Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = genomic PRG actions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 685 KB  
Review
Membrane Progesterone Receptors (mPRs/PAQRs) Are Going beyond Its Initial Definitions
by Justin Aickareth, Majd Hawwar, Nickolas Sanchez, Revathi Gnanasekaran and Jun Zhang
Membranes 2023, 13(3), 260; https://doi.org/10.3390/membranes13030260 - 22 Feb 2023
Cited by 12 | Viewed by 5224
Abstract
Progesterone (PRG) is a key cyclical reproductive hormone that has a significant impact on female organs in vertebrates. It is mainly produced by the corpus luteum of the ovaries, but can also be generated from other sources such as the adrenal cortex, Leydig [...] Read more.
Progesterone (PRG) is a key cyclical reproductive hormone that has a significant impact on female organs in vertebrates. It is mainly produced by the corpus luteum of the ovaries, but can also be generated from other sources such as the adrenal cortex, Leydig cells of the testes and neuronal and glial cells. PRG has wide-ranging physiological effects, including impacts on metabolic systems, central nervous systems and reproductive systems in both genders. It was first purified as an ovarian steroid with hormonal function for pregnancy, and is known to play a role in pro-gestational proliferation during pregnancy. The main function of PRG is exerted through its binding to progesterone receptors (nPRs, mPRs/PAQRs) to evoke cellular responses through genomic or non-genomic signaling cascades. Most of the existing research on PRG focuses on classic PRG-nPR-paired actions such as nuclear transcriptional factors, but new evidence suggests that PRG also exerts a wide range of PRG actions through non-classic membrane PRG receptors, which can be divided into two sub-classes: mPRs/PAQRs and PGRMCs. The review will concentrate on recently found non-classical membrane progesterone receptors (mainly mPRs/PAQRs) and speculate their connections, utilizing the present comprehension of progesterone receptors. Full article
Show Figures

Figure 1

16 pages, 567 KB  
Review
Transduction of Signals during Somatic Embryogenesis
by Mohamed Elhiti and Claudio Stasolla
Plants 2022, 11(2), 178; https://doi.org/10.3390/plants11020178 - 11 Jan 2022
Cited by 55 | Viewed by 5643
Abstract
Somatic embryogenesis (SE) is an in vitro biological process in which bipolar structures (somatic embryos) can be induced to form from somatic cells and regenerate into whole plants. Acquisition of the embryogenic potential in culture is initiated when some competent cells within the [...] Read more.
Somatic embryogenesis (SE) is an in vitro biological process in which bipolar structures (somatic embryos) can be induced to form from somatic cells and regenerate into whole plants. Acquisition of the embryogenic potential in culture is initiated when some competent cells within the explants respond to inductive signals (mostly plant growth regulators, PRGs), and de-differentiate into embryogenic cells. Such cells, “canalized” into the embryogenic developmental pathway, are able to generate embryos comparable in structure and physiology to their in vivo counterparts. Genomic and transcriptomic studies have identified several pathways governing the initial stages of the embryogenic process. In this review, the authors emphasize the importance of the developmental signals required for the progression of embryo development, starting with the de-differentiation of somatic cells and culminating with tissue patterning during the formation of the embryo body. The action and interaction of PGRs are highlighted, along with the participation of master regulators, mostly transcription factors (TFs), and proteins involved in stress responses and the signal transduction required for the initiation of the embryogenic process. Full article
(This article belongs to the Special Issue Mechanism of Plant Somatic Embryogenesis)
Show Figures

Figure 1

Back to TopTop