Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,473)

Search Parameters:
Keywords = generic drug development

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1598 KB  
Article
Developing In Vitro–In Vivo Correlation for Bicalutamide Immediate-Release Dosage Forms with the Biphasic In Vitro Dissolution Test
by Nihal Tugce Ozaksun and Tuba Incecayir
Pharmaceutics 2025, 17(9), 1126; https://doi.org/10.3390/pharmaceutics17091126 (registering DOI) - 28 Aug 2025
Abstract
Background/Objectives: Reflecting the interaction between dissolution and absorption, the biphasic dissolution system is an appealing approach for estimating the intestinal absorption of drugs in humans. The study aims to characterize the suitability of the biphasic in vitro dissolution testing to set up [...] Read more.
Background/Objectives: Reflecting the interaction between dissolution and absorption, the biphasic dissolution system is an appealing approach for estimating the intestinal absorption of drugs in humans. The study aims to characterize the suitability of the biphasic in vitro dissolution testing to set up an in vitro–in vivo correlation (IVIVC) for the original and generic immediate-release (IR) tablets of a Biopharmaceutics Classification System (BCS) Class II drug, bicalutamide (BIC). Methods: USP apparatus II paddle was used to conduct dissolution testing. A level A IVIVC was obtained between in vitro partitioning and in vivo absorption data of the original drug. The single-compartmental modeling was used for pharmacokinetic (PK) analysis. The generic product’s plasma concentrations were estimated. Results: There was a good correlation between in vitro and in vivo data (r2 = 0.98). The area under the concentration–time curve (AUC) and maximum plasma concentration (Cmax) ratios for generic/original were 1.04 ± 0.01 and 0.951 ± 0.026 (mean ± SD), respectively. Conclusions: The biphasic dissolution testing may present an in vivo predictive tool for developing generic products of poorly soluble and highly permeable drugs such as BIC, which are characterized by pH-independent poor solubility. Full article
11 pages, 401 KB  
Article
Diagnosis, Treatment, and Unmet Needs of Dedifferentiated Liposarcoma in the United States: A Multidisciplinary Delphi Study
by David Campbell, Scott Ramsey, David Veenstra, Minggui Pan, Shiraj Sen, Gregory Litton, Bruce Brockstein, Shawn Young, Andrew Fang and Parth Shah
Cancers 2025, 17(17), 2815; https://doi.org/10.3390/cancers17172815 - 28 Aug 2025
Abstract
Background: Evidence of the real-world management of dedifferentiated liposarcoma (DDLPS) is limited by the patient size and coding. The objective of this study is to generate consensus expert opinion on locally advanced or metastatic DDLPS diagnosis, treatment, and unmet needs. Methods: [...] Read more.
Background: Evidence of the real-world management of dedifferentiated liposarcoma (DDLPS) is limited by the patient size and coding. The objective of this study is to generate consensus expert opinion on locally advanced or metastatic DDLPS diagnosis, treatment, and unmet needs. Methods: A three-round Delphi consensus panel was conducted with 9 DDLPS clinical experts from November to December 2023. Expert panelists were recruited across academic specialty and traditional settings and US regions. The Delphi panel included two rounds of surveys followed by a consensus building workshop. Surveys contained multiple-choice and free response questions, and statements for level of agreement rating. Panelists rated each statement for level of agreement on a 9-point Likert scale. Statements with ≥75% of scores ≥ 7 achieved consensus, and those that did not achieve consensus agreement were modified or removed from subsequent testing. A virtual workshop was held to discuss areas which did not achieve consensus and refine previously agreed upon statements. Results: In total 25 consensus statements were developed by the Delphi panel. Survey 1 achieved 7 consensus statements across the areas of burden, treatment, and unmet needs of DDLPS. Survey 2 generated an additional 10 consensus statements. During the workshop, eight more statements achieved consensus, and four statements were refined for enhanced clarity and precision. The study findings are limited by the number of Delphi panel participants and consensus statements may not be fully representative of clinician perspectives across the US. Conclusions: Consensus areas identified by the Delphi panel help better understand the decision factors for surgical and non-surgical treatments and anticipated utilization. These results could be used to inform both drug development programs as well as care delivery challenges for liposarcoma patients. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

34 pages, 909 KB  
Review
Advancements in Targeted Therapies for Colorectal Cancer: Overcoming Challenges and Exploring Future Directions
by Said A. Khelwatty, Soozana Puvanenthiran, Alan M. Seddon, Izhar Bagwan, Sharadah Essapen and Helmout Modjtahedi
Cancers 2025, 17(17), 2810; https://doi.org/10.3390/cancers17172810 - 28 Aug 2025
Abstract
Colorectal cancer (CRC) remains a significant global health burden. While early-stage CRC has a high survival rate, most patients are diagnosed with advanced disease, necessitating more effective and less toxic therapeutic targets. This review examines recent advancements, challenges, and future directions in targeted [...] Read more.
Colorectal cancer (CRC) remains a significant global health burden. While early-stage CRC has a high survival rate, most patients are diagnosed with advanced disease, necessitating more effective and less toxic therapeutic targets. This review examines recent advancements, challenges, and future directions in targeted therapies for CRC, focusing on HER inhibitors. We assess the efficacy of monoclonal antibodies (mAbs) and tyrosine kinase inhibitors (TKIs) and explore strategies to overcome resistance mechanisms. Targeted therapies like cetuximab and panitumumab have improved outcomes for CRC patients with wild-type KRAS. However, resistance mechanisms and intra- and inter-tumour heterogeneity limit their effectiveness. Recent advancements include the development of dual TKIs, antibody/drug conjugates (ADCs), bispecific antibodies, and CAR-T cells against HER family members and other targets that are showing promise in preclinical and clinical trials. Targeted therapies have transformed CRC treatment, but more research is needed to overcome some of the current challenges, such as late diagnosis and the heterogenous nature of CRC, as well as the discovery of more reliable biomarkers for response to the therapy and patient selection. Future research should focus on identifying novel biomarkers of diagnostic, prognostic, and predictive value, developing next-generation inhibitors, drug repurposing, and combining small-molecule targeted therapies with immunotherapy. Such advances could ultimately help increase both the treatment options and outcomes for patients with CRC. Full article
(This article belongs to the Collection The Development of Anti-cancer Agents)
Show Figures

Figure 1

33 pages, 3149 KB  
Review
Advances in Intra-Articular Injection Hydrogel Drug Delivery Systems in the Treatment of Rheumatoid Arthritis
by Mong-Hsiu Song, Yuxuan Yan, Bohan Chen, Liming Gong, Liqing Chen, Jing Feng, Mingfeng Han, Chenfei Liu, Congcong Xiao, Mingji Jin, Zhonggao Gao and Wei Huang
Pharmaceutics 2025, 17(9), 1118; https://doi.org/10.3390/pharmaceutics17091118 - 27 Aug 2025
Abstract
Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by chronic inflammation of the synovial membrane, leading to synovial hyperplasia, infiltration of immune cells, and subsequent cartilage and bone erosion. This progressive joint pathology results in persistent pain and functional impairment. Currently, convenient [...] Read more.
Rheumatoid arthritis (RA) is a systemic autoimmune disorder characterized by chronic inflammation of the synovial membrane, leading to synovial hyperplasia, infiltration of immune cells, and subsequent cartilage and bone erosion. This progressive joint pathology results in persistent pain and functional impairment. Currently, convenient oral traditional disease-modifying anti-rheumatic drugs (DMARDs) are available, and increasingly precise biologic agents and targeted synthetic DMARDs (tsDMARDs) have been developed, offering promising therapeutic options. However, systemic administration generally fails to achieve therapeutic drug concentrations in the joints owing to poor biodistribution and dose-limiting systemic toxicity. Intra-articular (IA) administration has demonstrated promising potential in addressing these challenges. Among the various strategies employed for IA administration, hydrogels have gained significant attention due to their tunable mechanical properties, biocompatibility, and controlled release capabilities. These unique properties enable hydrogel-based IA delivery systems to simultaneously modulate the inflammatory microenvironment and protect cartilage tissue. This review comprehensively summarizes the histopathological changes and associated cellular and molecular events in RA, while also highlighting the design principles of hydrogels and advanced strategies for hydrogel-based IA administration. By addressing the limitations of conventional treatments, hydrogel-based IA injection holds significant promise for improving RA treatment. Full article
(This article belongs to the Section Drug Delivery and Controlled Release)
Show Figures

Figure 1

16 pages, 538 KB  
Article
Clinical Relevance of Peripheral Interleukins in Drug-Naive First-Episode Psychosis: Symptom-Specific Associations from the PANSS Dimensions
by Iva Binic, Jovana Petrovic, Olivera Zikic, Suzana Tosic Golubovic, Vladimir Djordjevic, Marko Stevanovic, Dane Krtinic and Marija Andjelkovic Apostolovic
Brain Sci. 2025, 15(9), 932; https://doi.org/10.3390/brainsci15090932 - 27 Aug 2025
Abstract
Background/Objectives: Emerging evidence suggests a role of immune–inflammatory mechanisms in the pathophysiology of schizophrenia, particularly in the early stages of the illness. Cytokines, as key mediators of inflammation, may affect brain function and clinical presentation. Drug-naive patients with first-episode psychosis (FEDN) offer [...] Read more.
Background/Objectives: Emerging evidence suggests a role of immune–inflammatory mechanisms in the pathophysiology of schizophrenia, particularly in the early stages of the illness. Cytokines, as key mediators of inflammation, may affect brain function and clinical presentation. Drug-naive patients with first-episode psychosis (FEDN) offer a unique opportunity to investigate these associations free from confounding pharmacological effects. Methods: This study included 38 patients with drug-naive first episode psychosis and 22 age- and sex-matched healthy controls. Serum concentrations of IL-1β, IL-2, IL-6, and IL-10 were measured using ELISA. Clinical symptoms were assessed using the PANSS scale. Statistical analyses included Mann–Whitney U tests, Spearman’s correlations, and ROC curve analysis. Results: Significantly elevated serum levels of IL-1β, IL-2, and IL-10 were observed in the FEDN group compared to the controls (p < 0.01), while IL-6 levels did not differ significantly. IL-2 exhibited the highest discriminatory power in differentiating the patients from the controls (AUC = 0.917; 95% CI: 0.759–1000.0; p < 0.001). IL-1β levels positively correlated with negative and general psychopathology symptoms, including hostility and grandiosity. IL-10 was associated with volitional disturbance and overall PANSS severity. Conclusions: Our findings underscore the relevance of immune dysregulation in the early stages of psychosis and highlight the potential of specific cytokines, particularly IL-2 and IL-1β, as peripheral biomarkers. Their diagnostic utility and correlation with symptom dimensions suggest a promising role in the development of precision psychiatry approaches, including early detection strategies and individualised therapeutic targeting. Longitudinal studies are needed to validate these findings and to assess their prognostic significance. Full article
(This article belongs to the Section Neuropsychiatry)
Show Figures

Figure 1

17 pages, 5538 KB  
Article
ACE2-Decoy-Conjugated PLGA-PEG Nanoparticles Loaded with Nafamostat for Potent Antiviral Activity
by Shulin Hou, Yunyun Zhang, Xin Zheng, Ruining Li, Taoran Zhao, Hua Qiao, Xiaozheng Zhang and Zhizhen Liu
Viruses 2025, 17(9), 1167; https://doi.org/10.3390/v17091167 - 27 Aug 2025
Abstract
Angiotensin-converting enzyme 2 (ACE2) is a key mediator of SARS-CoV-2 host cell entry, making it an attractive target for drug delivery strategies. Nafamostat (NM), a multifunctional agent with antiviral and anti-inflammatory properties, holds promise for COVID-19 treatment. In this study, we developed PLGA-PEG [...] Read more.
Angiotensin-converting enzyme 2 (ACE2) is a key mediator of SARS-CoV-2 host cell entry, making it an attractive target for drug delivery strategies. Nafamostat (NM), a multifunctional agent with antiviral and anti-inflammatory properties, holds promise for COVID-19 treatment. In this study, we developed PLGA-PEG nanoparticles encapsulating NM (NM-PP NPs) and further conjugated them with specific ACE2 decoys (CTC-445.2d or SI5α) to generate NM-PP-Pro/Pep NPs. Both unmodified and ACE2-decoy-modified NPs exhibited uniform size distributions (diameter < 200 nm) and negative surface charges, as confirmed by dynamic light scattering and zeta potential measurements. The nanoparticles maintained structural integrity for at least 18 days at 4 °C and room temperature. In vitro release studies revealed sustained and controlled NM release kinetics. Notably, NM-PP-Pro NPs displayed potent antiviral activity, with an IC50 < 0.05 nM against wild-type SARS-CoV-2 and remained effective against the D614G variant (IC50 = 2 nM). These results underscore the potential of NM-PP-Pro NPs as a versatile n;anotherapeutic platform for targeting SARS-CoV-2 and its emerging variants. Full article
(This article belongs to the Section SARS-CoV-2 and COVID-19)
Show Figures

Figure 1

25 pages, 1701 KB  
Review
Deciphering the Fasciola hepatica Glycocode and Its Involvement in Host–Parasite Interactions
by Jaclyn Swan, Timothy C. Cameron, Terry W. Spithill and Travis Beddoe
Biomolecules 2025, 15(9), 1235; https://doi.org/10.3390/biom15091235 - 26 Aug 2025
Abstract
The zoonotic disease fasciolosis poses a significant global threat to both humans and livestock. The causative agent of fasciolosis is Fasciola hepatica, which is commonly referred to as liver fluke. The emergence of drug resistance has underscored the urgent need for new [...] Read more.
The zoonotic disease fasciolosis poses a significant global threat to both humans and livestock. The causative agent of fasciolosis is Fasciola hepatica, which is commonly referred to as liver fluke. The emergence of drug resistance has underscored the urgent need for new therapeutic treatments against F. hepatica. The tegument surface of F. hepatica is characterized by a dynamic syncytial layer surrounded by a glycocalyx, which serves as a crucial interface in host–parasite interactions, facilitating functions such as nutrient absorption, sensory input, and defense against the host immune response. Despite its pivotal role, only recently have we delved deeper into understanding glycans at the host–parasite interface and the glycosylation of hidden antigens. These glycan antigens have shown promise for vaccine development or as targets for drug manipulation across various pathogenic species. This review aims to consolidate current knowledge on the glycosylation of F. hepatica, exploring glycan motifs identified through generic lectin probing and mass spectrometry. Additionally, it examines the interaction of glycoconjugates with lectins from the innate immune systems of both ruminant and human host species. An enhanced understanding of glycans’ role in F. hepatica biology and their critical involvement in host–parasite interactions will be instrumental in developing novel strategies to combat these parasites effectively. In the future, a more comprehensive approach may be adopted in selecting and designing potential vaccine targets, integrating insights from glycosylation studies to improve efficacy. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Graphical abstract

28 pages, 1361 KB  
Review
Artificial Intelligence in Small-Molecule Drug Discovery: A Critical Review of Methods, Applications, and Real-World Outcomes
by Sarfaraz K. Niazi
Pharmaceuticals 2025, 18(9), 1271; https://doi.org/10.3390/ph18091271 - 26 Aug 2025
Abstract
Artificial intelligence (AI) is emerging as a valuable complementary tool in small-molecule drug discovery, augmenting traditional methodologies rather than replacing them. This review examines the evolution of AI from early rule-based systems to advanced deep learning, generative models, diffusion models, and autonomous agentic [...] Read more.
Artificial intelligence (AI) is emerging as a valuable complementary tool in small-molecule drug discovery, augmenting traditional methodologies rather than replacing them. This review examines the evolution of AI from early rule-based systems to advanced deep learning, generative models, diffusion models, and autonomous agentic AI systems, highlighting their applications in target identification, hit discovery, lead optimization, and safety prediction. We present both successes and failures to provide a balanced perspective. Notable achievements include baricitinib (BenevolentAI/Eli Lilly, an existing drug repurposed through AI-assisted analysis for COVID-19 and rheumatoid arthritis), halicin (MIT, preclinical antibiotic), DSP-1181 (Exscientia, discontinued after Phase I), and ISM001-055/rentosertib (Insilico Medicine, positive Phase IIa results). However, several AI-assisted compounds have also faced challenges in clinical development. DSP-1181 was discontinued after Phase I, despite a favorable safety profile, highlighting that the acceleration of discovery timelines by AI does not guarantee clinical success. Despite progress, challenges such as data quality, model interpretability, regulatory hurdles, and ethical concerns persist. We provide practical insights for integrating AI into drug discovery workflows, emphasizing hybrid human-AI approaches and the emergence of agentic AI systems that can autonomously navigate discovery pipelines. A critical evaluation of current limitations and future opportunities reveals that while AI offers significant potential as a complementary technology, realistic expectations and careful implementation are crucial for delivering innovative therapeutics. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

11 pages, 1872 KB  
Review
Organs-on-Chips: Revolutionizing Biomedical Research
by Ankit Monga, Khush Jain, Harvinder Popli, Prashik Telgote, Ginpreet Kaur, Fariah Rizwani, Ritu Chauhan, Damandeep Kaur, Abhishek Chauhan and Hardeep Singh Tuli
Biophysica 2025, 5(3), 38; https://doi.org/10.3390/biophysica5030038 - 26 Aug 2025
Abstract
Organs-on-Chips (OoC) technology has begun to be considered a pragmatic tool for drug evaluation, offering researchers an opportunity to move beyond the less physiologically relevant animal models. OoCs are microfluidic structures that imitate the functionalities of individual human organs, serving as mimicry tools [...] Read more.
Organs-on-Chips (OoC) technology has begun to be considered a pragmatic tool for drug evaluation, offering researchers an opportunity to move beyond the less physiologically relevant animal models. OoCs are microfluidic structures that imitate the functionalities of individual human organs, serving as mimicry tools for drug response and reproducibility studies. On the one hand, companies producing OoCs find managing and analyzing the large amounts of data generated challenging. This is where artificial intelligence (AI) can be deployed to address such problems. This paper will present the state-of-the-art of current OoC technology and AI, discussing the benefits and threats of combining these approaches. AI can be applied to optimize the process of OoC fabrication and operation, as well as for the big data analysis of OoC devices. By combining these technologies, scientists gain a powerful tool for drug development that is more efficient and accurate. However, processing the vast datasets generated by OoC systems often requires specialized AI expertise and computational resources. Despite the numerous possible benefits of amalgamating OoC technology with AI, several challenges and limitations need to be addressed. The large datasets generated by OoC systems can be difficult to process and analyze, which is a task that may require specialized AI expertise. Additionally, limitations of OoC systems include issues with reproducibility, as the devices are sensitive to perturbations in experimental conditions. Furthermore, the development and implementation of AI algorithms require significant computational resources and expertise, which may not be readily available to all research institutions. To overcome these challenges, interdisciplinary collaboration between biologists, engineers, data scientists, and AI experts is essential. Continued advancements in both OoC technology and AI will likely lead to more robust and versatile platforms for biomedical research and drug development, ultimately contributing to the advancement of personalized medicine and the reduction of reliance on animal testing. Full article
Show Figures

Figure 1

23 pages, 11376 KB  
Article
Hyssopus cuspidatus Boriss Volatile Extract (SXC): A Dual-Action Antioxidant and Antifungal Agent Targeting Candida albicans Pathogenicity and Vulvovaginal Candidiasis via Host Oxidative Stress Modulation and Fungal Metabolic Reprogramming
by Yun-Dan Guo, Ming-Xuan Zhang, Quan-Yong Yu, Lu-Lu Wang, Yan-Xing Han, Tian-Le Gao, Yuan Lin, Cai Tie and Jian-Dong Jiang
Antioxidants 2025, 14(9), 1046; https://doi.org/10.3390/antiox14091046 - 25 Aug 2025
Viewed by 124
Abstract
Background and purpose: Vulvovaginal candidiasis (VVC), caused by Candida albicans (C. albicans), is exacerbated by oxidative stress and uncontrolled inflammation. Pathogens like C. albicans generate reactive oxygen species (ROS) to enhance virulence, while host immune responses further amplify oxidative damage. This [...] Read more.
Background and purpose: Vulvovaginal candidiasis (VVC), caused by Candida albicans (C. albicans), is exacerbated by oxidative stress and uncontrolled inflammation. Pathogens like C. albicans generate reactive oxygen species (ROS) to enhance virulence, while host immune responses further amplify oxidative damage. This study investigates the antioxidant and antifungal properties of Hyssopus cuspidatus Boriss volatile extract (SXC), a traditional Uyghur medicinal herb, against fluconazole-resistant VVC. We hypothesize that SXC’s bioactive volatiles counteract pathogen-induced oxidative stress while inhibiting fungal growth and inflammation. Methods: GC-MS identified SXC’s major bioactive components, while broth microdilution assays determined minimum inhibitory concentrations (MICs) against bacterial/fungal pathogens, and synergistic interactions with amphotericin B (AmB) or fluconazole (FLC) were assessed via time–kill kinetics. Anti-biofilm activity was quantified using crystal violet/XTT assays, and in vitro studies evaluated SXC’s effects on C. albicans-induced cytotoxicity (LDH release in A431 cells) and inflammatory responses (cytokine production in LPS-stimulated RAW264.7 macrophages). A murine VVC model, employing estrogen-mediated pathogenesis and intravaginal C. albicans challenge, confirmed SXC’s in vivo effects. Immune modulation was assessed using ELISA and RT-qPCR targeting inflammatory and antioxidative stress mediators, while UPLC-MS was employed to profile metabolic perturbations in C. albicans. Results: Gas chromatography-mass spectrometry identified 10 key volatile components contributing to SXC’s activity. SXC exhibited broad-spectrum antimicrobial activity with MIC values ranging from 0.125–16 μL/mL against bacterial and fungal pathogens, including fluconazole-resistant Candida strains. Time–kill assays revealed that combinations of AmB-SXC and FLC-SXC achieved sustained synergistic bactericidal activity across all tested strains. Mechanistic studies revealed SXC’s dual antifungal actions: inhibition of C. albicans hyphal development and biofilm formation through downregulation of the Ras1-cAMP-Efg1 signaling pathway, and attenuation of riboflavin-mediated energy metabolism crucial for fungal proliferation. In the VVC model, SXC reduced vaginal fungal burden, alleviated clinical symptoms, and preserved vaginal epithelial integrity. Mechanistically, SXC modulated host immune responses by suppressing oxidative stress and pyroptosis through TLR4/NF-κB/NLRP3 pathway inhibition, evidenced by reduced caspase-1 activation and decreased pro-inflammatory cytokines (IL-1β, IL-6, TNF-α). Conclusions: SXC shows promise as a broad-spectrum natural antimicrobial against fungal pathogens. It inhibited C. albicans hyphal growth, adhesion, biofilm formation, and invasion in vitro, while reducing oxidative and preserving vaginal mucosal integrity in vivo. By disrupting fungal metabolic pathways and modulating host immune responses, SXC offers a novel approach to treating recurrent, drug-resistant VVC. Full article
Show Figures

Graphical abstract

22 pages, 6995 KB  
Article
NADES-Mediated Deposition of Potential Biomimetic Drug-Loaded Polypyrrole on Biomedical Ti20Zr5Ta2Ag
by Radu Nartita, Florentina Golgovici and Ioana Demetrescu
Biomimetics 2025, 10(9), 568; https://doi.org/10.3390/biomimetics10090568 - 25 Aug 2025
Viewed by 300
Abstract
A natural deep eutectic solvent (NADES)-based electropolymerization strategy was developed to deposit polypyrrole (PPy) and Naproxen-doped PPy films onto a biomedical Ti–20Zr–5Ta–2Ag high-entropy alloy. Using cyclic voltammetry, chronoamperometry, and chronopotentiometry, coatings were grown potentiostatically (1.2–1.6 V) or galvanostatically (0.5–1 mA) to fixed charge [...] Read more.
A natural deep eutectic solvent (NADES)-based electropolymerization strategy was developed to deposit polypyrrole (PPy) and Naproxen-doped PPy films onto a biomedical Ti–20Zr–5Ta–2Ag high-entropy alloy. Using cyclic voltammetry, chronoamperometry, and chronopotentiometry, coatings were grown potentiostatically (1.2–1.6 V) or galvanostatically (0.5–1 mA) to fixed charge values (1.6–2.2 C). Surface morphology and composition were assessed by optical microscopy, SEM and FTIR, while wettability was quantified via static contact-angle measurements in simulated body fluid (SBF). Electrochemical performance in SBF was evaluated through open-circuit potential monitoring, potentiodynamic polarization, and electrochemical impedance spectroscopy. Drug-release kinetics were determined by UV–Vis spectrophotometry and analyzed using mathematical modelling. Compared to uncoated alloy, PPy and PPy–Naproxen coatings increased hydrophilicity (contact angles reduced from ~31° to <10°), and reduced corrosion current densities from 754 µA/cm2 to below 5.5 µA/cm2, with polarization resistances rising from 0.06 to up to 37.8 kΩ·cm2. Naproxen incorporation further enhanced barrier integrity (Rcoat up to 1.4 × 1011 Ω·cm2) and enabled sustained drug release (>90% over 8 days), with diffusion exponents indicating Fickian (n ≈ 0.51) and anomalous (n ≈ 0.67) transport for potentiostatic and galvanostatic coatings, respectively. These multifunctional PPy–Naproxen films combine robust corrosion protection with controlled therapeutic delivery, supporting their potential biomimetic role as smart coatings for next-generation implantable devices. Full article
Show Figures

Figure 1

32 pages, 2441 KB  
Review
Tailoring Therapy: Hydrogels as Tunable Platforms for Regenerative Medicine and Cancer Intervention
by Camelia Munteanu, Eftimia Prifti, Adrian Surd and Sorin Marian Mârza
Gels 2025, 11(9), 679; https://doi.org/10.3390/gels11090679 - 24 Aug 2025
Viewed by 287
Abstract
Hydrogels are water-rich polymeric networks mimicking the body’s extracellular matrix, making them highly biocompatible and ideal for precision medicine. Their “tunable” and “smart” properties enable the precise adjustment of mechanical, chemical, and physical characteristics, allowing responses to specific stimuli such as pH or [...] Read more.
Hydrogels are water-rich polymeric networks mimicking the body’s extracellular matrix, making them highly biocompatible and ideal for precision medicine. Their “tunable” and “smart” properties enable the precise adjustment of mechanical, chemical, and physical characteristics, allowing responses to specific stimuli such as pH or temperature. These versatile materials offer significant advantages over traditional drug delivery by facilitating targeted, localized, and on-demand therapies. Applications range from diagnostics and wound healing to tissue engineering and, notably, cancer therapy, where they deliver anti-cancer agents directly to tumors, minimizing systemic toxicity. Hydrogels’ design involves careful material selection and crosslinking techniques, which dictate properties like swelling, degradation, and porosity—all crucial for their effectiveness. The development of self-healing, tough, and bio-functional hydrogels represents a significant step forward, promising advanced biomaterials that can actively sense, react to, and engage in complex biological processes for a tailored therapeutic approach. Beyond their mechanical resilience and adaptability, these hydrogels open avenues for next-generation therapies, such as dynamic wound dressings that adapt to healing stages, injectable scaffolds that remodel with growing tissue, or smart drug delivery systems that respond to real-time biochemical cues. Full article
(This article belongs to the Special Issue Advances in Hydrogels for Regenerative Medicine)
Show Figures

Figure 1

23 pages, 994 KB  
Review
Advances in Techniques for the Structure and Functional Optimization of Therapeutic Monoclonal Antibodies
by Chenchen He, Weijin Huang, Xi Wu and Huanzhang Xia
Biomedicines 2025, 13(9), 2055; https://doi.org/10.3390/biomedicines13092055 - 23 Aug 2025
Viewed by 344
Abstract
Monoclonal antibodies (mAbs), as potent therapeutic agents, have been widely applied in the treatment of various major diseases, including infectious diseases, autoimmune disorders, cancers, and neurodegenerative diseases. However, early-generation mAbs were limited by high immunogenicity, short half-life, and insufficient affinity, which compromised their [...] Read more.
Monoclonal antibodies (mAbs), as potent therapeutic agents, have been widely applied in the treatment of various major diseases, including infectious diseases, autoimmune disorders, cancers, and neurodegenerative diseases. However, early-generation mAbs were limited by high immunogenicity, short half-life, and insufficient affinity, which compromised their therapeutic efficacy. With technological advancements, novel approaches such as high-throughput screening and glycosyl modification have been introduced to improve the performance of mAbs. Furthermore, computer-aided design techniques—including molecular docking, molecular dynamics simulations, and artificial intelligence -based methods—are increasingly being employed to accelerate the optimization process. This review summarizes recent progress in the optimization of therapeutic mAbs, with a focus on technological breakthroughs and applications in affinity enhancement, development of broad-spectrum mAbs, specificity modulation, immunogenicity reduction, and stability improvement. Additionally, it discusses current challenges and future directions in antibody optimization. This review aims to provide insights and references for the development and optimization of next-generation antibody drugs, ultimately promoting the clinical application of safer and more effective mAb-based therapies. Full article
(This article belongs to the Special Issue Pathogenesis, Diagnosis and Treatment of Infectious Diseases)
Show Figures

Figure 1

20 pages, 2095 KB  
Article
CF10 Displayed Improved Activity Relative to 5-FU in a Mouse CRLM Model Under Conditions of Physiological Folate
by Charles Chidi Okechukwu, Xue Ma, Wencheng Li, Ralph D’Agostino, Matthew G. Rees, Melissa M. Ronan, Jennifer A. Roth and William H. Gmeiner
Cancers 2025, 17(17), 2739; https://doi.org/10.3390/cancers17172739 - 23 Aug 2025
Viewed by 234
Abstract
Background/Objective: At least 25% of colorectal cancer (CRC) patients develop liver metastases (CRLM), and chemotherapeutic regimens based on the fluoropyrimidine (FP) drug 5-fluorouracil (5-FU) provide a survival advantage, but long-term survival is uncommon. The primary molecular target of FP drugs is thymidylate synthase [...] Read more.
Background/Objective: At least 25% of colorectal cancer (CRC) patients develop liver metastases (CRLM), and chemotherapeutic regimens based on the fluoropyrimidine (FP) drug 5-fluorouracil (5-FU) provide a survival advantage, but long-term survival is uncommon. The primary molecular target of FP drugs is thymidylate synthase (TS). Methods: A TS/Top1 dual-targeting cytotoxic mechanism for CF10/LV was confirmed by TS ternary complex detection by Western blot and by immunofluorescence detection of Top1 cleavage complexes. CF10/LV activated the ATR/Chk1 pathway consistent with enhanced replication stress and induced apoptosis. In vivo studies showed CF10 and CF10/LV eradicated liver metastasis in a CRLM model without scarring or weight loss, displaying therapeutic advantages relative to legacy FPs. Results: We demonstrated that a nanoscale FP polymer, CF10, displayed greater potency than expected based on FP content in part through more direct conversion to the TS-inhibitory metabolite, FdUMP. In this study, we tested CF10 for potency advantages relative to 5-FU and trifluorothymidine (TFT, the FP component of TAS-102) and confirmed a general potency advantage for CF10 in CRC cell lines in the Broad Institute PRISM screen. We demonstrated that this potency advantage is retained in CRC cells cultured with human-like folate levels and is enhanced by LV co-treatment to a similar extent as that by 5-FU. Our results confirm CF10 development proceeding as a CF10/LV combination. Mechanistically, CF10 cytotoxicity closely correlates with poisons of DNA topoisomerase 1 (Top1) in the PRISM screen relative to 5-FU and TFT. Conclusions: Our pre-clinical data support an early-phase clinical trial for CF10 for treating liver-metastatic CRC. Full article
Show Figures

Figure 1

39 pages, 5729 KB  
Review
Metabolism, a Blossoming Target for Small-Molecule Anticancer Drugs
by Michela Puxeddu, Romano Silvestri and Giuseppe La Regina
Molecules 2025, 30(17), 3457; https://doi.org/10.3390/molecules30173457 - 22 Aug 2025
Viewed by 463
Abstract
Reprogramming is recognized as a promising target in cancer therapy. It is well known that the altered metabolism in cancer cells, in particular malignancies, are characterized by increased aerobic glycolysis (Warburg effect) which promotes rapid proliferation. The effort to design compounds able to [...] Read more.
Reprogramming is recognized as a promising target in cancer therapy. It is well known that the altered metabolism in cancer cells, in particular malignancies, are characterized by increased aerobic glycolysis (Warburg effect) which promotes rapid proliferation. The effort to design compounds able to modulate these hallmarks of cancer are gaining increasing attention in drug discovery. In this context, the present review explores recent progress in the development of small molecule inhibitors of key metabolic pathways, such as glycolysis, glutamine metabolism and fatty acid synthesis. In particular, different mechanisms of action of these compounds are analyzed, which can target distinct enzymes, including LDH, HK2, PKM2, GLS and FASN. The findings underscore the relevance of metabolism-based strategies in developing next-generation anticancer agents with potential for improved efficacy and reduced systemic toxicity. Full article
(This article belongs to the Special Issue Small-Molecule Drug Design and Discovery)
Show Figures

Graphical abstract

Back to TopTop