Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (323)

Search Parameters:
Keywords = gas diffusion coefficient

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 5920 KB  
Article
Enhanced CO2 Separation Performance of Mixed Matrix Membranes with Pebax and Amino-Functionalized Carbon Nitride Nanosheets
by Mengran Hua, Qinqin Sun, Na Li, Mingchao Zhu, Yongze Lu, Zhaoxia Hu and Shouwen Chen
Membranes 2025, 15(10), 306; https://doi.org/10.3390/membranes15100306 - 7 Oct 2025
Viewed by 376
Abstract
Highly permeable and selective membranes are crucial for energy-efficient gas separation. Two-dimensional (2D) graphitic carbon nitride (g-C3N4) has attracted significant attention due to its unique structural characteristics, including ultra-thin thickness, inherent surface porosity, and abundant amine groups. However, the [...] Read more.
Highly permeable and selective membranes are crucial for energy-efficient gas separation. Two-dimensional (2D) graphitic carbon nitride (g-C3N4) has attracted significant attention due to its unique structural characteristics, including ultra-thin thickness, inherent surface porosity, and abundant amine groups. However, the interfacial defects caused by poor compatibility between g-C3N4 and polymers deteriorate the separation performance of membrane materials. In this study, amino-functionalized g-C3N4 nanosheets (CN@PEI) was prepared by a post-synthesis method, then blended with the polymer Pebax to fabricate Pebax/CN@PEI mixed matrix membranes (MMMs). Compared to g-C3N4, MMMs with CN@PEI loading of 20 wt% as nanofiller exhibited a CO2 permeance of 241 Barrer as well as the CO2/CH4 and CO2/N2 selectivity of 39.7 and 61.2, respectively, at the feed gas pressure of 2 bar, which approaches the 2008 Robeson upper bound and exceeded the 1991 Robeson upper bound. The Pebax/CN@PEI (20) membrane showed robust stability performance over 70 h continuous gas permeability testing, and no significant decline was observed. SEM characterization revealed a uniform dispersion of CN@PEI throughout the Pebax matrix, demonstrating excellent interfacial compatibility between the components. The increased free volume fraction, enhanced solubility, and higher diffusion coefficient demonstrated that the incorporation of CN@PEI nanosheets introduced more CO2-philic amino groups and disrupted the chain packing of the Pebax matrix, thereby creating additional diffusion channels and facilitating CO2 transport. Full article
(This article belongs to the Special Issue Novel Membranes for Carbon Capture and Conversion)
Show Figures

Figure 1

16 pages, 1372 KB  
Article
Thermophy: A Chebyshev Polynomial-Based Tool for Transport Property Estimation in Multicomponent Gas Systems
by Nuri Özgür Aydın and Mehmet Kopaç
Fire 2025, 8(9), 372; https://doi.org/10.3390/fire8090372 - 20 Sep 2025
Viewed by 397
Abstract
The accurate computation of the thermophysical properties of gases and gas mixtures is critical for combustion analysis but remains challenging due to the precision and numerical stability required across wide temperature ranges. In this study, we present Thermophy, a computational framework based on [...] Read more.
The accurate computation of the thermophysical properties of gases and gas mixtures is critical for combustion analysis but remains challenging due to the precision and numerical stability required across wide temperature ranges. In this study, we present Thermophy, a computational framework based on Chebyshev polynomial fitting, developed to calculate thermal conductivity, viscosity, and binary diffusion coefficients for pure gases and multicomponent mixtures. Unlike conventional tools that rely on low-order polynomial approximations, Thermophy applies Chebyshev fitting over defined temperature intervals, enabling higher accuracy, improved numerical stability, and computational efficiency. Thermophy is validated through four case studies involving pure gases, binary mixtures, and ternary mixtures relevant to combustion applications. For pure gases and air, deviations in thermal conductivity and viscosity were found to be 1.22–4.25% and 0.11–4.71%, respectively. For ternary mixtures, viscosity deviations ranged from 0.11 to 0.24%, while binary mixtures showed deviations of 2.60% and 0.20% for viscosity and thermal conductivity, respectively. Binary diffusion coefficients exhibited an overall deviation of approximately 3.35%. The combination of flexible input handling, extensibility, and high-fidelity calculations positions Thermophy as a robust and efficient alternative for integration into combustion modeling and other gas-phase simulation frameworks, including gasification, pyrolysis, global carbon cycle analysis, environmental systems, and fire modeling. Full article
Show Figures

Figure 1

19 pages, 4866 KB  
Article
Numerical Simulation Study of Gas Leakage and Diffusion in Underground Comprehensive Pipe Gallery
by Yunlong Wang, Rui Li, Youjia Zhang, Zhengxiu Lv and Xu Wang
Processes 2025, 13(9), 2886; https://doi.org/10.3390/pr13092886 - 9 Sep 2025
Viewed by 343
Abstract
To reveal the dispersion characteristics of gas leaks in a comprehensive pipe gallery under different leakage parameters, a refined model for gas leak dispersion was established based on CFD simulation. By studying parameters such as alarm time, methane diffusion distance, and backflow length, [...] Read more.
To reveal the dispersion characteristics of gas leaks in a comprehensive pipe gallery under different leakage parameters, a refined model for gas leak dispersion was established based on CFD simulation. By studying parameters such as alarm time, methane diffusion distance, and backflow length, the impact of leakage aperture and pipeline operating pressure on the distribution characteristics of gas leaks in the comprehensive pipe gallery was investigated. Furthermore, prediction models for alarm time, methane diffusion distance, and backflow length were developed. The results show the following: (a) When the pipeline operating pressure is constant, the leakage rate increases according to a power-law relationship with the size of the leakage aperture. However, when the leakage aperture size is constant, the leakage rate exhibits a linear relationship with the pipeline operating pressure; (b) The alarm time decreases with an increase in both the leakage aperture and pipeline operating pressure. Similarly, the methane diffusion distance increases with an increase in these two factors. Moreover, the methane backflow length increases according to a power-law relationship with the dimensionless leakage aperture and pipeline operating pressure, with exponents of 0.83 and 0.63, respectively. (c) The fitted predictive models for alarm time and methane diffusion distance yielded correlation coefficients of 0.97 and 0.98, with average residuals of 2.53 and 1.97, respectively, at each point. These findings can further provide a basis for the safe operation of the underground comprehensive pipe gallery. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

17 pages, 4863 KB  
Article
Comparative Study on Gas Desorption Behaviors of Single-Size and Mixed-Size Coal Samples
by Long Chen, Xiao-Yu Cheng, Xuan-Ping Gong, Xing-Ying Ma, Cheng Cheng and Lu Xiao
Processes 2025, 13(9), 2760; https://doi.org/10.3390/pr13092760 - 28 Aug 2025
Viewed by 431
Abstract
The gas desorption behavior of coal is a key basis for guiding gas parameter determination, optimizing gas extraction, and preventing gas-related disasters. Coal in mine working faces typically exhibits a mixed particle size distribution. However, research on the gas desorption behavior of mixed-size [...] Read more.
The gas desorption behavior of coal is a key basis for guiding gas parameter determination, optimizing gas extraction, and preventing gas-related disasters. Coal in mine working faces typically exhibits a mixed particle size distribution. However, research on the gas desorption behavior of mixed-size coal samples and comparative studies with single-sized samples remains insufficient. This study employed a self-developed experimental system for the multi-field coupled seepage desorption of gas-bearing coal to conduct comparative experiments on gas desorption behavior between single-sized and mixed-size coal samples. Systematic analysis revealed significant differences in their desorption and diffusion patterns: smaller particle sizes and higher proportions of small particles correlate with greater total gas desorption amounts and higher desorption rates. The desorption process exhibits distinct stages: the initial desorption amount is primarily influenced by the particle size, while the later stage is affected by the proportion of coal samples with different particle sizes. The desorption intensity for both single-sized and mixed-size samples decays exponentially over time, with the decay rate weakening as the proportion of small particles decreases. The gas diffusion coefficient decays over time during desorption, eventually approaching zero, and increases as the proportion of small particles rises. Conversely, the gas desorption attenuation coefficient increases with a higher proportion of fine particles. Based on the desorption laws of coal samples with single and mixed particle sizes, this study can be applied to coalbed gas content measurements, emission prediction, and extraction design, thereby providing a theoretical foundation and technical support for coal mine operations. Full article
Show Figures

Figure 1

22 pages, 4847 KB  
Article
Advanced Cellulose Triacetate-Based Mixed Matrix Membranes Enhanced by Bimetallic Ni-Cu-BTC MOFs for CO2/CH4 Separation
by Esha Asad, Ayesha Raza, Amna Safdar, Muhammad Nouman Aslam Khan and Humais Roafi
Polymers 2025, 17(16), 2258; https://doi.org/10.3390/polym17162258 - 21 Aug 2025
Cited by 1 | Viewed by 1006
Abstract
Cu-BTC (HKUST-1) metal–organic framework (MOF) is widely recognized for its carbon capture capability due to its unsaturated copper sites, high surface area, and well-defined porous structure. This study developed mixed matrix membranes (MMMs) using cellulose triacetate (CTA), incorporating bimetallic Ni-Cu-BTC MOFs for CO [...] Read more.
Cu-BTC (HKUST-1) metal–organic framework (MOF) is widely recognized for its carbon capture capability due to its unsaturated copper sites, high surface area, and well-defined porous structure. This study developed mixed matrix membranes (MMMs) using cellulose triacetate (CTA), incorporating bimetallic Ni-Cu-BTC MOFs for CO2/CH4 separation, and benchmarked them against membranes fabricated with monometallic Cu-BTC. CTA was selected for its biodegradability, membrane-forming properties, and cost-effectiveness. The optimized membrane with 10 wt.% Ni-Cu-BTC achieved a CO2 permeability of 22.9 Barrer at 25 °C and 5 bar—more than twice that of pristine CTA—with a CO2/CH4 selectivity of 33.8. This improvement stems from a 51.66% increase in fractional free volume, a 49.30% rise in the solubility coefficient, and a 51.94% boost in the diffusivity coefficient. Dual-sorption model analysis further confirmed enhanced solubility and adsorption mechanisms. These findings establish CTA/Ni-Cu-BTC membranes as promising candidates for high-performance CO2 separation in natural gas purification and related industrial processes. Full article
(This article belongs to the Special Issue Polymer-Based Membranes: Innovation in Separation Technology)
Show Figures

Graphical abstract

21 pages, 3794 KB  
Article
Study on the Effect of Ultrasonic and Cold Plasma Non-Thermal Pretreatment Combined with Hot Air on the Drying Characteristics and Quality of Yams
by Xixuan Wang, Zhiqing Song and Changjiang Ding
Foods 2025, 14(16), 2831; https://doi.org/10.3390/foods14162831 - 15 Aug 2025
Viewed by 548
Abstract
In this study, the effects of non-thermal pretreatment such as corona discharge plasma (CDP-21 kV), dielectric barrier discharge plasma (DBDP-32 kV), and ultrasonic waves of different powers (US-180 W, 210 W, 240 W) on hot-air drying of ferruginous yam were compared. The regulatory [...] Read more.
In this study, the effects of non-thermal pretreatment such as corona discharge plasma (CDP-21 kV), dielectric barrier discharge plasma (DBDP-32 kV), and ultrasonic waves of different powers (US-180 W, 210 W, 240 W) on hot-air drying of ferruginous yam were compared. The regulatory effects of ultrasonic and cold plasma pretreatment on the drying characteristics and quality of yam were systematically evaluated by determining the drying kinetic parameters, physicochemical indexes, volatile components, and energy consumption. The results showed that ultrasonic pretreatment significantly improved the drying performance of yam compared with different cold plasma treatments, with the highest drying rate and effective moisture diffusion coefficient in the US-180 W group. In terms of quality, this treatment group exhibited better color retention, higher total phenol content (366 mg/100 g) and antioxidant activity, and optimal rehydration performance. Low-field nuclear magnetic resonance (NMR) analyses showed a more homogeneous water distribution, and gas chromatography–mass spectrometry (GC-MS) identified 55 volatile components. This study confirms that the US-180 W ultrasonic pretreatment technology can effectively improve the drying efficiency and product quality of yam and at the same time reduce the energy consumption. The results of this study provide a practical solution for the optimization of a process that can be replicated in the food drying industry. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

15 pages, 2180 KB  
Article
Microfluidic Investigation on the Diffusion Law of Nano Displacement Agent in Porous Media
by Jiahui Liu, Shixun Bai, Weixiong Xiao and Shengwu Gao
Processes 2025, 13(8), 2546; https://doi.org/10.3390/pr13082546 - 12 Aug 2025
Viewed by 443
Abstract
Unconventional oil reservoirs are tight and often host micro-nano pores, and huff and puff is usually adopted for such reservoirs, mainly utilizing the mechanism of spontaneous imbibition. The penetration depth into the matrix during imbibition is one of the key influencing factors of [...] Read more.
Unconventional oil reservoirs are tight and often host micro-nano pores, and huff and puff is usually adopted for such reservoirs, mainly utilizing the mechanism of spontaneous imbibition. The penetration depth into the matrix during imbibition is one of the key influencing factors of oil recovery. In circumstances where a water phase is present in the reservoir, the injected oil displacement agent may not directly contact the oil phase, but instead needs to diffuse and migrate to the oil–water interface to adjust the capillary force, thereby affecting the imbibition depth. Therefore, the diffusion law of the oil displacement agent can indirectly affect the oil recovery by imbibition. In this study, microfluidic experiments were conducted to investigate the diffusion of nano oil displacement agents at different pore sizes (100 μm). The results show that the concentration distribution of nano oil displacement agents near the injection end was uniform during the diffusion process, and the concentration showed a decreasing trend with increasing depth. As the pore size decreased, the diffusion coefficient also decreased, and the diffusion effect deteriorated. There was a lower limit of pore size that allowed diffusion at approximately 15.66 μm. The diffusion law of the nano oil displacement agent in porous media obtained in this study is of great significance for improving the recovery rate of unconventional oil and gas resources. Full article
(This article belongs to the Special Issue Advanced Strategies in Enhanced Oil Recovery: Theory and Technology)
Show Figures

Figure 1

21 pages, 1757 KB  
Article
Description of Gas Transport in Polymers: Integrated Thermodynamic and Transport Modeling of Refrigerant Gases in Polymeric Membranes
by Matteo Minelli, Marco Giacinti Baschetti and Virginia Signorini
Polymers 2025, 17(16), 2169; https://doi.org/10.3390/polym17162169 - 8 Aug 2025
Viewed by 754
Abstract
Hydrofluorocarbons (HFC) are today widely used as refrigerants, solvents, or aerosols for fire protection. Due to their non-negligible environmental impact, there exists an increasing interest towards their effective separation and recovery, which still remains a major challenge. This work presents a comprehensive thermodynamic [...] Read more.
Hydrofluorocarbons (HFC) are today widely used as refrigerants, solvents, or aerosols for fire protection. Due to their non-negligible environmental impact, there exists an increasing interest towards their effective separation and recovery, which still remains a major challenge. This work presents a comprehensive thermodynamic and transport modeling approach able to describe HFC sorption and transport in different amorphous polymers, including glassy, rubbery, and copolymers, as well as in supported Ionic Liquid membranes (SILMs). In particular, the literature solubility data for refrigerants such as R-32, R-125, R-134a, and R-152a is analyzed by means of the Sanchez–Lacombe Equation of State (SL-EoS), and its non-equilibrium extension (NELF), to predict gas uptake in complex polymeric materials. The Standard Transport Model (STM) is then employed to describe permeability behaviors, incorporating concentration-dependent diffusion using a mobility coefficient and thermodynamic factor. Results demonstrate that fluorinated gases exhibit strong affinity to fluorinated and high free-volume polymers, and that solubility is primarily governed by gas condensability, molecular size, and polymer structure. The combined EoS–STM approach accurately predicts both solubility and permeability across different pressures in all polymers, including SILM. The thorough study of HFC transport in polymer membranes provided both systematic insights and predictive capabilities to guide the design of next-generation materials for refrigerant recovery and low-GWP separation processes. Full article
(This article belongs to the Section Polymer Physics and Theory)
Show Figures

Graphical abstract

26 pages, 11995 KB  
Article
Research on Hydrogen/Deuterium Permeation Behavior and Influencing Factors of X52MS Pipeline Steel
by Ning Liu, Ke Jin, Junqiang Ren, Jie Sheng, Xuefeng Lu and Xingchang Tang
Metals 2025, 15(8), 881; https://doi.org/10.3390/met15080881 - 7 Aug 2025
Viewed by 573
Abstract
The hydrogen/deuterium permeation behavior of X52MS pipeline steel with three thicknesses was investigated using the gas/liquid phase permeation method by changing the current density and regulating the surface roughness. The permeation curves under different conditions were obtained, the hydrogen/deuterium diffusion coefficients and related [...] Read more.
The hydrogen/deuterium permeation behavior of X52MS pipeline steel with three thicknesses was investigated using the gas/liquid phase permeation method by changing the current density and regulating the surface roughness. The permeation curves under different conditions were obtained, the hydrogen/deuterium diffusion coefficients and related important parameters were calculated, and the surface morphology of the hydrogen-filled side was observed using scanning electron microscopy. It is found that the hydrogen diffusion coefficient and diffusion flux increase gradually with an increase in the hydrogen charging current density, while the hydrogen infiltration lag time gradually decreases. With the increase in surface roughness of the specimen, the corrosion degree of the surface after hydrogen penetration decreases, the hydrogen diffusion coefficient gradually decreases, and the penetration time, lag time, and hydrogen concentration on the cathode side gradually increase. Full article
Show Figures

Figure 1

16 pages, 6404 KB  
Article
The Study of Phase Behavior of Multi-Component Alkane–Flue Gas Systems Under High-Temperature Conditions Based on Molecular Dynamics Simulations
by Xiaokun Zhang, Jiagao Tang, Zongyao Qi, Suo Liu, Changfeng Xi, Fang Zhao, Ping Hu, Hongyun Zhou, Chao Wang and Bojun Wang
Energies 2025, 18(15), 4169; https://doi.org/10.3390/en18154169 - 6 Aug 2025
Viewed by 420
Abstract
Injecting industrial high-temperature flue gas into hydrocarbon reservoirs has emerged as a novel approach for carbon sequestration. However, the complex high-temperature phase behavior between flue gas (CO2, N2) and reservoir fluids challenges this technology’s development, as traditional experimental methods [...] Read more.
Injecting industrial high-temperature flue gas into hydrocarbon reservoirs has emerged as a novel approach for carbon sequestration. However, the complex high-temperature phase behavior between flue gas (CO2, N2) and reservoir fluids challenges this technology’s development, as traditional experimental methods and theoretical models often fall short in capturing it accurately. To address this, molecular dynamics simulations were employed in this study to investigate the phase behavior of single-component alkanes, multicomponent alkane mixtures, and multicomponent alkane–flue gas systems under high-temperature conditions. The results reveal that CO2 can become miscible with alkanes, while N2 diffuses into the system, causing volumetric expansion and a reduction in density. The initially distinct phase interface between the multicomponent alkanes and the flue gas becomes progressively blurred and eventually disappears, indicating the formation of a fully miscible phase. Comparative simulations revealed that the diffusion coefficients of N2 and CO2 increased by up to 20% with rising temperature and pressure, while variations in flue gas composition had negligible effects, indicating that high-temperature and high-pressure conditions significantly enhance flue gas–alkane miscibility. Full article
Show Figures

Figure 1

26 pages, 21628 KB  
Article
Key Controlling Factors of Deep Coalbed Methane Reservoir Characteristics in Yan’an Block, Ordos Basin: Based on Multi-Scale Pore Structure Characterization and Fluid Mobility Research
by Jianbo Sun, Sijie Han, Shiqi Liu, Jin Lin, Fukang Li, Gang Liu, Peng Shi and Hongbo Teng
Processes 2025, 13(8), 2382; https://doi.org/10.3390/pr13082382 - 27 Jul 2025
Cited by 1 | Viewed by 583
Abstract
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control [...] Read more.
The development of deep coalbed methane (buried depth > 2000 m) in the Yan’an block of Ordos Basin is limited by low permeability, the pore structure of the coal reservoir, and the gas–water occurrence relationship. It is urgent to clarify the key control mechanism of pore structure on gas migration. In this study, based on high-pressure mercury intrusion (pore size > 50 nm), low-temperature N2/CO2 adsorption (0.38–50 nm), low-field nuclear magnetic resonance technology, fractal theory and Pearson correlation coefficient analysis, quantitative characterization of multi-scale pore–fluid system was carried out. The results show that the multi-scale pore network in the study area jointly regulates the occurrence and migration process of deep coalbed methane in Yan’an through the ternary hierarchical gas control mechanism of ‘micropore adsorption dominant, mesopore diffusion connection and macroporous seepage bottleneck’. The fractal dimensions of micropores and seepage are between 2.17–2.29 and 2.46–2.58, respectively. The shape of micropores is relatively regular, the complexity of micropore structure is low, and the confined space is mainly slit-like or ink bottle-like. The pore-throat network structure is relatively homogeneous, the difference in pore throat size is reduced, and the seepage pore shape is simple. The bimodal structure of low-field nuclear magnetic resonance shows that the bound fluid is related to the development of micropores, and the fluid mobility mainly depends on the seepage pores. Pearson’s correlation coefficient showed that the specific surface area of micropores was strongly positively correlated with methane adsorption capacity, and the nanoscale pore-size dominated gas occurrence through van der Waals force physical adsorption. The specific surface area of mesopores is significantly positively correlated with the tortuosity. The roughness and branch structure of the inner surface of the channel lead to the extension of the migration path and the inhibition of methane diffusion efficiency. Seepage porosity is linearly correlated with gas permeability, and the scale of connected seepage pores dominates the seepage capacity of reservoirs. This study reveals the pore structure and ternary grading synergistic gas control mechanism of deep coal reservoirs in the Yan’an Block, which provides a theoretical basis for the development of deep coalbed methane. Full article
Show Figures

Figure 1

19 pages, 7616 KB  
Article
Size-Selective Adsorption Phenomena and Kinetic Behavior of Alcohol Homologs in Metal–Organic Framework QCM Sensors: Reconciling Apparent Contradictions
by Wenqian Gao, Wenjie Xin and Xueliang Mu
Chemosensors 2025, 13(8), 269; https://doi.org/10.3390/chemosensors13080269 - 23 Jul 2025
Viewed by 577
Abstract
In this study, we systematically investigated the adsorption behavior of a titanium-based metal–organic framework (MOF) sensing layer on five primary alcohol homologs using the quartz crystal microbalance (QCM) technique. Unexpectedly, response signals were significantly enhanced for molecules exceeding the framework’s pore dimensions, contradicting [...] Read more.
In this study, we systematically investigated the adsorption behavior of a titanium-based metal–organic framework (MOF) sensing layer on five primary alcohol homologs using the quartz crystal microbalance (QCM) technique. Unexpectedly, response signals were significantly enhanced for molecules exceeding the framework’s pore dimensions, contradicting conventional molecular sieving models. Further investigations revealed that the adsorption time constant (τa) is linearly proportional to the molecular diameter (R2=0.952) and the integral response (AUC) increases almost exponentially with the molecular weight (R2=0.891). Although the effective diffusion coefficient (Deff) decreases with increasing molecular size (Deffd5.96, R2=0.981), the normalized diffusion hindrance ratio (Deff/Dgas) decreases logarithmically with an increasing diameter. Larger responses result from stronger host–guest interactions with the framework despite significant diffusion limitations for larger molecules. These findings demonstrate the synergistic regulation of adsorption and diffusion in MOF-QCM systems. Our investigation experimentally elucidates the ’size-selectivity paradox’ in microporous sensing interfaces and establishes a quantitative framework for optimizing sensor performance through balanced control of diffusion kinetics and interfacial interactions in similar materials. Full article
Show Figures

Figure 1

20 pages, 1539 KB  
Article
The Impact of Rock Morphology on Gas Dispersion in Underground Hydrogen Storage
by Tri Pham, Rouhi Farajzadeh and Quoc P. Nguyen
Energies 2025, 18(14), 3693; https://doi.org/10.3390/en18143693 - 12 Jul 2025
Viewed by 397
Abstract
Fluid dispersion directly influences the transport, mixing, and efficiency of hydrogen storage in depleted gas reservoirs. Pore structure parameters, such as pore size, throat geometry, and connectivity, influence the complexity of flow pathways and the interplay between advective and diffusive transport mechanisms. Hence, [...] Read more.
Fluid dispersion directly influences the transport, mixing, and efficiency of hydrogen storage in depleted gas reservoirs. Pore structure parameters, such as pore size, throat geometry, and connectivity, influence the complexity of flow pathways and the interplay between advective and diffusive transport mechanisms. Hence, these factors are critical for predicting and controlling flow behavior in the reservoirs. Despite its importance, the relationship between pore structure and dispersion remains poorly quantified, particularly under elevated flow conditions. To address this gap, this study employs pore network modeling (PNM) to investigate the influence of sandstone and carbonate structures on fluid flow properties at the micro-scale. Eleven rock samples, comprising seven sandstone and four carbonate, were analyzed. Pore network extraction from CT images was used to obtain detailed pore structure parameters and their statistical measures. Pore-scale simulations were conducted across 60 scenarios with varying average interstitial velocities and water as the injected fluid. Effluent hydrogen concentrations were measured to generate elution curves as a function of injected pore volumes (PV). This approach enables the assessment of the relationship between the dispersion coefficient and pore structure parameters across all rock samples at consistent average interstitial velocities. Additionally, dispersivity and n-exponent values were calculated and correlated with pore structure parameters. Full article
(This article belongs to the Special Issue Green Hydrogen Energy Production)
Show Figures

Figure 1

26 pages, 5689 KB  
Article
Insights into the Adsorption of Carbon Dioxide in Zeolites ITQ-29 and 5A Based on Kinetic Measurements and Molecular Simulations
by Magdy Abdelghany Elsayed, Shixue Zhou, Xiaohui Zhao, Gumawa Windu Manggada, Zhongyuan Chen, Fang Wang and Zhijuan Tang
Nanomaterials 2025, 15(14), 1077; https://doi.org/10.3390/nano15141077 - 11 Jul 2025
Cited by 1 | Viewed by 865
Abstract
Understanding the adsorption mechanism is essential for developing efficient technologies to capture carbon dioxide from industrial flue gases. In this work, laboratory measurements, density functional theory calculations, and molecular dynamics simulations were employed to study CO2 adsorption and diffusion behavior in LTA-type [...] Read more.
Understanding the adsorption mechanism is essential for developing efficient technologies to capture carbon dioxide from industrial flue gases. In this work, laboratory measurements, density functional theory calculations, and molecular dynamics simulations were employed to study CO2 adsorption and diffusion behavior in LTA-type zeolites. The CO2 adsorption isotherms measured in zeolite 5A are best described by the Toth model. Thermodynamic analysis indicates that the adsorption process is spontaneous and exothermic, with an enthalpy change of −44.04 kJ/mol, an entropy change of −115.23 J/(mol·K), and Gibbs free energy values ranging from −9.68 to −1.03 kJ/mol over the temperature range of 298–373 K. The isosteric heat of CO2 adsorption decreases from 40.35 to 21.75 kJ/mol with increasing coverage, reflecting heterogeneous interactions at Ca2+ and Na+ sites. The adsorption kinetics follow a pseudo-first-order model, with an activation energy of 2.24 kJ/mol, confirming a physisorption mechanism. The intraparticle diffusion model indicates that internal diffusion is the rate-limiting step, supported by a significant reduction in the diffusion rate. The DFT calculations demonstrated that CO2 exhibited a −35 kJ/mol more negative adsorption energy in zeolite 5A than in zeolite ITQ-29, attributable to strong interactions with Ca2+/Na+ cations in 5A that were absent in the pure silica ITQ-29 framework. The molecular dynamics simulations based on molecular force fields indicate that CO2 diffuses more rapidly in ITQ-29, with a diffusion coefficient measuring 2.54 × 10−9 m2/s at 298 K, whereas it was 1.02 × 10−9 m2/s in zeolite 5A under identical conditions. The activation energy for molecular diffusion reaches 5.54 kJ/mol in zeolite 5A, exceeding the 4.12 kJ/mol value in ITQ-29 by 33%, which accounts for the slower diffusion kinetics in zeolite 5A. There is good agreement between experimental measurements and molecular simulation results for zeolite 5A across the studied temperature and pressure ranges. This confirms the accuracy and reliability of the selected simulation parameters and allows for the study of zeolite ITQ under similar simulation conditions. This research provides insights into CO2 adsorption energetics and diffusion within LTA-type zeolite frameworks, supporting the rational design of high-performance adsorbents for industrial gas separation. Full article
Show Figures

Figure 1

27 pages, 7185 KB  
Article
Ventilation Design of an Extra-Long Single-Bore Double-Track Railway Tunnel with High Traffic Density
by Xiaohan Chen, Sanxiang Sun, Jianyun Wu, Tianyang Ling, Lei Li, Xianwei Shi and Haifu Yang
Sensors 2025, 25(13), 4009; https://doi.org/10.3390/s25134009 - 27 Jun 2025
Viewed by 704
Abstract
Harmful gases produced by diesel locomotives tend to accumulate within tunnels, posing risks such as dizziness, vomiting, coma, and even death to the working staff, particularly in long tunnels with high traffic density. As the number of such structures increases, ventilation in extra-long [...] Read more.
Harmful gases produced by diesel locomotives tend to accumulate within tunnels, posing risks such as dizziness, vomiting, coma, and even death to the working staff, particularly in long tunnels with high traffic density. As the number of such structures increases, ventilation in extra-long tunnels represents a critical challenge within the engineering area. In this study, the ventilation of an extra-long single-bore double-track tunnel operating with diesel locomotives is investigated. Through scale model tests and based on the inspection sensor data, the natural diffusion patterns of harmful gases under various operating conditions were elucidated. Based on the local resistance coefficient optimization theory and numerical simulations, the ventilation shafts of the tunnel were optimally designed, and an overall ventilation scheme was developed. The ventilation effect of the tunnel was verified through improved scale model tests. The results show that harmful gases primarily diffuse towards the higher elevation tunnel entrance, with only gases near the lower entrance escaping from it. Under the same operating conditions, NO2 diffuses more slowly than CO, making it harder to discharge. Applying the local resistance coefficient optimization theory, the inclined and vertical shafts of the tunnel can be effectively optimized. The optimized ventilation shafts, coupled with jet fans, can reduce harmful gas concentrations below safety limits within one minute. The methodologies and findings presented here can offer valuable guidance for the ventilation design of similar infrastructures. Full article
(This article belongs to the Special Issue Recent Trends in Air Quality Sensing)
Show Figures

Figure 1

Back to TopTop