antonio D. Reis and Fernando J. Velez
Sensors 2025, 25(16), 4933; https://doi.org/10.3390/s25164933 - 9 Aug 2025
Viewed by 1561
Abstract
The adoption of wireless medical technologies in hospital environments is often limited by cellular coverage issues, especially in indoor areas with complex structures. This study presents a detailed radio spectrum measurement campaign conducted at the Cova da Beira University Hospital Center (CHUCB), using [...] Read more.
The adoption of wireless medical technologies in hospital environments is often limited by cellular coverage issues, especially in indoor areas with complex structures. This study presents a detailed radio spectrum measurement campaign conducted at the Cova da Beira University Hospital Center (CHUCB), using the NARDA SRM-3006 and R&S®TSME6 equipment. The signal strength and quality of 5G NR, LTE, UMTS, and NB-IoT technologies were evaluated. Critical coverage gaps were identified, particularly at points 17, 19, and 21. Results revealed that operators MEO and NOS dominate coverage, with MEO providing better 5G NR coverage and NOS excelling in LTE signal quality. Based on the results, the localized installation of femtocells is proposed to improve coverage in these areas. The approach was designed to be scalable and replicable, with a planned application at Cumura Hospital (Guinea-Bissau), reinforcing the applicability of the solution in contexts with limited infrastructure. This work provides both technical and clinical contributions to achieving ubiquitous cellular coverage in healthcare settings. Full article
Show Figures

Figure 1

23 pages, 3795 KB  
Article
Exploring Gene Expression Changes in Murine Female Genital Tract Tissues Following Single and Co-Infection with Nippostrongylus brasiliensis and Herpes Simplex Virus Type 2
by Roxanne Pillay, Pragalathan Naidoo and Zilungile L. Mkhize-Kwitshana
Pathogens 2025, 14(8), 795; https://doi.org/10.3390/pathogens14080795 - 8 Aug 2025
Viewed by 505
Abstract
Background and Aim: The immunological interactions between soil-transmitted helminths (STHs) and herpes simplex virus type 2 (HSV-2), particularly in the context of co-infection, are poorly understood. Next-generation sequencing (NGS) offers a powerful approach to explore these complex immune responses and uncover potential therapeutic [...] Read more.
Background and Aim: The immunological interactions between soil-transmitted helminths (STHs) and herpes simplex virus type 2 (HSV-2), particularly in the context of co-infection, are poorly understood. Next-generation sequencing (NGS) offers a powerful approach to explore these complex immune responses and uncover potential therapeutic targets. This study leveraged NGS and bioinformatic tools to investigate transcriptional changes and immunological pathways in female genital tract (FGT) tissues of BALB/c mice acutely infected with Nippostrongylus brasiliensis (Nb), HSV-2, or co-infected. Methods: Total RNA was harvested from FGT tissues of BALB/c mice infected with Nb, HSV-2, co-infected with both pathogens, and uninfected controls. Differentially expressed genes (DEGs) were identified by comparing uninfected versus infected FGT tissues in R using edgeR and limma packages. Immune-related genes were identified by intersecting DEGs in each group-wise comparison with immune function gene sets derived from the Mouse Genome Informatics (MGI) database. Functional and pathway enrichment analyses were performed with g: Profiler and protein–protein interaction networks were built using the STRING database and visualized with Cytoscape. Key hub genes and significant gene modules were identified using the Cytoscape plugins CytoHubba and MCODE, followed by further functional analysis of these modules. Results: NGS analysis revealed distinct gene expression profiles in response to single infection with Nb or HSV-2, with both showing significant differences when uninfected controls were compared to infected FGT tissues at a 5% false discovery rate. Notably, there were no significant differences in gene expression profiles between uninfected and co-infected FGT tissues. In the comparison of uninfected versus Nb-infected FGT tissues, 368 DEGs were identified, with 356 genes upregulated and 12 downregulated. Several immune-related genes, such as Ptprc, Ccl11, Ccr2, and Cx3cr1, were significantly altered. Pathway analysis of DEGs, hub genes, and significant modules indicated modulation of immune and defense responses. Notably, Nb infection induced a robust Th2-dominant immune response in the FGT, with downregulation of pro-inflammatory genes. This likely reflects helminth-driven modulation that may impair protective Th1 responses and highlights the systemic impact of Nb on the FGT immunity. In the comparison of uninfected versus HSV-2-infected FGT tissues, 140 DEGs were identified, with 121 upregulated and 19 downregulated. Immune-related genes, including Ldlr, Camk1d, Lrp8 and Epg5, were notably altered. HSV-2 infection led to early and predominant downregulation of immune genes, consistent with viral immune evasion strategies. In addition, functional analysis revealed enrichment in cell cycle and sterol biosynthesis pathways, suggesting that HSV-2 modulates host metabolism to support viral replication while influencing immune responses. In co-infection, no significant transcriptional changes were observed, potentially reflecting immune antagonism where Nb-induced Th2 responses may suppress HSV-2-driven Th1 immune responses. Conclusions: This preliminary study offers insights into the gene expression responses in the FGT to acute single and co-infection with Nb and HSV-2. Together, these findings reveal distinct transcriptomic changes in the FGT following Nb and HSV-2 infection, with co-infection potentially leading to immune antagonism and transcriptional equilibrium. This highlights the complex interplay between helminth- and virus-induced immune modulation in shaping FGT immunity. By leveraging NGS, this study highlights important immune-related pathways and serves as a foundation for further investigations into the mechanistic roles of DEGs in immunity to these pathogens, with potential implications for developing novel therapeutic strategies. Full article
(This article belongs to the Special Issue Immunity and Immunoregulation in Helminth Infections)
Show Figures

Graphical abstract

24 pages, 3366 KB  
Article
Towards Intelligent 5G Infrastructures: Performance Evaluation of a Novel SDN-Enabled VANET Framework
by Abiola Ifaloye, Haifa Takruri and Rabab Al-Zaidi
Network 2025, 5(3), 28; https://doi.org/10.3390/network5030028 - 5 Aug 2025
Viewed by 418
Abstract
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications [...] Read more.
Critical Internet of Things (IoT) data in Fifth Generation Vehicular Ad Hoc Networks (5G VANETs) demands Ultra-Reliable Low-Latency Communication (URLLC) to support mission-critical vehicular applications such as autonomous driving and collision avoidance. Achieving the stringent Quality of Service (QoS) requirements for these applications remains a significant challenge. This paper proposes a novel framework integrating Software-Defined Networking (SDN) and Network Functions Virtualisation (NFV) as embedded functionalities in connected vehicles. A lightweight SDN Controller model, implemented via vehicle on-board computing resources, optimised QoS for communications between connected vehicles and the Next-Generation Node B (gNB), achieving a consistent packet delivery rate of 100%, compared to 81–96% for existing solutions leveraging SDN. Furthermore, a Software-Defined Wide-Area Network (SD-WAN) model deployed at the gNB enabled the efficient management of data, network, identity, and server access. Performance evaluations indicate that SDN and NFV are reliable and scalable technologies for virtualised and distributed 5G VANET infrastructures. Our SDN-based in-vehicle traffic classification model for dynamic resource allocation achieved 100% accuracy, outperforming existing Artificial Intelligence (AI)-based methods with 88–99% accuracy. In addition, a significant increase of 187% in flow rates over time highlights the framework’s decreasing latency, adaptability, and scalability in supporting URLLC class guarantees for critical vehicular services. Full article
Show Figures

Figure 1

16 pages, 459 KB  
Article
Ceftazidime–Avibactam in Critically Ill Patients: A Multicenter Observational Study
by Olivieri Silvia, Sara Mazzanti, Gabriele Gelo Signorino, Francesco Pallotta, Andrea Ficola, Benedetta Canovari, Vanessa Di Muzio, Michele Di Prinzio, Elisabetta Cerutti, Abele Donati, Andrea Giacometti, Francesco Barchiesi and Lucia Brescini
Antibiotics 2025, 14(8), 797; https://doi.org/10.3390/antibiotics14080797 - 5 Aug 2025
Viewed by 511
Abstract
Ceftazidime–avibactam (CAZ-AVI) is a second-generation intravenous β-lactam/β-lactamase inhibitor combination. In recent years, substantial evidence has emerged regarding the efficacy and safety of CAZ-AVI. However, data on its use in critically ill patients remain limited. Background/Objectives: This multicenter, retrospective, observational cohort study was conducted [...] Read more.
Ceftazidime–avibactam (CAZ-AVI) is a second-generation intravenous β-lactam/β-lactamase inhibitor combination. In recent years, substantial evidence has emerged regarding the efficacy and safety of CAZ-AVI. However, data on its use in critically ill patients remain limited. Background/Objectives: This multicenter, retrospective, observational cohort study was conducted across four Intensive Care Units (ICUs) in three hospitals in the Marche region of Italy. The primary objective was to evaluate the 30-day clinical outcomes and identify risk factors associated with 30-day clinical failure—defined as death, microbiological recurrence, or persistence within 30 days after discontinuation of therapy—in critically ill patients treated with CAZ-AVI. Methods: The study included all adult critically ill patients admitted to the participating ICUs between January 2020 and September 2023 who received CAZ-AVI for at least 72 h for the treatment of a confirmed or suspected Gram-negative bacterial (GNB) infection. Results: Among the 161 patients included in the study, CAZ-AVI treatment resulted in a positive clinical outcome (i.e., clinical improvement and 30-day survival) in 58% of cases (n = 93/161), while the overall mortality rate was 24% (n = 38/161). Relapse or persistent infection occurred in a substantial proportion of patients (25%, n = 41/161). Notably, acquired resistance to CAZ-AVI was observed in 26% of these cases, likely due to suboptimal use of the drug in relation to its pharmacokinetic/pharmacodynamic (PK/PD) properties in critically ill patients. Furthermore, treatment failure was more frequent among immunosuppressed individuals, particularly liver transplant recipients. Conclusions: This study demonstrates that the mortality rate among ICU patients treated with this novel antimicrobial combination is consistent with findings from other studies involving heterogeneous populations. However, the rapid emergence of resistance underscores the need for vigilant surveillance and the implementation of robust antimicrobial stewardship strategies. Full article
Show Figures

Figure 1

27 pages, 8496 KB  
Article
Comparative Performance of Machine Learning Models for Landslide Susceptibility Assessment: Impact of Sampling Strategies in Highway Buffer Zone
by Zhenyu Tang, Shumao Qiu, Haoying Xia, Daming Lin and Mingzhou Bai
Appl. Sci. 2025, 15(15), 8416; https://doi.org/10.3390/app15158416 - 29 Jul 2025
Viewed by 333
Abstract
Landslide susceptibility assessment is critical for hazard mitigation and land-use planning. This study evaluates the impact of two different non-landslide sampling methods—random sampling and sampling constrained by the Global Landslide Hazard Map (GLHM)—on the performance of various machine learning and deep learning models, [...] Read more.
Landslide susceptibility assessment is critical for hazard mitigation and land-use planning. This study evaluates the impact of two different non-landslide sampling methods—random sampling and sampling constrained by the Global Landslide Hazard Map (GLHM)—on the performance of various machine learning and deep learning models, including Naïve Bayes (NB), Support Vector Machine (SVM), SVM-Random Forest hybrid (SVM-RF), and XGBoost. The study area is a 2 km buffer zone along the Duku Highway in Xinjiang, China, with 102 landslide and 102 non-landslide points extracted by aforementioned sampling methods. Models were tested using ROC curves and non-parametric significance tests based on 20 repetitions of 5-fold spatial cross-validation data. GLHM sampling consistently improved AUROC and accuracy across all models (e.g., AUROC gains: NB +8.44, SVM +7.11, SVM–RF +3.45, XGBoost +3.04; accuracy gains: NB +11.30%, SVM +8.33%, SVM–RF +7.40%, XGBoost +8.31%). XGBoost delivered the best performance under both sampling strategies, reaching 94.61% AUROC and 84.30% accuracy with GLHM sampling. SHAP analysis showed that GLHM sampling stabilized feature importance rankings, highlighting STI, TWI, and NDVI as the main controlling factors for landslides in the study area. These results highlight the importance of hazard-informed sampling to enhance landslide susceptibility modeling accuracy and interpretability. Full article
Show Figures

Figure 1

Back to TopTop