Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (17,396)

Search Parameters:
Keywords = generation stability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1026 KB  
Article
Flexible, Stretchable, and Self-Healing MXene-Based Conductive Hydrogels for Human Health Monitoring
by Ruirui Li, Sijia Chang, Jiaheng Bi, Haotian Guo, Jianya Yi and Chengqun Chu
Polymers 2025, 17(19), 2683; https://doi.org/10.3390/polym17192683 - 3 Oct 2025
Abstract
Conductive hydrogels (CHs) have attracted significant attention in the fields of flexible electronics, human–machine interaction, and electronic skin (e-skin) due to their self-adhesiveness, environmental stability, and multi-stimuli responsiveness. However, integrating these diverse functionalities into a single conductive hydrogel system remains a challenge. In [...] Read more.
Conductive hydrogels (CHs) have attracted significant attention in the fields of flexible electronics, human–machine interaction, and electronic skin (e-skin) due to their self-adhesiveness, environmental stability, and multi-stimuli responsiveness. However, integrating these diverse functionalities into a single conductive hydrogel system remains a challenge. In this study, polyvinyl alcohol (PVA) and polyacrylamide (PAM) were used as the dual-network matrix, lithium chloride and MXene were added, and a simple immersion strategy was adopted to synthesize a multifunctional MXene-based conductive hydrogel in a glycerol/water (1:1) binary solvent system. A subsequent investigation was then conducted on the hydrogel. The prepared PVA/PAM/LiCl/MXene hydrogel exhibits excellent tensile properties (~1700%), high electrical conductivity (1.6 S/m), and good self-healing ability. Furthermore, it possesses multimodal sensing performance, including humidity sensitivity (sensitivity of −1.09/% RH), temperature responsiveness (heating sensitivity of 2.2 and cooling sensitivity of 1.5), and fast pressure response/recovery times (220 ms/230 ms). In addition, the hydrogel has successfully achieved real-time monitoring of human joint movements (elbow and knee bending) and physiological signals (pulse, breathing), as well as enabled monitoring of spatial pressure distribution via a 3 × 3 sensor array. The performance and versatility of this hydrogel make it a promising candidate for next-generation flexible sensors, which can be applied in the fields of human health monitoring, electronic skin, and human–machine interaction. Full article
(This article belongs to the Special Issue Semiflexible Polymers, 3rd Edition)
22 pages, 13067 KB  
Article
Numerical Modeling of Photovoltaic Cells with the Meshless Global Radial Basis Function Collocation Method
by Murat Ispir and Tayfun Tanbay
Energies 2025, 18(19), 5267; https://doi.org/10.3390/en18195267 - 3 Oct 2025
Abstract
Accurate prediction of photovoltaic performance hinges on resolving the electron density in the P-region and the hole density in the N-region. Motivated by this need, we present a comprehensive assessment of a meshless global radial basis function (RBF) collocation strategy for the steady [...] Read more.
Accurate prediction of photovoltaic performance hinges on resolving the electron density in the P-region and the hole density in the N-region. Motivated by this need, we present a comprehensive assessment of a meshless global radial basis function (RBF) collocation strategy for the steady current continuity equation, covering a one-dimensional two-region P–N junction and a two-dimensional single-region problem. The study employs Gaussian (GA) and generalized multiquadric (GMQ) bases, systematically varying shape parameter and node density, and presents a detailed performance analysis of the meshless method. Results map the accuracy–stability–computation-time landscape: GA achieves faster convergence but over a narrower stability window, whereas GMQ exhibits greater robustness to shape-parameter variation. We identify stability plateaus that preserve accuracy without severe ill-conditioning and quantify the runtime growth inherent to dense global collocation. A utopia-point multi-objective optimization balances error and computation time to yield practical node-count guidance; for the two-dimensional case with equal weighting, an optimum of 19 intervals per side emerges, largely insensitive to the RBF choice. Collectively, the results establish global RBF collocation as a meshless, accurate, and systematically optimizable alternative to conventional mesh-based solvers for high-fidelity carrier-density prediction in P-N junctions, thereby enabling more reliable performance analysis and design of photovoltaic devices. Full article
Show Figures

Figure 1

26 pages, 2586 KB  
Article
Equilibrium Dynamics in the CR3BP with Radiating Primary and Oblate Secondary Using the Rotating Mass Dipole Model
by Angela E. Perdiou, Aguda Ekele Vincent, Jagadish Singh and Vassilis S. Kalantonis
Mathematics 2025, 13(19), 3179; https://doi.org/10.3390/math13193179 - 3 Oct 2025
Abstract
In this study, we numerically investigate the equilibrium dynamics of a rotating system consisting of two masses connected by a massless rod within the framework of the circular restricted three-body problem. The larger primary is modeled as a radiating body and the smaller [...] Read more.
In this study, we numerically investigate the equilibrium dynamics of a rotating system consisting of two masses connected by a massless rod within the framework of the circular restricted three-body problem. The larger primary is modeled as a radiating body and the smaller as an oblate spheroid. We explore the influence of the involved parameters, i.e., mass ratio (μ), force ratio (k), radiation pressure factor (q1), and oblateness coefficient (A2), on the number, positions, and linear stability of equilibrium points. Zero velocity curves are presented in the equatorial plane for varying values of the Jacobi constant. Up to five equilibrium points are identified of which three are collinear (L1, L2, L3) and two are non-collinear (L4, L5). The positions of all equilibria shift under variations in the perturbing parameters. While the collinear points are generally unstable, L1 can exhibit stability for certain combinations of μ, k, and q1. The non-collinear points may also be stable under specific conditions with stability zones expanding with increased parameter values. The model is applied to the irregular, elongated asteroid 951 Gaspra, for which five equilibrium points are found. Despite positional dependence on oblateness and radiation, the perturbations do not significantly affect the equilibrium points’ stability and the motion near them remains linearly unstable. The Lyapunov families of periodic orbits emanating from the collinear equilibria of this particular system are also investigated. Full article
(This article belongs to the Section C2: Dynamical Systems)
Show Figures

Figure 1

19 pages, 2329 KB  
Article
Vortex Crystal Stabilized by the Competition Between Multi-Spin and Out-of-Plane Dzyaloshinskii–Moriya Interactions
by Satoru Hayami
Crystals 2025, 15(10), 868; https://doi.org/10.3390/cryst15100868 - 3 Oct 2025
Abstract
Multiple-Q magnetic states encompass a broad class of noncollinear and noncoplanar spin textures generated by the superposition of spin density waves. In this study, we theoretically explore the emergence of vortex crystals formed by multiple-Q spin density waves on a two-dimensional [...] Read more.
Multiple-Q magnetic states encompass a broad class of noncollinear and noncoplanar spin textures generated by the superposition of spin density waves. In this study, we theoretically explore the emergence of vortex crystals formed by multiple-Q spin density waves on a two-dimensional triangular lattice with D3h point group symmetry. Using simulated annealing applied to an effective spin model, we demonstrate that the synergy among the easy-plane single-ion anisotropy, the biquadratic interaction, and the out-of-plane Dzyaloshinsky–Moriya interaction defined in momentum space can give rise to a variety of double-Q and triple-Q vortex crystals. We further examine the role of easy-plane single-ion anisotropy in triple-Q vortex crystals and show that weakening the anisotropy drives topological transitions into skyrmion crystals with skyrmion numbers ±1 and ±2. The influence of an external magnetic field is also analyzed, revealing a field-induced phase transition from vortex crystals to single-Q conical spirals. These findings highlight the crucial role of out-of-plane Dzyaloshinskii–Moriya interactions in stabilizing unconventional vortex crystals, which cannot be realized in systems with purely polar or chiral symmetries. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

31 pages, 9679 KB  
Article
Weather-Corrupted Image Enhancement with Removal-Raindrop Diffusion and Mutual Image Translation Modules
by Young-Ho Go and Sung-Hak Lee
Mathematics 2025, 13(19), 3176; https://doi.org/10.3390/math13193176 - 3 Oct 2025
Abstract
Artificial intelligence-based image processing is critical for sensor fusion and image transformation in mobility systems. Advanced driver assistance functions such as forward monitoring and digital side mirrors are essential for driving safety. Degradation due to raindrops, fog, and high-dynamic range (HDR) imbalance caused [...] Read more.
Artificial intelligence-based image processing is critical for sensor fusion and image transformation in mobility systems. Advanced driver assistance functions such as forward monitoring and digital side mirrors are essential for driving safety. Degradation due to raindrops, fog, and high-dynamic range (HDR) imbalance caused by lighting changes impairs visibility and reduces object recognition and distance estimation accuracy. This paper proposes a diffusion framework to enhance visibility under multi-degradation conditions. The denoising diffusion probabilistic model (DDPM) offers more stable training and high-resolution restoration than the generative adversarial networks. The DDPM relies on large-scale paired datasets, which are difficult to obtain in raindrop scenarios. This framework applies the Palette diffusion model, comprising data augmentation and raindrop-removal modules. The data augmentation module generates raindrop image masks and learns inpainting-based raindrop synthesis. Synthetic masks simulate raindrop patterns and HDR imbalance scenarios. The raindrop-removal module reconfigures the Palette architecture for image-to-image translation, incorporating the augmented synthetic dataset for raindrop removal learning. Loss functions and normalization strategies improve restoration stability and removal performance. During inference, the framework operates with a single conditional input, and an efficient sampling strategy is introduced to significantly accelerate the process. In post-processing, tone adjustment and chroma compensation enhance visual consistency. The proposed method preserves fine structural details and outperforms existing approaches in visual quality, improving the robustness of vision systems under adverse conditions. Full article
(This article belongs to the Special Issue Deep Learning in Image Processing and Scientific Computing)
Show Figures

Figure 1

30 pages, 3358 KB  
Review
Exhaled Aldehydes and Ketones as Biomarkers of Lung Cancer and Diabetes: Review of Sensor Technologies for Early Disease Diagnosis
by Rafał Kiejzik, Tomasz Wasilewski and Wojciech Kamysz
Biosensors 2025, 15(10), 668; https://doi.org/10.3390/bios15100668 - 3 Oct 2025
Abstract
Exhaled breath (EB) contains numerous volatile organic compounds (VOCs) that can reflect pathological metabolic processes, making breath analysis a promising non-invasive diagnostic approach. In particular, volatile aldehydes and ketones have been identified as disease biomarkers in EB. Gas sensors are expected to play [...] Read more.
Exhaled breath (EB) contains numerous volatile organic compounds (VOCs) that can reflect pathological metabolic processes, making breath analysis a promising non-invasive diagnostic approach. In particular, volatile aldehydes and ketones have been identified as disease biomarkers in EB. Gas sensors are expected to play a crucial role in the diagnosis of numerous diseases at an early stage. Among the various available approaches, sensors stand out as especially attractive tools for diagnosing diseases such as lung cancer (LC) and diabetes, due to their affordability and operational simplicity. There is an urgent need in the field of disease detection for the development of affordable, non-invasive, and user-friendly sensors capable of detecting various biomarkers. Devices of the new generation should also demonstrate high repeatability of measurements and extended operational stability of the employed sensors. Due to these demands, the past few years have seen significant advancements in the development and implementation of electronic noses (ENs), which are composed of an array of sensors for the determination of VOCs present in EB. To meet these requirements, the development and integration of advanced receptor coatings on sensor transducers is essential. These coatings include nanostructured materials, molecularly imprinted polymers, and bioreceptors, which collectively enhance selectivity, sensitivity, and operational stability. However, reliable biomarker detection in point-of-care (PoC) mode remains a significant challenge, constrained by several factors. This review provides a comprehensive and critical evaluation of recent studies demonstrating that the detection of VOCs using gas sensor platforms enables disease detection and can be implemented in PoC mode. Full article
(This article belongs to the Special Issue Functional Materials for Biosensing Applications)
31 pages, 5301 KB  
Article
Comprehensive Computational Study of a Novel Chromene-Trione Derivative Bioagent: Integrated Molecular Docking, Dynamics, Topology, and Quantum Chemical Analysis
by P. Sivaprakash, A. Viji, S. Krishnaveni, K. M. Kavya, Deokwoo Lee and Ikhyun Kim
Int. J. Mol. Sci. 2025, 26(19), 9661; https://doi.org/10.3390/ijms26199661 - 3 Oct 2025
Abstract
This work thoroughly investigated the compound 4-(2,5-Dimethoxyphenyl)-3,4-dihydrobenzo[g]chromene-2,5,10-trione (DMDCT) using molecular docking, quantum chemical analysis, and vibrational spectroscopy methodology. The medicinal chemistry group has been particularly interested in chromene and benzochromene derivatives due to their wide range of pharmacological actions, including anticancer, antibacterial, anti-inflammatory, [...] Read more.
This work thoroughly investigated the compound 4-(2,5-Dimethoxyphenyl)-3,4-dihydrobenzo[g]chromene-2,5,10-trione (DMDCT) using molecular docking, quantum chemical analysis, and vibrational spectroscopy methodology. The medicinal chemistry group has been particularly interested in chromene and benzochromene derivatives due to their wide range of pharmacological actions, including anticancer, antibacterial, anti-inflammatory, antioxidant, antiviral, and neuroprotective capabilities. In this connection, DMDCT has been explored to evaluate its biological, electrical, and structural properties. DFT using the B3LYP functional and 6–31G basis was established to conduct theoretical computations with the Gaussian 09 program. The findings from these computations provide insight into the following topics: NBO interactions, optimal molecular geometry, Mulliken charge distribution, frontier molecular orbitals, and MEP. Second-order perturbation theory has been used to assess stabilization energies arising from donor–acceptor interactions. Furthermore, general features such as chemical hardness, softness, and electronegativity were studied. The results suggest that DMDCT has stable electronic configurations and biologically relevant active sites. This integrated experimental and theoretical study supports the potential of DMDCT as a practical scaffold for future therapeutic applications and contributes valuable information regarding its vibrational and electronic behavior. Full article
Show Figures

Graphical abstract

28 pages, 11514 KB  
Article
Effects of Carbon–Magnesium Reactions on the Physical and Mechanical Properties of Lightweight Carbonated Stabilized Soil
by Li Shao, Wangcheng Yu, Qinglong You, Suran Wang, Xi Du, Bin He, Shichao Tao, Honghui Ding and Chao Bao
Buildings 2025, 15(19), 3571; https://doi.org/10.3390/buildings15193571 - 3 Oct 2025
Abstract
Global urbanization has led to massive generation of high-water-content waste slurry, creating serious environmental challenges. Conventional treatment methods are costly and unsustainable, while cement-based foamed lightweight soils typically exhibit low strength and limited CO2 sequestration. To address this issue, this study proposes [...] Read more.
Global urbanization has led to massive generation of high-water-content waste slurry, creating serious environmental challenges. Conventional treatment methods are costly and unsustainable, while cement-based foamed lightweight soils typically exhibit low strength and limited CO2 sequestration. To address this issue, this study proposes a novel stabilization pathway by integrating a MgO–mineral powder–carbide slag composite binder with CO2 foaming–carbonation. The approach enables simultaneous slurry lightweighting, strength enhancement, and CO2 fixation. A series of laboratory tests were conducted to evaluate flowability, density, compressive strength, and deformation characteristics of the carbonated lightweight stabilized slurry. Microstructural analyses, including SEM and XRD, were used to reveal the formation of carbonate phases and pore structures. The results showed that MgO content strongly promoted carbonation, leading to denser microstructures and higher strength, while mineral powder and carbide slag optimized workability and pore stability. Orthogonal testing indicated that a mix with 25% mineral powder, 12.5% MgO, and 7.5% carbide slag achieved the best performance, with unconfined compressive strength up to 0.48 MPa after carbonation. Compared with conventional cement- or GGBS-based foamed lightweight soils, the proposed system exhibits superior strength development, improved pore stability, and enhanced CO2 sequestration potential. These findings demonstrate the feasibility of recycling high-water-content waste slurry into value-added construction materials while contributing to carbon reduction targets. This study not only provides a sustainable solution for waste slurry management but also offers new insights into the integration of CO2 mineralization into geotechnical engineering practice. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

32 pages, 4829 KB  
Article
Dynamic Energy-Aware Anchor Optimization for Contact-Based Indoor Localization in MANETs
by Manuel Jesús-Azabal, Meichun Zheng and Vasco N. G. J. Soares
Information 2025, 16(10), 855; https://doi.org/10.3390/info16100855 - 3 Oct 2025
Abstract
Indoor positioning remains a recurrent and significant challenge in research. Unlike outdoor environments, where the Global Positioning System (GPS) provides reliable location information, indoor scenarios lack direct line-of-sight to satellites or cellular towers, rendering GPS inoperative and requiring alternative positioning techniques. Despite numerous [...] Read more.
Indoor positioning remains a recurrent and significant challenge in research. Unlike outdoor environments, where the Global Positioning System (GPS) provides reliable location information, indoor scenarios lack direct line-of-sight to satellites or cellular towers, rendering GPS inoperative and requiring alternative positioning techniques. Despite numerous approaches, indoor contexts with resource limitations, energy constraints, or physical restrictions continue to suffer from unreliable localization. Many existing methods employ a fixed number of reference anchors, which sets a hard balance between localization accuracy and energy consumption, forcing designers to choose between precise location data and battery life. As a response to this challenge, this paper proposes an energy-aware indoor positioning strategy based on Mobile Ad Hoc Networks (MANETs). The core principle is a self-adaptive control loop that continuously monitors the network’s positioning accuracy. Based on this real-time feedback, the system dynamically adjusts the number of active anchors, increasing them only when accuracy degrades and reducing them to save energy once stability is achieved. The method dynamically estimates relative coordinates by analyzing node encounters and contact durations, from which relative distances are inferred. Generalized Multidimensional Scaling (GMDS) is applied to construct a relative spatial map of the network, which is then transformed into absolute coordinates using reference nodes, known as anchors. The proposal is evaluated in a realistic simulated indoor MANET, assessing positioning accuracy, adaptation dynamics, anchor sensitivity, and energy usage. Results show that the adaptive mechanism achieves higher accuracy than fixed-anchor configurations in most cases, while significantly reducing the average number of required anchors and their associated energy footprint. This makes it suitable for infrastructure-poor, resource-constrained indoor environments where both accuracy and energy efficiency are critical. Full article
19 pages, 33670 KB  
Article
Thermal Performance Analysis of Borehole Heat Exchangers Refilled with the Use of High-Permeable Backfills in Low-Permeable Rock Formations
by Yuxin Liu, Bing Cao, Yuchen Xiong and Jin Luo
Sustainability 2025, 17(19), 8851; https://doi.org/10.3390/su17198851 - 3 Oct 2025
Abstract
It is well known that the operation of a Borehole Heat Exchanger (BHE) can thermally induce groundwater convection in aquifers, enhancing the thermal performance of the BHE. However, the effect on the thermal performance of BHEs installed in low-permeable rock formations remains unclear. [...] Read more.
It is well known that the operation of a Borehole Heat Exchanger (BHE) can thermally induce groundwater convection in aquifers, enhancing the thermal performance of the BHE. However, the effect on the thermal performance of BHEs installed in low-permeable rock formations remains unclear. In this study, two BHEs were installed in a silty sandstone formation, one backfilled with high-permeable materials and the other grouted with sand–bentonite slurry. A Thermal Response Test (TRT) showed that the fluid outlet temperature of the high-permeable-material backfilled BHE was about 2.5 °C lower than that of the BHE refilled with sand–bentonite slurry, implying a higher thermal efficiency. The interpreted borehole thermal parameters also show a lower borehole thermal resistance in the high-permeable-material backfilled BHE. Physical model tests reveal that groundwater convective flow was induced in the high-permeable-material backfilled BHE. A test of BHEs with different borehole diameters shows that the larger the borehole diameter, the higher the thermal efficiency is. Thus, the thermal performance enhancement was attributed to two factors. First, the induced groundwater flow accelerates heat transfer by convection. Additionally, the increment of the thermal volumetric capacity of the groundwater stored inside a high-permeable-material refilled borehole stabilized the borehole’s temperature, which is key to sustaining high thermal efficiency in a BHE. The thermal performance enhancement demonstrated here shows potential for reducing reliance on fossil-fuel-based energy resources in challenging geological settings, thereby contributing to developing more sustainable geothermal energy solutions. Further validation in diverse field conditions is recommended to generalize these findings. Full article
(This article belongs to the Section Sustainable Engineering and Science)
Show Figures

Figure 1

29 pages, 5300 KB  
Article
Piecewise Sliding-Mode-Enhanced ADRC for Robust Active Disturbance Rejection Control Against Internal and Measurement Noise
by Shengze Yang, Junfeng Ma, Dayi Zhao, Chenxiao Li and Liyong Fang
Sensors 2025, 25(19), 6109; https://doi.org/10.3390/s25196109 - 3 Oct 2025
Abstract
To address the challenges of insufficient response speed and robustness in optical attitude control systems under highly dynamic disturbances and internal uncertainties, a composite control strategy is proposed in this study. By integrating the proposed piecewise sliding control (P-SMC) with the improved active [...] Read more.
To address the challenges of insufficient response speed and robustness in optical attitude control systems under highly dynamic disturbances and internal uncertainties, a composite control strategy is proposed in this study. By integrating the proposed piecewise sliding control (P-SMC) with the improved active disturbance rejection control (ADRC), this strategy achieves complementary performance, which can not only suppress the disturbance but also converge to a bounded region fast. Under highly dynamic disturbances, the improved extended state observer (ESO) based on the EKF achieves rapid response with amplified state observations, and the Nonlinear State Error Feedback (NLSEF) generates a compensation signal to actively reject disturbances. Simultaneously, the robust sliding mode control (SMC) suppresses the effects of system nonlinearity and uncertainty. To address chattering and overshoot of the conventional SMC, this study proposes a novel P-SMC law which applies distinct reaching functions across different error bands. Furthermore, the key parameters of the composite scheme are globally optimized using the particle swarm optimization (PSO) algorithm to achieve Pareto-optimal trade-offs between tracking accuracy and disturbance rejection robustness. Finally, MATLAB simulation experiments validate the effectiveness of the proposed strategy under diverse representative disturbances. The results demonstrate improved performance in terms of response speed, overshoot, settling time and control input signals smoothness compared to conventional control algorithms (ADRC, C-ADRC, T-SMC-ADRC). The proposed strategy enhances the stability and robustness of optical attitude control system against internal uncertainties of system and sensor measurement noise. It achieves bounded-error steady-state tracking against random multi-source disturbances while preserving high real-time responsiveness and efficiency. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

19 pages, 2759 KB  
Article
Lanthanum-Doped Co3O4 Nanocubes Synthesized via Hydrothermal Method for High-Performance Supercapacitors
by Boddu Haritha, Mudda Deepak, Merum Dhananjaya, Obili M. Hussain and Christian M. Julien
Nanomaterials 2025, 15(19), 1515; https://doi.org/10.3390/nano15191515 - 3 Oct 2025
Abstract
The development of high-performance supercapacitor electrodes is crucial to meet the increasing demand for efficient and sustainable energy storage systems. Cobalt oxide (Co3O4), with its high theoretical capacitance, is a promising electrode material, but its practical application is hindered [...] Read more.
The development of high-performance supercapacitor electrodes is crucial to meet the increasing demand for efficient and sustainable energy storage systems. Cobalt oxide (Co3O4), with its high theoretical capacitance, is a promising electrode material, but its practical application is hindered by poor conductivity limitations and structural instability during cycling. In this work, lanthanum La3+-doped Co3O4 nanocubes were synthesized via a hydrothermal approach to tailor their structural and electrochemical properties. Different doping concentrations (1, 3, and 5%) were introduced to investigate their influence systematically. X-ray diffraction confirmed the retention of the spinel phase with clear evidence of La3+ incorporation into the Co3O4 lattice. Also, Raman spectroscopy validated the structural integrity through characteristic Co-O vibrational modes. Scanning electron microscopy analysis revealed uniform cubic morphologies across all samples. The formation of the cubic spinel structure of 1% La3+-doped Co3O4 are confirmed from XPS and TEM studies. Electrochemical evaluation in a 3 M KOH electrolyte demonstrated that 1% La3+-doped Co3O4 nanocubes delivered the highest performance, achieving a specific capacitance of 1312 F g−1 at 1 A g−1 and maintaining a 79.8% capacitance retention and a 97.12% Coulombic efficiency over 10,000 cycles at 5 Ag−1. It can be demonstrated that La3+ doping is an effective strategy to enhance the charge storage capability and cycling stability of Co3O4, offering valuable insights for the rational design of next-generation supercapacitor electrodes. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

23 pages, 1884 KB  
Review
Silicon Photocatalytic Water-Treatment: Synthesis, Modifications, and Machine Learning Insights
by Abay S. Serikkanov, Nurlan B. Bakranov, Tunyk K. Idrissova, Dina I. Bakranova and Danil W. Boukhvalov
Nanomaterials 2025, 15(19), 1514; https://doi.org/10.3390/nano15191514 - 3 Oct 2025
Abstract
Photocatalytic technologies based on silicon (Si-based) nanostructures offer a promising solution for water purification, hydrogen generation, and the conversion of CO2 into useful chemical compounds. This review systematizes the diversity of modern approaches to the synthesis and modification of Si-based photocatalysts, including [...] Read more.
Photocatalytic technologies based on silicon (Si-based) nanostructures offer a promising solution for water purification, hydrogen generation, and the conversion of CO2 into useful chemical compounds. This review systematizes the diversity of modern approaches to the synthesis and modification of Si-based photocatalysts, including chemical deposition, metal-associated etching, hydrothermal methods, and atomic layer deposition. Heterostructures, plasmonic effects, and co-catalysts that enhance photocatalytic activity are considered. Particular attention is drawn to the silicon doping of semiconductors, such as TiO2 and ZnO, to enhance their optical and electronic properties. The formation of heterostructures and the evaluation of their efficiency were discussed. Despite the high biocompatibility and availability of silicon, its photocorrosion and limited stability require the development of protective coatings and morphology optimization. The application of machine learning for predicting redox potentials and optimizing photocatalyst synthesis could offer new opportunities for increasing their efficiency. The review highlights the potential of Si-based materials for sustainable technologies and provides a roadmap for further research. Full article
(This article belongs to the Section Energy and Catalysis)
Show Figures

Figure 1

34 pages, 3132 KB  
Review
Innovative Applications of Hydrogels in Contemporary Medicine
by Maciej Rybicki, Karolina Czajkowska, Agata Grochowska, Bartłomiej Białas, Michał Dziatosz, Igor Karolczak, Julia Kot, Radosław Aleksander Wach and Karol Kamil Kłosiński
Gels 2025, 11(10), 798; https://doi.org/10.3390/gels11100798 - 3 Oct 2025
Abstract
Hydrogels are hydrophilic, soft polymer networks with high water content and mechanical properties that are tunable; they are also biocompatible. Therefore, as biomaterials, they are of interest to modern medicine. In this review, the main applications of hydrogels in essential clinical applications are [...] Read more.
Hydrogels are hydrophilic, soft polymer networks with high water content and mechanical properties that are tunable; they are also biocompatible. Therefore, as biomaterials, they are of interest to modern medicine. In this review, the main applications of hydrogels in essential clinical applications are discussed. Chemical, physical, or hybrid crosslinking of either synthetic or natural polymers allow for the precise control of hydrogels’ physicochemical properties and their specific characteristics for certain applications, such as stimuli-responsiveness, drug retention and release, and biodegradability. Hydrogels are employed in gynecology to regenerate the endometrium, treat infections, and prevent pregnancy. They show promise in cardiology in myocardial infarction therapy through injectable scaffolds, patches in the heart, and medication delivery. In rheumatoid arthritis, hydrogels act as drug delivery systems, lubricants, scaffolds, and immunomodulators, ensuring effective local treatment. They are being developed, among other applications, as antimicrobial coatings for stents and radiotherapy barriers for urology. Ophthalmology benefits from the use of hydrogels in contact lenses, corneal bandages, and vitreous implants. They are used as materials for chemoembolization, tumor models, and drug delivery devices in cancer therapy, with wafers of Gliadel presently used in clinics. Applications in abdominal surgery include hydrogel-coated meshes for hernia repair or Janus-type hydrogels to prevent adhesions and aid tissue repair. Results from clinical and preclinical studies illustrate hydrogels’ diversity, though problems remain with mechanical stability, long-term safety, and mass production. Hydrogels are, in general, next-generation biomaterials for regenerative medicine, individualized treatment, and new treatment protocols. Full article
(This article belongs to the Special Issue Polymer Hydrogels and Networks)
Show Figures

Figure 1

26 pages, 12288 KB  
Article
An Optimal Scheduling Method for Power Grids in Extreme Scenarios Based on an Information-Fusion MADDPG Algorithm
by Xun Dou, Cheng Li, Pengyi Niu, Dongmei Sun, Quanling Zhang and Zhenlan Dou
Mathematics 2025, 13(19), 3168; https://doi.org/10.3390/math13193168 - 3 Oct 2025
Abstract
With the large-scale integration of renewable energy into distribution networks, the intermittency and uncertainty of renewable generation pose significant challenges to the voltage security of the power grid under extreme scenarios. To address this issue, this paper proposes an optimal scheduling method for [...] Read more.
With the large-scale integration of renewable energy into distribution networks, the intermittency and uncertainty of renewable generation pose significant challenges to the voltage security of the power grid under extreme scenarios. To address this issue, this paper proposes an optimal scheduling method for power grids under extreme scenarios, based on an improved Multi-Agent Deep Deterministic Policy Gradient (MADDPG) algorithm. By simulating potential extreme scenarios in the power system and formulating targeted secure scheduling strategies, the proposed method effectively reduces trial-and-error costs. First, the time series clustering method is used to construct the extreme scene dataset based on the principle of maximizing scene differences. Then, a mathematical model of power grid optimal dispatching is constructed with the objective of ensuring voltage security, with explicit constraints and environmental settings. Then, an interactive scheduling model of distribution network resources is designed based on a multi-agent algorithm, including the construction of an agent state space, an action space, and a reward function. Then, an improved MADDPG multi-agent algorithm based on specific information fusion is proposed, and a hybrid optimization experience sampling strategy is developed to enhance the training efficiency and stability of the model. Finally, the effectiveness of the proposed method is verified by the case studies of the distribution network system. Full article
(This article belongs to the Special Issue Artificial Intelligence and Game Theory)
Show Figures

Figure 1

Back to TopTop