Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (387)

Search Parameters:
Keywords = generalized additive model (GAM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1010 KB  
Article
Interactions Between Sessile Species Groups from Wave-Exposed Rocky Intertidal Habitats in Atlantic Canada Evaluated Using Multiannual Surveys
by Ricardo A. Scrosati, Hannah L. MacDonald and Emilie J. Perreault
Ecologies 2025, 6(3), 58; https://doi.org/10.3390/ecologies6030058 - 29 Aug 2025
Viewed by 206
Abstract
Within biogeographic regions, local communities are structured mainly by abiotic (environmental) filtering, external resource supply, and biotic interactions. In recent years, we investigated abiotic filtering and external resource supply as drivers of the latitudinal distribution of rocky intertidal species along the Atlantic Canadian [...] Read more.
Within biogeographic regions, local communities are structured mainly by abiotic (environmental) filtering, external resource supply, and biotic interactions. In recent years, we investigated abiotic filtering and external resource supply as drivers of the latitudinal distribution of rocky intertidal species along the Atlantic Canadian coast in Nova Scotia. Here, we evaluate biotic interactions between the main sessile species groups. Specifically, we studied abundance relationships between seaweeds and filter-feeding invertebrates and between barnacles and mussels using data collected at mid-to-high intertidal elevations at eight wave-exposed locations every summer from 2014 to 2017. We assessed such relationships for each location and year through generalized additive modeling (GAM). Of the 32 relationships evaluated for seaweeds vs. filter-feeders, 31% were significant and consistently negative, suggesting competitive interactions. For barnacles vs. mussels, 25% of the relationships were significant and mostly positive, consistent with facilitation of mussel colonization by barnacles in harsh environments. The variability explained by these models was moderate, however, between around 10% and 50%. Overall, these results suggest that interactions between the studied sessile species groups are infrequent and, when present, relatively weak in these highly stressful habitats, which supports current ecological theory on community organization. Full article
Show Figures

Figure 1

22 pages, 1784 KB  
Article
Machine Learning-Based Prediction of Heatwave-Related Hospitalizations: A Case Study in Matam, Senegal
by Mory Toure, Ibrahima Sy, Ibrahima Diouf, Ousmane Gueye, Endalkachew Bekele, Md Abul Ehsan Bhuiyan, Marie Jeanne Sambou, Papa Ngor Ndiaye, Wassila Mamadou Thiaw, Daouda Badiane, Aida Diongue-Niang, Amadou Thierno Gaye, Ousmane Ndiaye and Adama Faye
Int. J. Environ. Res. Public Health 2025, 22(9), 1349; https://doi.org/10.3390/ijerph22091349 - 28 Aug 2025
Viewed by 571
Abstract
This study assesses the impact of heatwaves on hospital admissions in the Matam region of Senegal by combining climatic indices with machine learning methods. Using daily maximum temperature (TMAX) and heat index (HI), heatwave events were identified from 2017 to 2022. Hospital data [...] Read more.
This study assesses the impact of heatwaves on hospital admissions in the Matam region of Senegal by combining climatic indices with machine learning methods. Using daily maximum temperature (TMAX) and heat index (HI), heatwave events were identified from 2017 to 2022. Hospital data from Ourossogui Regional Hospital were analyzed, and three predictive models, Random Forest (RF), Extreme Gradient Boosting (XGB), and Generalized Additive Models (GAMs), were compared. A bootstrapping approach with 1000 iterations was used to evaluate model robustness. The findings reveal a significant delayed effect of heatwaves, with increased hospitalizations occurring three to five days after the event. RF outperformed the other models with R2 values ranging from 0.51 to 0.72. These findings highlight the need to enhance heatwave monitoring and promote the integration of impact-based climate forecasting into health early warning systems, particularly to protect vulnerable groups such as the elderly, children, and outdoor workers. Full article
(This article belongs to the Special Issue Climate Change and Medical Responses)
Show Figures

Figure 1

26 pages, 57687 KB  
Article
Assessing the Available Landslide Susceptibility Map and Inventory for the Municipality of Rio de Janeiro, Brazil: Potentials and Challenges for Data-Driven Applications
by Pedro Henrique Muniz Lima, Luiz Carlos Teixeira Coelho, Guilherme Damasceno Raposo, Irving da Silva Badolato, Raquel Batista Medeiros da Fonseca, Sonia Maria Lima Silva and Jonatas Goulart Marinho Falcão
ISPRS Int. J. Geo-Inf. 2025, 14(9), 330; https://doi.org/10.3390/ijgi14090330 - 26 Aug 2025
Viewed by 677
Abstract
This study presents an initial evaluation of the heuristic landslide susceptibility map for the Municipality of Rio de Janeiro by comparing it with the official landslide inventory. The objective is to provide a first analysis of the accuracy of the current map (Reference [...] Read more.
This study presents an initial evaluation of the heuristic landslide susceptibility map for the Municipality of Rio de Janeiro by comparing it with the official landslide inventory. The objective is to provide a first analysis of the accuracy of the current map (Reference Map), which was developed using heuristic methods, in contrast with a basic predictive model based on Generalized Additive Models (GAMs). The study includes a critical review of the existing inventory and examines landslide records from 2010 to 2016, using georeferenced data provided by the GeoRio Foundation. Data from 2017 and 2018 are used for a preliminary test of the model. Rather than proposing a replacement, this study suggests that even simple data-driven models can offer useful insights into potential improvements in the reference susceptibility map. The results are exploratory and intended to inform future, more detailed analyses. While limited in scope, this work illustrates how quantitative approaches may complement existing methods in landslide prediction assessment. Full article
Show Figures

Figure 1

17 pages, 2613 KB  
Article
Synergistic Effects of Ambient PM2.5 and O3 with Natural Temperature Variability on Non-Accidental and Cardiovascular Mortality: A Historical Time Series Analysis in Urban Taiyuan, China
by Huan Zhou, Hong Geng, Jingjing Tian, Li Wu, Zhihong Zhang and Daizhou Zhang
Atmosphere 2025, 16(8), 971; https://doi.org/10.3390/atmos16080971 - 15 Aug 2025
Viewed by 332
Abstract
Climate change and air pollution are associated with a range of health outcomes, including cardiovascular and respiratory disease. Evaluation of the synergic effects of air pollution and increasing natural temperature on mortality is important for understanding their potential joint health effects. In this [...] Read more.
Climate change and air pollution are associated with a range of health outcomes, including cardiovascular and respiratory disease. Evaluation of the synergic effects of air pollution and increasing natural temperature on mortality is important for understanding their potential joint health effects. In this study, the modification effects of air temperature on the short-term association of ambient fine particulate matter (PM2.5) and ozone (O3) with non-accidental death (NAD) and cardiovascular disease (CVD) mortality were evaluated by using the generalized additive model (GAM) combined with the distributed lag nonlinear model (DLNM) in urban areas of Taiyuan, a representative of energy and heavy industrial cities in Northern China. The data on the daily cause-specific death numbers, air pollutants concentrations, and meteorological factors were collected from January 2013 to December 2019, and the temperature was divided into low (<25th percentile), medium (25–75th percentile), and high (>75th percentile) categories. Significant associations of PM2.5 and O3 with NAD and CVD mortality were observed in single-effect analysis. A statistically significant increase in the effect estimates of PM2.5 and O3 on NAD and CVD mortality was also observed on high-temperature days. But the associations of those were not statistically significant on medium- and low-temperature days. At the same temperature level, the effects of PM2.5 and O3 on the CVD mortality were larger than those on NAD (1.74% vs. 1.21%; 1.67% vs. 0.57%), and the elderly and males appeared to be more vulnerable to both higher temperatures and air pollution. The results suggest that the acute effect of PM2.5 and O3 on NAD and CVD mortality in urban Taiyuan was enhanced by increasing temperatures, particularly for the elderly and males. It highlights the importance of reducing PM2.5 and O3 exposure in urban areas to reduce the public health burden under the situation of global warming. Full article
Show Figures

Figure 1

18 pages, 4403 KB  
Article
Population Dynamics of Bigeye Grunt Brachydeuterus auritus (Valenciennes, 1831) in the Coastal Waters of Sierra Leone: A Near-Threatened Species on the IUCN Red List
by Guoqing Zhao, Chunlei Feng, Hewei Liu, Taichun Qu, Ruiliang Fan, Ivorymae C. R. Coker, Lahai Duramany Seisay, Hongliang Huang and Lingzhi Li
Biology 2025, 14(8), 1037; https://doi.org/10.3390/biology14081037 - 12 Aug 2025
Viewed by 325
Abstract
Bigeye grunt (Brachydeuterus auritus) is a dominant fish species and mostly a major target species in both artisanal and industrial fisheries in the coastal waters of Sierra Leone. It was listed as near threatened in 2015 by the International Union for [...] Read more.
Bigeye grunt (Brachydeuterus auritus) is a dominant fish species and mostly a major target species in both artisanal and industrial fisheries in the coastal waters of Sierra Leone. It was listed as near threatened in 2015 by the International Union for Conservation of Nature (IUCN) Red List. Although this species has been repeatedly assessed as overexploited by the Fishery Committee for the Eastern Central Atlantic (CECAF) in the majority of its range in the Eastern Central Atlantic, there have never been studies of stock assessment in the coastal waters of Sierra Leone. We conducted a study on the population dynamics of bigeye grunt in the coastal waters of Sierra Leone, which is crucial for completing the resource status of this species in the Eastern Central Atlantic. The results showed that the bigeye grunt had a wide distribution in the coastal waters of Sierra Leone, with significant spatiotemporal variation characteristics in biomass and abundance. The growth parameters of bigeye grunt varied across different months, but all E values were below 0.5, indicating that no overfishing occurred. These findings were further corroborated by the results of the Length-Based Bayesian Biomass Estimation method (LBB). The results of the Generalized Additive Model (GAM) show that there is a certain nonlinear relationship between the resource abundance of the bigeye grunt and both environmental factors and geographical locations, among which the influence of latitude is the greatest. This study posits that the bigeye grunt in Sierra Leone’s coastal waters exhibits moderate exploitation potential. The findings are anticipated to provide a scientific framework for informing evidence-based management strategies for this fishery resource. Full article
(This article belongs to the Section Conservation Biology and Biodiversity)
Show Figures

Figure 1

20 pages, 3623 KB  
Article
Research on the Main Influencing Factors and Variation Patterns of Basal Area Increment (BAI) of Pinus massoniana
by Zhuofan Li, Cancong Zhao, Jun Lu, Jianfeng Yao, Yanling Li, Mengli Zhou and Denglong Ha
Sustainability 2025, 17(15), 7137; https://doi.org/10.3390/su17157137 - 6 Aug 2025
Viewed by 323
Abstract
Understanding the environmental drivers of radial growth in the Pinus massoniana (lamb.) is essential for improving forest productivity and carbon sequestration in subtropical ecosystems. This study used the basal area increment (BAI) as an indicator of radial growth to investigate the main factors [...] Read more.
Understanding the environmental drivers of radial growth in the Pinus massoniana (lamb.) is essential for improving forest productivity and carbon sequestration in subtropical ecosystems. This study used the basal area increment (BAI) as an indicator of radial growth to investigate the main factors affecting the radial growth rate of P. massoniana and the changes in BAI with these factors. A total of 58 high quality tree ring series were analyzed. Six common methods were used to comprehensively analyze the importance of nine factor variables on the BAI, including tree age, competition index, average temperature, and so on. Generalized additive models (GAMs) were developed to explore the nonlinear relationships between each selected variable and the BAI. The results revealed the following: (1) Age and Competition Index was identified as the primary driving force; (2) BAI increased with Age when tree age was below 69 years; (3) from the overall trend, the BAI of P. massoniana decreased with the increase in the Competition Index. These findings provide a scientific basis for developing management plans for P. massoniana forests. Full article
Show Figures

Figure 1

12 pages, 1039 KB  
Article
Early Positive Fluid Balance Associates with Increased Mortality in Neurological Critically Ill Patients: A 10-Year Cohort Study
by Dae Yeon Kim, Sung-Jin Lee, Sook-Young Woo and Jeong-Am Ryu
J. Clin. Med. 2025, 14(15), 5518; https://doi.org/10.3390/jcm14155518 - 5 Aug 2025
Viewed by 423
Abstract
Background: Fluid management is a critical aspect of care for neurocritically ill patients, yet the optimal approach remains unclear. The relationship between fluid balance and clinical outcomes in these patients requires further investigation, particularly regarding the timing and volume of fluid administration. [...] Read more.
Background: Fluid management is a critical aspect of care for neurocritically ill patients, yet the optimal approach remains unclear. The relationship between fluid balance and clinical outcomes in these patients requires further investigation, particularly regarding the timing and volume of fluid administration. Methods: This retrospective observational study analyzed 2186 adult patients admitted to the neurosurgical intensive care unit (ICU) from January 2013 to December 2022. We employed a generalized additive model (GAM) with cubic spline smoothing to examine non-linear relationships between fluid balance and mortality. The maximally selected rank statistics method was used to determine the optimal cutoff value for fluid balance. Associations between fluid balance patterns and 28-day mortality were analyzed using a multivariable logistic regression model. Results: Initial analysis identified fluid balance on day 1 as the most significant predictor of mortality; patients with positive fluid balance showed a higher 28-day mortality. Non-survivors showed significantly higher fluid input throughout the 7-day observation period, particularly during the first 24 h (4444 mL vs. 3978 mL, p = 0.007). Multivariable analysis confirmed that fluid balance on day 1 remained independently associated with 28-day mortality after adjusting for confounders (adjusted odd ratio 1.705, 95% confidence interval: 1.001–2.905, p = 0.049). Additionally, the relationship between fluid input day 1 and mortality demonstrated a progressively increasing probability of 28-day mortality with higher fluid volumes. Early fluid balance, particularly during the first 24 h of ICU admission, shows a significant association with mortality in neurocritically ill patients. Conclusions: These findings emphasize the crucial importance of careful fluid management in the early phase of neurocritical care and suggest that implementation of strict fluid monitoring protocols, especially during the initial period of care, may improve patient outcomes. Full article
(This article belongs to the Section Brain Injury)
Show Figures

Figure 1

21 pages, 3013 KB  
Article
Determining Early Warning Thresholds to Detect Tree Mortality Risk in a Southeastern U.S. Bottomland Hardwood Wetland
by Maricar Aguilos, Jiayin Zhang, Miko Lorenzo Belgado, Ge Sun, Steve McNulty and John King
Forests 2025, 16(8), 1255; https://doi.org/10.3390/f16081255 - 1 Aug 2025
Viewed by 516
Abstract
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions [...] Read more.
Prolonged inundations are altering coastal forest ecosystems of the southeastern US, causing extensive tree die-offs and the development of ghost forests. This hydrological stressor also alters carbon fluxes, threatening the stability of coastal carbon sinks. This study was conducted to investigate the interactions between hydrological drivers and ecosystem responses by analyzing daily eddy covariance flux data from a wetland forest in North Carolina, USA, spanning 2009–2019. We analyzed temporal patterns of net ecosystem exchange (NEE), gross primary productivity (GPP), and ecosystem respiration (RE) under both flooded and non-flooded conditions and evaluated their relationships with observed tree mortality. Generalized Additive Modeling (GAM) revealed that groundwater table depth (GWT), leaf area index (LAI), NEE, and net radiation (Rn) were key predictors of mortality transitions (R2 = 0.98). Elevated GWT induces root anoxia; declining LAI reduces productivity; elevated NEE signals physiological breakdown; and higher Rn may amplify evapotranspiration stress. Receiver Operating Characteristic (ROC) analysis revealed critical early warning thresholds for tree mortality: GWT = 2.23 cm, LAI = 2.99, NEE = 1.27 g C m−2 d−1, and Rn = 167.54 W m−2. These values offer a basis for forecasting forest mortality risk and guiding early warning systems. Our findings highlight the dominant role of hydrological variability in ecosystem degradation and offer a threshold-based framework for early detection of mortality risks. This approach provides insights into managing coastal forest resilience amid accelerating sea level rise. Full article
(This article belongs to the Special Issue Water and Carbon Cycles and Their Coupling in Forest)
Show Figures

Figure 1

32 pages, 3694 KB  
Article
Decoding Urban Traffic Pollution: Insights on Trends, Patterns, and Meteorological Influences for Policy Action in Bucharest, Romania
by Cristiana Tudor, Alexandra Horobet, Robert Sova, Lucian Belascu and Alma Pentescu
Atmosphere 2025, 16(8), 916; https://doi.org/10.3390/atmos16080916 - 29 Jul 2025
Viewed by 760
Abstract
Traffic-related pollutants remain a challenging global issue, with significant policy implications. Within the European Union, Romania has the highest yearly societal cost per capita due to air pollution, which kills 29,000 Romanians every year, whereas the health and economic costs are also significant. [...] Read more.
Traffic-related pollutants remain a challenging global issue, with significant policy implications. Within the European Union, Romania has the highest yearly societal cost per capita due to air pollution, which kills 29,000 Romanians every year, whereas the health and economic costs are also significant. In this context, municipal authorities in the country, particularly in high-density areas, should place a strong focus on mitigating air pollution. In particular, the capital city, Bucharest, ranks among the most congested cities in the world while registering the highest pollution index in Romania, with traffic pollution responsible for two-thirds of its air pollution. Consequently, studies that assess and model pollution trends are paramount to inform local policy-making processes and assist pollution-mitigation efforts. In this paper, a generalized additive modeling (GAM) framework is employed to model hourly concentrations of nitrogen dioxide (NO2), i.e., a relevant traffic-pollution proxy, at a busy urban traffic location in central Bucharest, Romania. All models are developed on a wide, fine-granularity dataset spanning January 2017–December 2022 and include extensive meteorological covariates. Model robustness is assured by switching between the generalized additive model (GAM) framework and the generalized additive mixed model (GAMM) framework when the residual autoregressive process needs to be specifically acknowledged. Results indicate that trend GAMs explain a large amount of the hourly variation in traffic pollution. Furthermore, meteorological factors contribute to increasing the models’ explanation power, with wind direction, relative humidity, and the interaction between wind speed and the atmospheric pressure emerging as important mitigators for NO2 concentrations in Bucharest. The results of this study can be valuable in assisting local authorities to take proactive measures for traffic pollution control in the capital city of Romania. Full article
(This article belongs to the Special Issue Sources Influencing Air Pollution and Their Control)
Show Figures

Figure 1

23 pages, 3216 KB  
Article
Spatial Prediction and Environmental Response of Skipjack Tuna Resources from the Perspective of Geographic Similarity: A Case Study of Purse Seine Fisheries in the Western and Central Pacific
by Shuyang Feng, Xiaoming Yang, Menghao Li, Zhoujia Hua, Siquan Tian and Jiangfeng Zhu
J. Mar. Sci. Eng. 2025, 13(8), 1444; https://doi.org/10.3390/jmse13081444 - 29 Jul 2025
Viewed by 411
Abstract
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, [...] Read more.
Skipjack tuna constitutes a crucial fishery resource in the Western and Central Pacific Ocean (WCPO) purse seine fishery, with high economic value and exploitation potential. It also serves as an essential subject for studying the interaction between fishery resource dynamics and marine ecosystems, as its resource abundance is significantly influenced by marine environmental factors. Skipjack tuna can be categorized into unassociated schools and associated schools, with the latter being predominant. Overfishing of the associated schools can adversely affect population health and the ecological environment. In-depth exploration of the spatial distribution responses of these two fish schools to environmental variables is significant for the rational development and utilization of tuna resources and for enhancing the sustainability of fishery resources. In sparsely sampled and complex marine environments, geographic similarity methods effectively predict tuna resources by quantifying local fishing ground environmental similarities. This study introduces geographical similarity theory. This study focused on 1° × 1° fishery data (2004–2021) released by the Western and Central Pacific Fisheries Commission (WCPFC) combined with relevant marine environmental data. We employed Geographical Convergent Cross Mapping (GCCM) to explore significant environmental factors influencing catch and variations in causal intensity and employed a Geographically Optimal Similarity (GOS) model to predict the spatial distribution of catch for the two types of tuna schools. The research findings indicate that the following: (1) Sea surface temperature (SST), sea surface salinity (SSS), and net primary productivity (NPP) are key factors in GCCM model analysis, significantly influencing the catch of two fish schools. (2) The GOS model exhibits higher prediction accuracy and stability compared to the Generalized Additive Model (GAM) and the Basic Configuration Similarity (BCS) model. R2 values reaching 0.656 and 0.649 for the two types of schools, respectively, suggest that the geographical similarity method has certain applicability and application potential in the spatial prediction of fishery resources. (3) Uncertainty analysis revealed more stable predictions for unassociated schools, with 72.65% of the results falling within the low-uncertainty range (0.00–0.25), compared to 52.65% for associated schools. This study, based on geographical similarity theory, elucidates differential spatial responses of distinct schools to environmental factors and provides a novel approach for fishing ground prediction. It also provides a scientific basis for the dynamic assessment and rational exploitation and utilization of skipjack tuna resources in the Pacific Ocean. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

23 pages, 30904 KB  
Article
How Do Invasive Species Influence Biotic and Abiotic Factors Drive Vegetation Success in Salt Marsh Ecosystems?
by Yong Zhou, Chunqi Qiu, Hongyu Liu, Yufeng Li, Cheng Wang, Gang Wang, Mengyuan Su and Chen He
Land 2025, 14(8), 1523; https://doi.org/10.3390/land14081523 - 24 Jul 2025
Viewed by 347
Abstract
Vegetation succession is a critical indicator of ecosystem structure and function and is often disrupted by the expansion of invasive species. However, ecosystem-scale studies elucidating invasion-driven succession mechanisms remain limited. This research focused on the Yancheng coastal salt marsh and analyzed the distribution [...] Read more.
Vegetation succession is a critical indicator of ecosystem structure and function and is often disrupted by the expansion of invasive species. However, ecosystem-scale studies elucidating invasion-driven succession mechanisms remain limited. This research focused on the Yancheng coastal salt marsh and analyzed the distribution variation of invasive species (Spartina alterniflora) and native species (Suaeda salsa and Phragmites australis) from 1987 to 2022 via the Google Earth Engine and random forest method. Logistic/Gaussian models were used to quantify land–sea distribution changes and vegetation succession trajectories. By integrating data on soil salinity, invasion duration, and fractional vegetation cover, generalized additive models (GAMs) were applied to identify the main factors influencing vegetation succession and to explore how Spartina alterniflora invasion affects the succession of salt marsh vegetation. The results indicated that the areas of Spartina alterniflora and Phragmites australis significantly increased by 3787.49 ha and 3452.60 ha in 35 years, respectively, contrasting with Suaeda salsa’s 82.46% decline. The FVC in the area has significantly increased by 42.10%, especially in the coexisted areas of different vegetation communities, indicating intensified interspecific competition. The overall trend of soil salinity was decreasing, with a decrease in soil salinity in native species areas from 0.72% to 0.37%. From the results of GAMs, soil salinity, tidal action, and invasion duration were significant factors influencing the distribution of native species, but salinity was not a significant factor affecting the Spartina alterniflora distribution. The findings revealed that the expansion of Spartina alterniflora changed the soil salinity and interspecific interactions, thereby altering the original plant community structure and establishing a new vegetation succession. This study enhances the understanding of the impacts of invasive species on ecosystems and offers theoretical support for salt marsh restoration. Full article
Show Figures

Figure 1

9 pages, 1701 KB  
Proceeding Paper
Phenological Evaluation in Ravine Forests Through Remote Sensing and Topographic Analysis: Case of Los Nogales Nature Sanctuary, Metropolitan Region of Chile
by Jesica Garrido-Leiva, Leonardo Durán-Gárate, Dylan Craven and Waldo Pérez-Martínez
Eng. Proc. 2025, 94(1), 9; https://doi.org/10.3390/engproc2025094009 - 22 Jul 2025
Viewed by 304
Abstract
Ravine forests are key to conserving biodiversity and maintaining ecosystem processes in fragmented landscapes. Here, we evaluated the phenology of plant species in the Los Nogales Nature Sanctuary (Lo Barnechea, Chile) using Sentinel-2 images (2019–2024) and the Alos Palsar DEM (12.5 m). We [...] Read more.
Ravine forests are key to conserving biodiversity and maintaining ecosystem processes in fragmented landscapes. Here, we evaluated the phenology of plant species in the Los Nogales Nature Sanctuary (Lo Barnechea, Chile) using Sentinel-2 images (2019–2024) and the Alos Palsar DEM (12.5 m). We calculated the Normalized Difference Vegetation Index (NDVI), the Topographic Position Index (TPI), and Diurnal Anisotropic Heat (DAH) to assess vegetation dynamics across different topographic and thermal gradients. Generalized Additive Models (GAM) revealed that tree species exhibited more stable, regular seasonal NDVI trajectories, while shrubs showed moderate fluctuations, and herbaceous species displayed high interannual variability, likely reflecting sensitivity to climatic events. Spatial analysis indicated that trees predominated on steep slopes and higher elevations, herbs were concentrated in low-lying, moisture-retaining areas, and shrubs were more common in areas with higher thermal load. These findings highlight the significant role of terrain and temperature in shaping plant phenology and distribution, underscoring the utility of remote sensing and topographic indices for monitoring ecological processes in complex mountainous environments. Full article
Show Figures

Figure 1

18 pages, 2311 KB  
Article
A Rapid Method for Identifying Plant Oxidative Stress and Implications for Riparian Vegetation Management
by Mizanur Rahman, Takashi Asaeda, Kiyotaka Fukahori, Md Harun Rashid, Hideo Kawashima, Junichi Akimoto and Refah Tabassoom Anta
Environments 2025, 12(7), 247; https://doi.org/10.3390/environments12070247 - 17 Jul 2025
Viewed by 702
Abstract
Native and invasive plants of the riverain region undergo a range of environmental stresses that result in excess reactive oxygen species (ROS). Hydrogen peroxide (H2O2) is a relatively stable and quickly quantifiable way among different ROS. The herbaceous species [...] Read more.
Native and invasive plants of the riverain region undergo a range of environmental stresses that result in excess reactive oxygen species (ROS). Hydrogen peroxide (H2O2) is a relatively stable and quickly quantifiable way among different ROS. The herbaceous species including Artemisia princeps, Sicyos angulatus, and Solidago altissima were selected. The H2O2 and photosynthetic pigment of leaves were measured, soil samples were analyzed to quantify macronutrients such as total nitrogen (TN), total phosphorus (TP), and soil moisture, and photosynthetic photon flux density (PPFD) was also recorded at different observed sites of Arakawa Tarouemon, Japan. The H2O2 concentration of S. altissima significantly increased with high soil moisture content, whereas A. Princeps and S. angulatus significantly decreased with high soil moisture. In each species, H2O2 was negatively correlated with chlorophyll a (chl a) and chlorophyll b (chl a). When comparing different parameters involving TN, TP, PPFD, and soil moisture content with H2O2 utilizing the general additive model (GAM), only soil moisture content is significantly correlated with H2O2. Hence, this study suggests that H2O2 would be an effective biomarker for quantifying environmental stress within a short time, which can be applied for riparian native and invasive plant species vegetation regulation. Full article
Show Figures

Figure 1

20 pages, 2707 KB  
Article
Quantifying Multifactorial Drivers of Groundwater–Climate Interactions in an Arid Basin Based on Remote Sensing Data
by Zheng Lu, Chunying Shen, Cun Zhan, Honglei Tang, Chenhao Luo, Shasha Meng, Yongkai An, Heng Wang and Xiaokang Kou
Remote Sens. 2025, 17(14), 2472; https://doi.org/10.3390/rs17142472 - 16 Jul 2025
Viewed by 585
Abstract
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a [...] Read more.
Groundwater systems are intrinsically linked to climate, with changing conditions significantly altering recharge, storage, and discharge processes, thereby impacting water availability and ecosystem integrity. Critical knowledge gaps persist regarding groundwater equilibrium timescales, water table dynamics, and their governing factors. This study develops a novel remote sensing framework to quantify factor controls on groundwater–climate interaction characteristics in the Heihe River Basin (HRB). High-resolution (0.005° × 0.005°) maps of groundwater response time (GRT) and water table ratio (WTR) were generated using multi-source geospatial data. Employing Geographical Convergent Cross Mapping (GCCM), we established causal relationships between GRT/WTR and their drivers, identifying key influences on groundwater dynamics. Generalized Additive Models (GAM) further quantified the relative contributions of climatic (precipitation, temperature), topographic (DEM, TWI), geologic (hydraulic conductivity, porosity, vadose zone thickness), and vegetative (NDVI, root depth, soil water) factors to GRT/WTR variability. Results indicate an average GRT of ~6.5 × 108 years, with 7.36% of HRB exhibiting sub-century response times and 85.23% exceeding 1000 years. Recharge control dominates shrublands, wetlands, and croplands (WTR < 1), while topography control prevails in forests and barelands (WTR > 1). Key factors collectively explain 86.7% (GRT) and 75.9% (WTR) of observed variance, with spatial GRT variability driven primarily by hydraulic conductivity (34.3%), vadose zone thickness (13.5%), and precipitation (10.8%), while WTR variation is controlled by vadose zone thickness (19.2%), topographic wetness index (16.0%), and temperature (9.6%). These findings provide a scientifically rigorous basis for prioritizing groundwater conservation zones and designing climate-resilient water management policies in arid endorheic basins, with our high-resolution causal attribution framework offering transferable methodologies for global groundwater vulnerability assessments. Full article
(This article belongs to the Special Issue Remote Sensing for Groundwater Hydrology)
Show Figures

Figure 1

29 pages, 19566 KB  
Article
Estimating Urban Linear Heat (UHIULI) Effect Along Road Typologies Using Spatial Analysis and GAM Approach
by Elahe Mirabi, Michael Chang, Georgy Sofronov and Peter Davies
Atmosphere 2025, 16(7), 864; https://doi.org/10.3390/atmos16070864 - 15 Jul 2025
Viewed by 357
Abstract
The urban heat island (UHI) effect significantly impacts urban environments, particularly along roads, a phenomenon known as urban linear heat (UHIULI). Numerous factors contribute to roads influencing the UHIULI; however, effective mitigation strategies remain a challenge. This study examines [...] Read more.
The urban heat island (UHI) effect significantly impacts urban environments, particularly along roads, a phenomenon known as urban linear heat (UHIULI). Numerous factors contribute to roads influencing the UHIULI; however, effective mitigation strategies remain a challenge. This study examines the relationship between canopy cover percentage, normalized difference vegetation index, land use types, and three road typologies (local, regional, and state) with land surface temperature. This study is based on data from the city of Adelaide, Australia, using spatial analysis, and statistical modelling. The results reveal strong negative correlations between land surface temperature and both canopy cover percentage and normalized difference vegetation index. Additionally, land surface temperature tends to increase with road width. Among land use types, land surface temperature varies from highest to lowest in the order of parkland, industrial, residential, educational, medical, and commercial areas. Notably, the combined influence of the road typology and land use produces varying effects on land surface temperature. Canopy cover percentage and normalized difference vegetation index consistently serve as dominant cooling factors. The results highlight a complex interplay between built and natural environments, emphasizing the need for multi-factor analyses and a framework based on the local climate and the type of roads (local, regional, and state) to effectively evaluate UHIULI mitigation approaches. Full article
Show Figures

Figure 1

Back to TopTop